Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • Large Research Facilities
    • Brochures
    • 5232 — The magazine of the Paul Scherrer Institute
    • Research Divisions & Labs (only english)
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Expertise
    • Spin-off Companies
    • Park Innovaare
  • Proton TherapyOpen mainmenu item
    • Overview
    • Physician & Patient Information
  • CareerOpen mainmenu item
    • Overview
    • Job Opportunities
    • Working at PSI
    • Personnel Policy
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Career Center
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Visit to PSIOpen mainmenu item
    • Overview
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Public Events
    • How to find us
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • For the media
    • Suppliers and customers
    • Customers E-Billing
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Our Research
  3. Current topics from our research
  4. Future Technologies

Secondary navigation

Our Research

  • Current topics from our research Expanded submenu item
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • ESI Platform
    • Large research facilities
    • Project SLS 2.0
    • Topic Overview
    • Archive
  • 5232 – The magazine of the Paul Scherrer Institute
    • Contact
  • Brochures
  • Films
    • Virtual Tour
  • Social Media
    • PSI Community Guidelines
  • Media corner
    • Media Releases

Future Technologies

The manifold characteristics of materials are determined by what type of atoms they are made of, how these atoms are arranged, and how they move. In the research area Future Technologies, scientists at the Paul Scherrer Institute are trying to clarify this link between the internal structure and the observable properties of different materials. They want to use this knowledge as fundamental principles for new applications – whether in medicine, information technology or energy generation and storage – or to explore innovative manufacturing processes for industry.

Find out more at: Future Technologies

11 August 2013
teaserbild.jpg

Magnetisation controlled at picosecond intervals

Media Releases Future Technologies Materials Research Large Research Facilities SwissFEL

A terahertz laser developed at the Paul Scherrer Institute makes it possible to control a material’s magnetisation precisely at a timescale of picoseconds. In their experiment, the researchers shone extremely short light pulses from the laser onto a magnetic material. The light pulse’s magnetic field was able to deflect the magnetic moments from their idle state in such a way that they exactly followed the change of the laser’s magnetic field with only a minor delay. The terahertz laser used in the experiment is one of the strongest of its kind in the world.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
12 July 2013
teaserbild.jpg

Ferromagnetic and antiferromagnetic – at the same time

Media Releases Future Technologies Materials Research

Researchers from the Paul Scherrer Institute (PSI) have made thin, crystalline layers of the material LuMnO3 that are both ferromagnetic and antiferromagnetic at the same time. The LuMnO3 layer is ferromagnetic close to the interface with the carrier crystal. As the distance increases, however, it assumes the material’s normal antiferromagnetic order while the ferromagnetism steadily becomes weaker. The possibility of producing two different magnetic orders within a material could be of major technical importance.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
1 July 2013

The cleanest place at the Paul Scherrer Institute

Future Technologies Micro- and Nanotechnology

Highly sensitive processes take place in the cleanrooms of the Paul Scherrer Institute (PSI) as a single dust particle in the wrong place could have disastrous consequences. Here is a glimpse behind the scenes in rooms that are so clean even pencils are prohibited.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
17 May 2013
teaserbild.jpg

Experiments in millionths of a second

Future Technologies Large Research Facilities Research with muons

Muons à unstable elementary particles à provide scientists with important insights into the structure of matter. They provide information about processes in modern materials, about the properties of elementary particles and the nature of our physical world. Many muon experiments are only possible at the Paul Scherrer Institute because of the unique intense muon beams available here.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
5 May 2013
teaserbild.jpg

Tiny Magnets as a Model System

Media Releases Future Technologies Materials Research Research Using Synchrotron Light

Scientists use nano-rods to investigate how matter assemblesTo make the magnetic interactions between the atoms visible, scientists at the Paul Scherrer Institute PSI have developed a special model system. It is so big that it can be easily observed under an X-ray microscope, and mimics the tiniest movements in Nature. The model: rings made from six nanoscale magnetic rods, whose north and south poles attract each other. At room temperature, the magnetisation direction of each of these tiny rods varies spontaneously. Scientists were able to observe the magnetic interactions between these active rods in real time. These research results were published on May 5 in the journal “Nature Physics”.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
22 April 2013
teaserbild.jpg

Germanium – zum Leuchten gezogen

Media Releases Future Technologies Micro- and Nanotechnology Materials Research

Forscher des PSI und der ETH Zürich haben mit Kollegen vom Politecnico di Milano in der aktuellen Ausgabe der wissenschaftlichen Fachzeitschrift "Nature Photonics" eine Methode erarbeitet, einen Laser zu entwickeln, der schon bald in den neuesten Computern eingesetzt werden könnte. Damit könnte die Geschwindigkeit, mit der einzelne Prozessorkerne im Chip miteinander kommunizieren, drastisch erhöht werden. So würde die Leistung der Rechner weiter steigen.This news release is only available in German.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
8 April 2013
teaserbild.jpg

X-ray Laser: A novel tool for structural studies of nano-particles

Media Releases Large Research Facilities SwissFEL Future Technologies

Prominent among the planned applications of X-ray free electron laser facilities, such as the future SwissFEL at the Paul Scherrer Institute, PSI, are structural studies of complex nano-particles, down to the scale of individual bio-molecules. A major challenge for such investigations is the mathematical reconstruction of the particle form from the measured scattering data. Researchers at PSI have now demonstrated an optimized mathematical procedure for treating such data, which yields a dramatically improved single-particle structural resolution. The procedure was successfully tested at the Swiss Light Source synchrotron at PSI.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
3 April 2013
teaserbild.jpg

Observing Engine Oil Beneath Metal

Media Releases Future Technologies Research Using Neutrons

Developmental Engineers from the firm LuK (D) wanted to see right through the metal housing of a clutch. They wanted to observe how the oil that lubricates and cools a clutch is distributed. A transparent disc becomes dirty very quickly, and X-rays merely reveal the metal. These engineers therefore turned to scientists at the Paul Scherrer Institute, who illuminated the metal with neutrons and thus made the lubricating oil visible. The results surprised everyone: only three of the eight lamellae were sufficiently lubricated.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
12 February 2013

Superconductors surprise with intriguing properties

Media Releases Future Technologies Research Using Synchrotron Light

Scientists at the Paul Scherrer Institute, together with Chinese and German collaborators, have obtained new insights into a class of high-temperature superconductors. The experimental results of this fundamental research study indicate that magnetic interactions are of central importance in the phenomenon of high-temperature superconductivity. This knowledge could help to develop superconductors with enhanced technical properties in the future.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
7 February 2013

Imaging fluctuations with X-ray microscopy

Media Releases Future Technologies Research Using Synchrotron Light

X-rays are used to investigate nanoscale structures of objects as varied as single cells or magnetic storage media. Yet, high-resolution images impose extreme constraints on both the X ray microscope and the samples under investigation. Researchers at the Technische Universität München the PSI now showed how to relax these conditions without loss of image quality. They further showed how to image objects featuring fast fluctuations, such as the rapid switching events that determine the life time of data storage in magnetic materials.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
31 January 2013
teaserbild.jpg

Magnetic nano-chessboard puts itself together

Media Releases Micro- and Nanotechnology Materials Research Future Technologies Research Using Synchrotron Light

Researchers from the Paul Scherrer Institute and the Indian Institute of Science Education and Research have been able to intentionally ‘switch off’ the magnetization of every second molecule in an array of magnetized molecules and thereby create a ‘magnetic nano-chessboard’. To achieve this, they manipulated the quantum state of a part of the molecules in a specific way.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
23 January 2013
teaserbild.jpg

Excitement that rivals a moon landing

Future Technologies User experiments Research Using Synchrotron Light

Interview with Thomas HuthwelkerThe Paul Scherrer Institut makes its research facilities available to scientists from all over the world. To ensure these scientists are exposed to optimal conditions when they arrive is the hard work of many PSI staff. An interview with one of these scientists provides a glimpse behind the scenes. This interview is taken from the latest issue of the PSI Magazine Fenster zur Forschung

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
2 October 2012

Silicon – Close to the Breaking Point

Media Releases Materials Research Micro- and Nanotechnology Future Technologies

Stretching a layer of silicon can lead to internal mechanical strain which can considerably improve the electronic properties of the material. Researchers at the Paul Scherrer Institute and the ETH Zurich have created a new process from a layer of silicon to fabricate extremely highly strained nanowires in a silicon substrate. The researchers report the highest-ever mechanical stress obtained in a material that can serve as the basis for electronic components. The long term goal aim is to produce high-performance and low-power transistors for microprocessors based on such wires.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
10 September 2012

Built-in Germanium Lasers could make Computer Chips faster

Media Releases Materials Research Micro- and Nanotechnology Future Technologies

Paul Scherrer Institute (PSI) researchers have investigated the mechanisms necessary for enabling the semiconductor Germanium to emit laser light. As a laser material, Germanium together with Silicon could form the basis for innovative computer chips in which information would be transferred partially in the form of light. This technology would revolutionise data streaming within chips and give a boost to the performance of electronics.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
5 September 2012

New Insights into Superconducting Materials

Media Releases Future Technologies Materials Research Research Using Synchrotron Light

A new X-ray technique provides insights into the magnetic properties of atomically thin layers of a parent compound of a high-temperature superconductor. It turns out that the magnetic properties of material films which are only a few atoms thick differ by only a surprisingly small degree from those of macroscopically thick samples. In the future, this method can be used to study the processes occurring in very thin layers of superconductors and help us to understand this intriguing phenomenon.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
3 July 2012

Controversy clarified: Why two insulators together can transport electricity

Media Releases Future Technologies Materials Research

How can two materials which do not conduct electricity create an electrically conducting layer when they are joined together? Since this effect was discovered in 2004, researchers have developed various hypotheses to answer this question. Now, an international team under the leadership of researchers at the Paul Scherrer Institute has probably settled the controversy.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
18 April 2012
teaserbild.jpg

Physicists observe the splitting of an electron inside a solid

Media Releases Future Technologies Materials Research Research Using Synchrotron Light

An electron has been observed to decay into two separate parts, each carrying a particular property of the electron: a spinon carrying its spin à the property making the electron behave as a tiny compass needle à and an orbiton carrying its orbital moment à which arises from the electron’s motion around the nucleus. These newly created particles, however, cannot leave the material in which they have been produced.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
29 February 2012
teaserbild.jpg

Creating magnetism takes much longer than destroying it

Media Releases Future Technologies Materials Research Research Using Synchrotron Light

Researchers at the Paul Scherrer Institute are finding out how long it takes to establish magnetism and how this happens. Establishing a magnetically ordered phase in the metallic alloy iron-rhodium takes much longer than the reverse process of demagnetization. The result comes from basic research, but has relevance for the computer industry, as it shows which processes limit the speed of magnetic data storage and where improvements might be made.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
7 February 2012

Using heat for storing data

Media Releases Future Technologies Research Using Synchrotron Light Materials Research

An international research team has demonstrated a new way to record information on a magnetic medium without the use of a magnetic field. Instead, they found that they could record information using only a heat pulse. This method of recording might allow one to record Terabytes (1000s of Gigabytes) of information per second being 100s of times faster than present hard drive technology, and consumes much less energy by using heat without the need for a magnetic field. Using modern lithographic methods and x-ray microscopy, researchers from the Paul Scherrer Institute contributed considerably to this work.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
23 January 2012
teaserbild.jpg

It works: Ultrafast magnetic processes observed live using an X-ray laser

Media Releases Large Research Facilities Future Technologies SwissFEL Materials Research

In first-of-their-kind experiments performed at the American X-ray laser LCLS, a collaboration led by researchers from the Paul Scherrer Institute has been able to precisely follow how the magnetic structure of a material changes. The change of structure was initiated by a laser pulse, and investigated with the help of short X-ray pulses. It appears as if the structure begins to change 400 femtoseconds after the laser pulse strikes. Such investigations will be a major focus of research at the planned Swiss X-ray Laser, SwissFEL, at PSI.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
  • First page « First
  • Previous page ‹‹
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • Next page ››
  • Last page Last »

Topic Overview

Sidebar

01/2023

5232 — The magazine of the Paul Scherrer Institute

01/2023
View in issuu.com
Download
Subscribe to our magazine

Follow PSI

 Twitter
 LinkedIn
 Youtube
 Facebook
 Instagram

All social media channels


Visitor Centre psi forum

Experience research live


The iLab School Laboratory

Experience Science - Explore Research

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login