Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Future Technologies
    • Health Innovation
    • Energy and Climate
    • Fundamentals of Nature
    • Large Research Facilities
    • Brochures
    • 5232 — The magazine of the Paul Scherrer Institute
    • Research Divisions & Labs (only english)
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Expertise
    • Spin-off Companies
    • Park Innovaare
  • Proton TherapyOpen mainmenu item
    • Overview
    • Physician & Patient Information
  • CareerOpen mainmenu item
    • Overview
    • Job Opportunities
    • Working at PSI
    • Personnel Policy
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Career Center
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Visit to PSIOpen mainmenu item
    • Overview
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Public Events
    • How to find us
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • For the media
    • Suppliers and customers
    • Customers E-Billing
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Our Research
  3. Current topics from our research
  4. Energy and Climate

Secondary navigation

Our Research

  • Current topics from our research Expanded submenu item
    • Future Technologies
    • Health Innovation
    • Energy and Climate
    • Fundamentals of Nature
    • ESI Platform
    • Large research facilities
    • Project SLS 2.0
    • Topic Overview
    • Archive
  • 5232 – The magazine of the Paul Scherrer Institute
    • Contact
  • Brochures
  • Films
    • Virtual Tour
  • Social Media
    • PSI Community Guidelines
  • Media corner
    • Media Releases

Energy and Climate

The energy research performed at PSI focuses on processes that can be used in sustainable and safer technologies, ideally with minimal CO2 emissions. The main emphasis is on renewable energy sources. The ESI (Energy System Integration) platform enables research and industry to test solutions for integrating renewables into the existing energy supply. Another focus in this area is the safer use of nuclear energy. These activities are supplemented by analyses giving a comprehensive assessment of energy systems. PSI scientists in the Energy and Environment division study the chemical processes that take place in the atmosphere.

Find out more at: Overview Energy and Climate

20 January 2014

Aerosol measurements: PSI researchers help to close regional gaps around the globe

Energy and Climate Environment

Aerosols are small particles in the atmosphere. They can influence the global climate by way of direct absorption or scattering of solar radiation, or by acting as nuclei for cloud formation. Efforts by scientists to exactly quantify these effects and then improve climate models are impeded by the lack of a global network of aerosol measurement stations. To remedy this situation, researchers at the Paul Scherrer Institute to facilitate continuous aerosol measurements at sites where the paucity of data is the greatest.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
15 January 2014

How rock pores in deep repositories close over

Energy and Climate Nuclear Power Plant Safety Energy transition

Chemical reactions will change the nature of the deep repository and the surrounding rock (clay rock); that much is certain. But to what extent and with what impact on safety? Researchers from the Paul Scherrer Institute are looking to answer this question with the aid of a combination of experiments and computer simulations.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
17 December 2013

Experiments in the clouds – how soot influences the climate

Media Releases Energy and Climate Environment

PSI-researcher Martin Gysel receives prestigious European funding (ERC Consolidator Grant) for his studies on the role of soot in cloud formation and global warming.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
12 December 2013
teaserbild.JPG

The Paul Scherrer Institute runs two of the energy competence centres of the Swiss government

Energy and Climate Media Releases

As part of the Energy Strategy 2050 the Swiss government and parliament have decided to increase support for energy research in Switzerland. This includes the setting up of seven interuniversity networked Swiss Competence Centres in Energy Research (SCCERs). In the SCCERs ETH Domain institutions, the universities and the universities of the applied sciences are to join forces with industrial partners to develop new competencies and solutions in the decisive action areas of the shift in energy policy. The Paul Scherrer Institute PSI will act as the leading house in two of the SCCERs à storage and biomass à that have already been given the green light. They will begin their work in 2014.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
28 November 2013
teaserbild.JPG

Fuel cell membrane from the Paul Scherrer Institute better than its commercial counterparts

Energy and Climate

A novel polymer electrolyte membrane from the Paul Scherrer Institute PSI has demonstrated longer durability in a laboratory test than the best commercially available counterparts. The breakthrough was achieved by modifying a reasonably priced plastic film through radiation activation and subsequent attachment of functional constituents via a “grafting” reaction. The modified polymer is not only durable à it could also reduce the membrane production costs by 50 to 80 percent. The membrane could be used in applications such as hydrogen fuel cells or electrolysers for hydrogen production from water.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
15 November 2013

Sharper image of a catalyst – warts and all

Energy and Climate

A catalyst made of the noble metal ruthenium supported on a carbon substrate is frequently used industrially. A prime example is the synthesis of ammonia, which, among other things, is involved in the production of nitrogenous fertilisers. Many research groups all over the world are looking to optimise this type of catalyst as it would increase the efficiency of one of the economically most important industrial processes. However, our understanding of how the catalytically active centres in the catalyst develop has been somewhat patchy thus far. Researchers from the Paul Scherrer Institute PSI can now unveil some fresh insights.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
14 November 2013
teaserbild.JPG

Zukünftige Computerchips mit "elektronischem Blutkreislauf"

Energy and Climate Industrial co-operation

Im Rahmen des Sinergia-Programms fördert der Schweizerische Nationalfonds das dreijährige Forschungsvorhaben REPCOOL. Unter der Leitung von IBM Research à Zürich arbeiten in diesem Projekt Wissenschaftler der ETH Zürich, des Paul Scherrer Instituts in Villigen und der Università della Svizzera italiana in Lugano gemeinsam an der Erforschung eines „elektronischen Blutkreislaufs“ für zukünftige 3D-Computerchips. Vom menschlichen Gehirn inspiriert, entwickeln die Forscher ein Mikrokanalsystem mit einer elektrochemischen Flussbatterie, die 3D-Chipstapel gleichzeitig kühlen und mit Energie versorgen. Ultimatives Ziel ist die Entwicklung eines Supercomputers in PC-Grösse.This news release is only available in German.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
14 October 2013
teaserbild.JPG

A glimpse at the future of global energy supply

Media Releases Energy and Climate

How will the world secure its energy supply in 2050 and what are the possible economic, ecological and social implications of different pathways and choices? These questions are answered by researchers at the Paul Scherrer Institute PSI in cooperation with the World Energy Council WEC in a study examining two scenarios covering different dimensions of economic, social, policy and technology development. The results of the study, which has now been concluded, will be presented from 13 to 17 October at the WEC’s World Energy Congress in the South Korean town of Daegu

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
6 October 2013
teaserbild.jpg

Particle formation in the atmosphere – further aspect unveiled via the CLOUD experiment at CERN

Media Releases Energy and Climate Environment

Clouds consist of cloud droplets that are formed from tiny particles floating in the atmosphere. How these particles develop, however, largely remains a mystery. The formation of particles from amines and sulphuric acid has now been described for the first time à a milestone in atmospheric research.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
19 September 2013

Computer simulations: a cornerstone of nuclear power station safety

Energy and Climate Nuclear Power Plant Safety

Without computer simulations, the operation of nuclear power stations would be very difficult. Whether it is a question of installing new components or conducting safety tests, virtually everything has to be calculated and analysed on the computer first. At the Laboratory for Reactor Physics and Systems Behaviour of the Paul Scherrer Institute PSI, computational models and methodologies are developed with precisely this in mind. Through this, PSI researchers also act as an independent partner to the national regulatory authority ENSI and contribute thereby to support safe operation of the Swiss nuclear power plants.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
5 September 2013
teaserbild.JPG

Well-rounded concept for less nuclear waste

Energy and Climate Nuclear Power Plant Safety

The idea of producing fuel for nuclear power stations in form of a package of spheres instead of today’s customary pellets was already born back in the 1960s. There was promise of a subsequent simplification of fuel production and a considerable reduction in the amount of radioactive waste both in the production of the fuel itself and after its use in a nuclear power station. However, the spherical fuel was never implemented as the fast reactors for which it was conceived were never built at a large scale. The Paul Scherrer Institute (PSI) has also been involved in the research on spherical fuel in the past. Now several projects partly funded by the EU are currently underway at the PSI again to refine the production of fuel spheres further. This form of fuel could either be used in special plants to reduce waste or in fast generation IV reactors, which in a closed cycle also produce less long-lived waste.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
29 August 2013

Reconstruction of the Fukushima nuclear accident

Energy and Climate Nuclear Power Plant Safety

Researchers at the Paul Scherrer Institute (PSI) are currently involved in an international project aimed at reconstructing what happened to the reactor units during the nuclear accident at the Japanese nuclear power station, Fukushima Daiichi in March 2011. In particular, the estimate of the core end-state will help the owner of the damaged plant, the Tokyo Electricity Power Company (TEPCO) to plan the removal of components from the reactor containment and the final decontamination. Besides, the exercise is intended to contribute to further refinement of the computer programs used to perform nuclear accident simulations

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
8 August 2013
teaserbild.JPG

Five times less platinum: fuel cells could become economically more attractive thanks to novel aerogel catalyst.

Media Releases Energy and Climate

Fuel cells that convert hydrogen into power and only produce pure water as a by-product have the potential to lead individual mobility into an environmentally friendly future. The Paul Scherrer Institute (PSI) has been researching and developing such low-temperature polymer electrolyte fuel cells for more than 10 years and initial field tests have already demonstrated the successful use of these fuel cells in cars and buses. However, further research is still required to improve the durability and economic viability of the technology. An international team of researchers involving the PSI has now manufactured and characterised a novel nanomaterial that could vastly increase the efficiency and shelf-life of these fuel cells à as well as reduce material costs.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
25 July 2013

How radionuclides escape through rock: insights for a geological waste storage site

Energy and Climate

How do radioactive substances move through the host rock in a deep repository for nuclear waste? Researchers from the Diffusion Processes Group in the Laboratory of Waste Management at the Paul Scherrer Institute (PSI) have been investigating. The transport properties of negatively charged radionuclides, which are repelled by the negatively charged surfaces of clay minerals and thus hardly adhere to the rock, are well known. An EU project in which the PSI is also involved is now yielding similar insights into positively charged and therefore highly adherent radionuclides.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
11 July 2013
teaserbild.jpg

Knowledge for tomorrow from "hot cells"

Energy and Climate Research Using Neutrons Nuclear Power Plant Safety Large Research Facilities

The manipulation and examination of irradiated and therefore radioactive objects, be they from nuclear power stations or research facilities, requires strict safety measures. Tests may only be conducted in so-called “hot cells”, where the radioactivity is hermetically enclosed and shielded behind concrete and lead walls up to 1 metre thick. In the hot cells of the PSI hot lab, the burnt-off fuel rods from the Swiss nuclear power stations are studied from a materials science perspective. The insights gained help nuclear power station operators to optimise the efficiency and safety of their plants. Besides this service, the hot lab is involved in several international research projects.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
27 June 2013

Not a drop too much

Energy and Climate

The supply of a vapour saturated gas mixture plays a crucial role in many industrial processes. In this way, for example, the emission of nitrogen oxides during diesel combustion can be reduced by ensuring high vapour saturation of the gas mixture. A scientist at the Paul Scherrer Institute has come up with an invention which enables this to be implemented industrially in the future via a simple, flexible and robust technique.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
6 June 2013
teaserbild.jpg

Fast neutrons for improved safety

Energy and Climate Research Using Neutrons Nuclear Power Plant Safety

Neutrons are an excellent tool for the non-destructive imaging the interior of objects. They can provide a valuable complement to the more widely used x ray radiography. For some materials that are virtually opaque or for those that cannot be distinguished by X-rays, neutrons provide the only informative ‘dissection tool‘. However, neutron radiography is mainly confined to the laboratory and fixed facilities, because neutron generation relies on equipment like nuclear reactors or particle accelerators, which are costly, complex and cannot be moved. Scientists at the Laboratory for Thermohydraulics at the Paul Scherrer Institute PSI want to develop a more flexible imaging technique based on fast neutrons.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
4 June 2013

ecoinvent – The World’s Leading LCA Database Launches Version 3.0

Media Releases Energy and Climate

The life cycle inventory database ecoinvent forms the basis for life cycle assessment projects, eco-design, and product environmental information. Since 2003, ecoinvent has enabled companies to manufacture their products more in harmony with the environment, policymakers to implement new policies, and consumers to adopt more environmentally friendly behaviour. The new version 3.0 is a further milestone in life cycle assessment: new and updated data offer ecoinvent users a greater number of possible applications in the areas of e.g. chemical production, foodstuffs, vegetables and electricity.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
23 May 2013

Waste incineration: the last word in cleanliness?

Energy and Climate Environment

Household waste always used to end up left untreated in landfills, and the effects of this practice are well-known: these waste disposal sites were quite often ecological "death zones". With the incineration of municipal waste, there was some mitigation of this problem: despite the overall increase in quantities of waste, the areas claimed by landfill have been limited in recent decades thanks to waste recycling and incineration. However, waste incineration remains far from a panacea. Some combustion products that are already present in the burnt materials or that arise just during the combustion process itself are harmful to human health and the environment and some of them still find their way out of waste incineration plants and into landfill sites as their final destination.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
10 May 2013
teaserbild2.jpg

Air quality in the megacity Paris: better than expected

Energy and Climate Environment

Megacities are often perceived by the public to be major sources of air pollution, which affect their surroundings as well. However, recent studies show that the environmental credentials of cities with over one million inhabitants are not so bad after all. An international team of researchers, including scientists from the Paul Scherrer Institute (PSI), has now confirmed, on the basis of aerosol measurements carried out in Paris, that so-called post-industrial cities affect the air quality of their immediate surroundings far less than might be thought.

Read more
This is a text from the PSI media archive. The contents may be out-of-date.
  • First page « First
  • Previous page ‹‹
  • …
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • Next page ››
  • Last page Last »

Topic Overview

Sidebar

01/2023

5232 — The magazine of the Paul Scherrer Institute

01/2023
View in issuu.com
Download
Subscribe to our magazine

Visitor Centre psi forum

Experience research live


The iLab School Laboratory

Experience Science - Explore Research

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login