

First Experience with the Mu3e Vertex Detector Construction

Luigi Vigani
University of Heidelberg
Pixel 2024
22/11/2024

Mu3e: Physics Motivation

- Search for µ→eee
 - Standard Model: BR (µ→ eee) < 10⁻⁵⁴
- New physics might enhance BR
- Current limit:
 - BR (μ → eee) < 10⁻¹² (SINDRUM, 1988)
- Aimed single-event sensitivity:
 - BR (μ → eee) < 2 · 10⁻¹⁵ (Phase 1)
 - BR (μ → eee) < 10⁻¹⁶ (Phase 2)
- Location: PSI muon beamline
- Phase 1: under construction
- Phase 2: PSI High Intensity Muon Beamline

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

Experimental sensitivity

Invariant mass of signal decay, radiative decay and accidental background (Bhaba+Michel)

Momentum resolution crucial for detecting the peak at muon mass...

Material budget is key factor!

1 MeV resolution with 0.1% * X/X₀ per layer

Mu3e TDR at Nucl.Instrum.Meth.A 1014, 165679

Experimental sensitivity

Invariant mass of signal decay, radiative decay and accidental background (Bhaba+Michel) [Mu3e TDR]

Mu3e Collaboration Meeting Wengen 2024

Construction challenges for the pixel detectors

- Thin chips
 - Post-processing and qualification
 - Handling
 - o QC
- Thin Aluminum-Kapton HDIs
 - Both electrical and mechanical integration
 - Reduced number of lines, no electronic components
- Compact design
 - Cabling and routing
- Helium cooling system [not in this talk]
 - ~250 mW/cm²
 - Helium plant
 - Flow control

Vertex collaboration:
Uni-Heidelberg, Uni-Zurich, PSI

Thin chips

Voltage (-V)

Mupix11 chips based on HV-CMOS technology Thinned to 50 μ m (Vertex) 80 Ω cm resistivity (380 Ω cm for first prototype modules)

Post processing at Optim (Marseille, France)

Small tolerance in dicing (11 µm)

Significant improvements with plasma etching

Thin chips

Voltage (-V)

Thin chips: handling

Careful peeling while vacuum on

Extra care for vacuum loss (here: kapton foils, next: tailor-made aluminum chuck)

Thin chips: QC

Probe card with manual actuator developed for the task

- Table-top system
- No dependency on probe stations
- Easy to transfer between institutes
- X Manual procedure (training required)
- X Slow throughput (2-3 minutes to replace chips)

Note: Mu3e Vertex detector consists of only 108 chips and is developed between Heidelberg and PSI

Several operational aspect investigated (IV curve, powering, link stability, noise profile,...)

Thin chips: QC

Probe card with manual actuator developed for the task

*after some optimization iteration

Thin HDIs

Katpon-Aluminum flexes produced by LTU (Kharkiv)

2 layers + spacer: stack and traces geometry optimized for LVDS transmission

HDIs for multiple purposes: power, HV, signal in, data out, mechanical support

HDI + 6 chips + connecting flex = "Ladder" (see poster by T. Senger, with QC)

Long design and qualification stage needed.

Modules

Ladder

Module

The module is the basic mechanical and electrical unit.

A module can be replaced without replacing anything else

Layer

Modules

Layer

Note: Mu3e sits at ground level, relatively easy to access

Thin HDIs: mounting

Manual procedures:

- Aligning chips
- Glueing
- HDI overlay
- TA-Bonding
- Module assembly

Thin HDI qualification

In the lab

In the testbeam area

Thin HDI qualification

In the lab

In the testbeam area

24 differential lines + 8 sense
To be squeezed here

Solution:

- Micro-twisted pair cable bundles
 - 127 um copper, 25 μm polyimide, 30 μm extra distance for impedance matching

Wires stripped and soldered directly on connector boards 11 pairs Beampipe and service supports 1 pairs 44 pairs 11 pairs 22 pairs To Detector 11 pairs Routing and bundling optimized to To ReadOut

space constraints

Vertex Status

- Production almost finished
 - All chips qualified
 - All ladders produced → to be qualified
 - Module+layer assembly to follow
- Services currently mounted on cage
 - Cables + infrastructure + DAQ + cooling pipes + ...
- Vertex to be mounted by beginning of next year

Vertex Status

- Production almost finished
 - All chips qualified
 - All ladders produced → to be qualified
 - Module+layer assembly to follow
- Services currently mounted on cage
 - Cables + infrastructure + DAQ + cooling pipes + ...
- Vertex to be mounted by beginning of next year
- Qualification with cosmic run to follow

Backup

MuPix sensors: requirements

pixel size [μm ²]	80×80
sensor size [mm ²]	20×23
active area [mm ²]	20×20
active area [mm ²]	400
sensor thinned to thickness [µm]	50
LVDS links	3 + 1
maximum bandwidth [§] [Gbit/s]	3×1.6
timestamp clock [MHz]	≥ 50
RMS of spatial resolution [µm]	≤ 30
power consumption [mW/cm ²]	≤ 350
time resolution per pixel [ns]	≤ 20
efficiency at 20 Hz/pix noise [%]	≥ 99
noise rate at 99% efficiency Hz/pix	≤ 20

MuPix10: results

100 µm thickness

110 V breakdown

Efficiency plateau well defined above 20 V

MuPix10: results

50 µm thickness

20 V (see later why)

Efficiency and noise requirements met

Mupix10 detailed studies

Testbeam at DESY

Alpide telescope

6 layers

5 µm resolution

EuDAQ + Corryvreckan

Mupix10 detailed studies

In-pixel efficiency

100 µm thick

43 mV threshold

A.M. Gonzales

MuPix10: results

Time resolution well within specifications

~15 ns without corrections

6 ns after row and time-walk corrections

MuPix10: results

Tunable threshold for each pixel

Tuning with threshold scans:

Low threshold dispersion

M. Menzel

MuPix10: results

Tuning by lowering threshold while keeping noise constant: maximize efficiency!

Thermo-mechanical stability

Silicon heater prototype

Reproduction of inner tracker with same materials and connections

Chips are just passive silicon heaters

Thermo-mechanical stability

Silicon heater prototype

Test stand with Helium cooling system

Thermo-mechanical stability

- Measurement of temperature-to-power relation
- Temperature difference linearly depending on heat dissipation
- Expected ΔT < 70 K for 350 mW/cm² (conservative limit)
- Cooling concept works
- More detailed studies to come

Silicon heater prototype

Thermo-mechanical stability

Silicon heater prototype

Vertical slice breakdown

Operation in experimental conditions

DAQ and experimental concept

Inside Magnet

More pics at https://www.flickr.com/pho tos/nberger/albums/72157 719305216074/page1/

MuPix Architecture

- Clear separation of analog and digital electronics
- 2 comparator design
- Tuning/Trimming and masking available
- Priority encoder / column-drain readout
- Chip sub-divided into 3 matrices → 1 Data link each + 1 multiplexed link

Courtesy: Frank Meier

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout state machine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

- Deposited charge amplified by in-pixel amplifier
- Source follower drives the signal to the periphery
- Digitisation in periphery
- Timestamp sampling
- Readout statemachine manages column-drain readout
- Data is send out via a 1.25 Gbit/s differential link

MuPix10 & MuPix11

Pixel size [µm²]	80 x 80
Sensor size [mm²]	20.66 x 23.18
Active size [mm²]	20.48 x 20.0
Pixel matrix	256 x 250
Thickness [µm]	50, 70
Substrate [Ωcm]	80, 370
Data links	3+1
Data speed [Gbit/s]	1.25
Time-of-arrival [bits]	11
ToT [bits]	5
TS binning [ns]	8 (option for 1.6)

From MuPix10 to MuPix11

- Removal of R&D features
 - More pads for powering
- Improvement of powering grid
 - → Less on-chip voltage drop
- Buffering of data lines
 - → Full speed readout30 MHits/s per sub-matrix
- Re-synthesis of State machine
 - → Fast configuration interface available
- Re-done pixel point-to-point connection
 - Reduced delays and parasitic couplings

Sensor Characterisation

- Lab commissioning
- Lab optimisation: Radioactive sources: ⁵⁵Fe, ⁹⁰Sr Time coincidence
- Testbeam Campaigns:
 DESYII (Hamburg, GER)
 MAMI (Mainz, GER)
 PSI piM1 (Villigen, CH)
- MuPix-Telescope
- Mimosa/Alpide-Telescopes

Summary - Results MuPix10

Hit readout delay: Hit Chronology

[arXiv:2012.05868] & VERTEX2022

MuPix11 - First Light

Efficiency - 100µm thick sensor

Depletion depth proportional to sqrt(HV)

Time resolution (Gaussian estimate)

Raw time resolution, no corrections of any kind

MuPix11 - Efficiency for 50 and 70 μm

Mu3e: 50μm sensors for the vertex detector (~100 Sensors) 70μm sensors for the outer layers (~3000 Sensors)

MuPix11 - High Rate capability

MAMI - Beam spot on sub-matrix A

Beam rate measured with MuPix11

No Readout saturation visible @ 4 MHz Hitrate

→ Average Rate on "Hottest" Sensor 6 MHz

IV issues

IV issue

IV issues

