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Adoption of ReFuel Aviation Regulation
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DIRECTIVE (EU) 2023/2413 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 18 October 2023 T e 2050:70% SAF
amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70(EC as regards d.\
the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652 (35% RFN BO S)

Current ratios:
<0.05% of total EU
aviation [1]

SAF: Sustainable Aviation Fuels
RFNBO: Renewable Fuel of Non-biogenic Origin

[1] “Sustainable Aviation Fuels.” EASA Eco, www.easa.europa.eu/eco/eaer/topics/sustainable-aviation-fuels. Accessed 10 July 2024.
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What are the implications to the rest of
the energy system led by the uptake of
RFNBOs?
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LCF Proportion in Final Energy Demand

Large Variations in the Role of Low-Carbon Fuel in Net-zero
Scenarios
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Z. Liu* M. Zhang* C. Bauer, R. McKenna (2024) The Role of Low Carbon Fuels in Integrated Assessment Models and Energy
System Models: A Critical Review (under review) *co-first authors
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Synthetic Fuel Technology Representation in ESMs/IAMs as  PSI

Drivers
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Z. Liu* M. Zhang?* C. Bauer, R. McKenna (2024) The Role of Low Carbon Fuels in Integrated Assessment Models and Energy System Models: A Critical

Review (under review)
Models covering both a wide range of hydrogen and synthetic fuels, such as TEMOA-Italy and PRIMES, show a higher synfuel
consumption.
AIM/Tech with a high temporal resolution also shows a high consumption of synthetic fuels with similar levels of hydrogen.
Models that include only fossil-fuel-based synthetic fuels show low synfuel production, as they play a negligible role in
decarbonization.
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PSI

Methodology
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Enhanced JRC-EU-TIMES Model

JRCEU TIMES Model
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PSI Centers for Nuclear Engineering and Sciences & Energy and Environmental Sciences

/Energy system cost optimization\
36 European countries

Time horizon 2050+

\_ 4 seasons, day/night/peak -

Comprehensive data input
update (c.a. 70+ major
databases used)

Calibrated for 2019 (average
deviation of 1.2%)

Passing through some

J Psl

persistent developments after

the COVID-19 Year 2020
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Renewable Synthetic Fuels PSI
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Sample Slide with Purple Table

- PtX module extension
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EED energy efficiency (EU2023/1791)

EPBD buildings performance standards (EU2018/844)
ETS (all revisions up to EU2023/959)

EU RED lll renewable targets (up to EU2023/2413)

GHG effort sharing (up to EU2023/857)

Vehicle emissions standards (EU2019/631, EU2023/851)
Heavy vehicle emissions standards (EU2019/1242)

Coal phase out 2030 in DE,
DK,FI,GR,HU,IE,IT,NL,PT,SI,SK,ES

Intra-EEA aviation in EU-ETS

NTC electricity capacities as in ENTSO-E TYNDP 2022 plan
Reduction of nuclear share in France

New nuclear plants those under construction/advanced
planning

GHG emissions from 1990: -55% in 2030, -90% in 2040
Net-Zero GHG emissions in 2050 at the EU-level
Individual net-zero GHG emissions targets of the member
states

GHG emissions reduction scope as in the EU Climate Law
- includes LULUCF and 50% of the international transport
Refuel aviation SAF mandates

EU-ETS-2 from 2030 (although incl. in 2023 revision of EU-
ETS)

+ 8GW new nuclear power (BG, CZ, RO, SlI, SK, FI, FR)
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Scenario Definitions

} PSI

* 9scenarios based on 3 variations of passenger aviation demand and 3 in e-fuel blending obligations
* Allscenarios are net-zero emission target scenarios (CLIE)
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Results
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(Mt)

How and how much hydrogen should
produced?

Demand
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Hydrogen Production for Synthetic Fuel Production

The ratio of feedstock remains similar
throughout all scenarios, a transition from
gas to electricity

Bioenergy taking a larger role in high-

demand scenarios

Bioenergy enters earlier in higher blending

ratio scenarios
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How much direct electricity for hydrogen

o
production?
Demand
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clie35db : PSI
3500 - clie35dh
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Electricity Consumption for Hydrogen Production
» Va of final electricity consumption for all end-
use sectors is required just for hydrogen

production, no significant variation among
scenarios

* Yet, the electricity demand accelerates

drastically between 2040 and 2045 among all
scenarios

* Hydrogen production (2025-2040) still

produced from a mix of natural gas with CCS
and biomass
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Electricity Supply by Energy Sources Lo
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Where are the low carbon fuels produced?

Hydrogen transition from today to 2050 across Europe
2040 2045 2050

* The countries (NO, UK) that produce
hydrogen are also strong playersin
electricity-based synthetic fuel productionin
Europe.

2040 2045 2050  European hydrogen production reaching c.a.
s ’ o ’ w" 9Mt in 2030 and 18Mt in 2050.
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What are the implications to the rest of
the energy system led by the uptake of
RENBOS?
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Conclusion

Uptake of low-
carbon synthetic <
fuels will

Higher aviation
demand and
blending ratio
variations

With Lower
demand

N

Consume renewable electricity that amounts to % of all
end-use electricity consumption

Require over double all end-use green hydrogen
consumption

Electricity demand does not scale up as drastically as for
hydrogen as green hydrogen can also be produced by
natural gas with CCS and biomass

Bioenergy is utilized to satisfy higher hydrogen demand
instead of more electricity-based hydrogen

The reduction of emissions from aviation is not
sustainable through mere technical means, demand
response continues to play a crucialrole

17 PSI Centers for Nuclear Engineering and Sciences & Energy and Environmental Sciences

PSI

11.11.2024



Outlook 5 PSI

Parametric analysis
* Costs forthe Direct Air Capture (DAC) costs and hydrogen production costs

* Extra-EU import flexibility for synthetic fuels requires some further scrutiny, particularly the
techno-economic data of future aviation

Policy disentanglement

* |dentify if any of the policies implemented could affect the effect of synfuel production.

Further Modeling Efforts

* More differentiated infrastructure modeling in expansion building (iDesignRES)
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Center for Energy and Environmental Sciences

Thank you for your
attention!




PSI

Appendix
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Research Gap PSI

Lack of non-
biogenic low
carbon synthetic
fuel representation

Lack of competition
with other fuel
technologies [2]

Need of an applied, up-to-
date tool for a country-
level European energy

system model with
(LCSFs)

Lack of sectoral
impactin energy
system models

[31[4]

Lack of global
import potential [5]

[2] Sacchi, R., Becattini, V., Gabrielli, P. et al. How to make climate-neutral aviation fly. Nat Commun 14, 3989 (2023). https://doi.org/10.1038/s41467-023-39749-y

[3] Mignone, B.K., Clarke, L., Edmonds, J.A. et al. Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems. Nat Commun 15, 3938 (2024).
https://doi.org/10.1038/s41467-024-47059-0

[4] Oshiro, K., & Fujimori, S. (2022). Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals. Applied
Energy, 313, 118803. https://doi.org/https://doi.org/10.1016/j.apenergy.2022.118803

[5] Blanco, Herib, et al. “Potential for hydrogen and power-to-liquid in a low-carbon EU energy system using cost optimization.” Applied Energy, vol. 232, Dec. 2018, pp. 617-639,
https://doi.org/10.1016/j.apenergy.2018.09.216.
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Presentation Outline

Introduction
* Relevancein current European legislative targets
e Research Question

* Literature review on low-carbon fuels in energy system modelling

Methodology
* (Calibration, extension, and application of the JRC-EU-TIMES model

Results
* EU net-zero emissions scenario with the contribution of synthetic fuels
* Scenario variations of systemic impact of synthetic fuels

Conclusion & Outlook

* Parametric analysis
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A Net-zero Scenario led by Efficiency Gains PSI

GHG Emissions in Mt-CO2eq/yr. (CLI E35DB) Final energy consumption in PJ/yr (CLIE35)
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* Net zero achieved with a contribution of 49% of Land-Use and Land-Use Change Forestry
emission removals and a substantial scale-up of Direct Air Capture (DAC) technologies
from 2040.

* The domestic transport and services sector undergoes the most efficiency gains.
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