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1. Introduction 27 

Climate change represents a global challenge that requires a profound shift towards low-carbon 28 

energy technologies (IEA, 2024).  Moving away from combustion-based processes involves options 29 

like battery electric vehicles, electrification of heat demand in various sectors with technologies like 30 

high-temperature heat pumps, and the adoption of electric motors. This transition, along with 31 

expanded use of renewable energy sources (e.g., photovoltaic solar panels and wind turbines), offers 32 

wide-ranging benefits. These benefits span environmental (IPCC, 2023) and public-health (Shindell & 33 

Smith, 2019) areas, and provide economic (Pai et al., 2021) and social (Nature Editorial, 2023) 34 

opportunities.  35 

In parallel, the transition to a net-zero greenhouse gas (GHG) energy system is anticipated to drive a 36 

substantial rise in demand for critical raw materials (CRMs), positioning the energy sector as a key 37 

player in mineral markets (IEA, 2021). Low-carbon energy systems will necessitate greater quantities 38 

and diversity of minerals and metals compared to its fossil fuel-based predecessor (IEA, 2023). As 39 

nations and economies strive to reduce emissions, the role of CRMs in enabling sustainable energy 40 

transitions draws increasing attention (Hund et al., 2020; IRENA, 2023; Noailly et al., 2024). This 41 

emphasizes exploring the material-energy nexus, highlighting the complex relationship between 42 

energy systems and material requirements and the need for robust modelling frameworks that help 43 

to understand and plan for these resource demands. 44 

Energy system models (ESMs) and integrated assessment models (IAMs) outline potential 45 

transformation pathways for the global energy transition toward future states achieving specific 46 

energy and climate targets (Chang et al., 2021; McLaren & Markusson, 2020). These models 47 

predominantly focus on cost- or utility-optimized future scenarios, highlighting, for example, the 48 

necessary changes in regional electricity mixes and means of transport to meet global warming 49 

mitigation objectives (Riahi et al., 2017). However, while initial efforts have been made to represent 50 

material demand within ESMs and IAMs, such frameworks do not yet endogenously incorporate this 51 

demand (Schulze et al., 2024). Additionally, their representation of broader environmental impacts, 52 

such as water use, ecotoxicity, and effects on human health, is limited. As a result, additional tools like 53 

life cycle assessment (LCA) are often soft-coupled with these models to provide a more detailed and 54 

comprehensive assessment of the different technologies (Vandepaer et al., 2020; Volkart et al., 2018). 55 

Environmental LCA is a complementary tool to comprehensively evaluate the environmental 56 

performance of energy technologies and systems. Applying LCA at the regional level in conjunction 57 

with ESMs provides a deeper understanding of potential supply chain-related impacts the energy 58 

system is responsible for. ESMs and IAMs scenarios can be used to project present-day life cycle 59 

inventories into future scenarios, using, for example, the IAM-LCA integration tool premise (Sacchi et 60 

al., 2022). Such inventories, temporally aligned with the energy system, allow for a comprehensive 61 

analysis of the sustainability of different energy system trajectories. This approach supports the 62 

creation and analysis of scenarios that address material demand, the interlinkage between energy and 63 

resources, and their associated environmental impacts (Harpprecht et al., 2021; van der Meide et al., 64 

2022; C. Zhang et al., 2023). 65 

Conversely, numerous studies in the literature address the life cycle impacts of ESM scenarios. Some 66 

have integrated technology-specific LCA coefficients directly into ESMs, allowing for assessments that 67 
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reflect environmental impacts as scenarios are formulated (Addanki et al., 2024; Rauner & Budzinski, 68 

2017; Vandepaer et al., 2020). Others have applied LCA  post-scenario formulation to assess the 69 

environmental outcomes of specific model scenarios (Blanco et al., 2020; Gibon et al., 2015; Hertwich 70 

et al., 2015; Mellot et al., 2024; Volkart et al., 2018). Regardless of the approach — and despite the 71 

current lack of an established methodology or framework for applying LCA at the energy system 72 

scenario level (Hahn Menacho et al., 2024), supplementing ESM scenarios with LCA helps measure 73 

changes in material demand and the environmental impacts of sourcing these materials due to 74 

transitioning from fossil fuels, thereby helping to characterize the material-energy nexus and its 75 

broader environmental consequences.  76 

However, assessing energy systems’ future material requirements relies on many uncertain input 77 

data, such as specific material intensities for each energy technology, technological developments, 78 

and market shares of sub-technologies (e.g., specific types of photovoltaic cells or specific battery cell 79 

chemistries) and their evolution over time (Schulze et al., 2024). Examples in the literature 80 

demonstrate that while some ESMs handle these uncertainties using methods like Monte Carlo 81 

simulations (Kalt et al., 2022; S. Wang et al., 2023) and stochastic approaches (Beylot et al., 2019), it 82 

remains a challenge to consistently characterize the energy scenario and adjust the environmental 83 

impacts of sourcing the necessary resources based on varying material demands and market share 84 

and the technical evolution of different technologies. 85 

This study uses LCA to characterize the case of a Swiss net-zero energy transition scenario, providing 86 

insights into a developed economy that has pledged to reach net-zero GHG emissions by 2050. By 87 

proposing a systematic approach and specific tools to calculate the life-cycle impacts of transition 88 

scenarios at a regional scale, we 1) estimate Switzerland’s future demand for potentially critical raw 89 

materials, 2) evaluate the sensitivity of resource demand to the material intensity factors, future 90 

technological developments, and market shares assumed for emerging technologies, and 3) 91 

characterize the impacts of such material demand on various environmental impact categories 92 

variance. 4) Moreover, we develop a reproducible and replicable workflow that arranges prospective 93 

LCA databases along a time dimension to yield time series of environmental impacts for the energy 94 

system. This enables comprehensive, scenario-specific life-cycle impact assessments that can be 95 

extended beyond Switzerland to other national or regional contexts, offering a standardized approach 96 

for global energy analyses. Additionally, it allows for considering uncertainties in future material needs 97 

and their environmental impacts. Through this analysis, we demonstrate how changes in input data 98 

for various energy technologies influence their life cycle impacts. This provides a robust insight into 99 

the broader environmental consequences of material sourcing and the material-energy nexus. 100 

In the following sections, we outline our methodological approach, starting with the integration of 101 

ESM and LCA in section 2. Additionally, we detail the study’s goal and scope, inventory analysis, impact 102 

assessment, and sensitivity analysis. Section 3 presents results obtained from applying this framework 103 

to a Swiss net-zero energy transition scenario, highlighting key findings on CRM demand, 104 

environmental impacts, and trade-offs and co-benefits across various environmental categories. 105 

Section 4 provides a discussion on the implications of these findings, limitations of the current 106 

approach, and avenues for future research. Finally, section 5 concludes with insights for policy- and 107 

decision-making, underscoring the importance of comprehensive, resource-conscious planning for 108 

sustainable energy transitions. 109 
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2. Methods 110 

In this section, we present the steps taken to systematically evaluate the energy system scenario's 111 

environmental performance and material demand using LCA. First, we detail the coupling between 112 

the ESM and the LCA framework. We then describe the different phases of the LCA, including (1) goal 113 

and scope definition, (2) inventory analysis, (3) impact assessment, and (4) interpretation. Within this 114 

last phase, we explain the global sensitivity analysis (GSA) conducted to evaluate how uncertainties in 115 

the input data influence the results. 116 

2.1. Swiss TIMES energy model (STEM) and coupling with LCA 117 

This study evaluates a long-term scenario to achieve net-zero territorial GHG emissions from 118 

Switzerland's fuel combustion and industrial processes by 2050. This scenario, called "SPS1: Team 119 

Sprint. Focus on Sustainability" (Panos et al., 2022) and referred to as “Net Zero” hereafter, has been 120 

developed within the SURE research project, supported by the Swiss Federal Office of Energy’s SWEET 121 

program (SFOE, 2020) to help the country meet its net-zero emission target, which has become law 122 

(SFOE, 2021). The scenario outlines the necessary steps and energy system configurations to meet this 123 

target. The Swiss TIMES energy model (STEM) (Panos et al., 2019), a comprehensive cost-optimization 124 

energy system model based on the TIMES framework, provides a solution that aligns with the 125 

scenario’s objectives and constraints. The solution produced by STEM involves a portfolio of low-126 

carbon power technologies, the electrification of passenger and freight transport and heating, the 127 

capture and storage of hard-to-abate fossil carbon emissions (e.g., from cement production), the use 128 

of net negative carbon technologies, such as biomass-based power production with CO2 capture and 129 

storage, and the use of synthetic liquid fuels for the few remaining processes relying on fuel 130 

combustion. The primary energy consumption and associated GHG emissions implied by the Net Zero 131 

scenario are illustrated in Figure 1. The detailed scenario outputs are available in the Supplementary 132 

Information material (SI1, S7). In-depth descriptions of the STEM model and the evaluated scenario 133 

can be found in (Panos et al., 2023) and (Panos et al., 2022), respectively. 134 

135 
  136 
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Figure 1. Primary energy consumption and GHG emissions for Switzerland according to the Net Zero scenario evaluated. 137 
Primary energy consumption includes the total energy demand of all energy carriers, such as the energy used directly by 138 
end-users and conversion losses in processes like thermal storage and electro-fuel synthesis. The ambient heat retrieved by 139 
heat pumps is counted as energy supply. The category "Other" includes the variables contributing less than 5% of the total. 140 
Detailed information can be found in the supplemental data repository (SI1, S7). 141 

Hahn Menacho et al. (2024) further developed the IAM/ESM-LCA soft-coupling tool premise (Sacchi 142 

et al., 2022) to integrate STEM results and adjust life-cycle inventories associated with Swiss processes 143 

and supply chains. In alignment with the projections of the STEM scenario, primary, secondary, and 144 

final energy carriers are modelled throughout the LCA database. Each variable representing energy 145 

conversion, transmission, distribution, and consumption within the STEM framework is linked to an 146 

LCA dataset, with detailed mapping in the SI document (SI1, S8). Altogether, 203 processes of STEM 147 

that produce or consume energy are mapped to the LCA database, encompassing final energy uses 148 

such as fossil fuels, electricity, and hydrogen used in transport, industrial and residential heat, and 149 

other industrial and service activities.  150 

Additionally, LCA datasets associated with STEM variables include the necessary infrastructure for 151 

energy use, such as the electricity network infrastructure for low-voltage consumers or batteries 152 

required for electric vehicles. The efficiencies of secondary energy conversion processes, such as heat 153 

and power plants, are also adjusted in the LCA database to align with those assumed in STEM. 154 

Processes located outside of Switzerland that directly and indirectly support the Swiss energy system 155 

(e.g., import of fuels, electricity, etc.) are also temporally adjusted using the global IAM scenario from 156 

REMIND (Luderer et al., 2015) under the SSP2-PkBudg1150 scenario. This scenario aims to limit global 157 

warming to approximately 2 ⁰C compared to pre-industrial levels, with a worldwide carbon budget of 158 

1,150 Gton CO2 for this century. Employing such a global scenario ensures consistency between the 159 

sectoral changes introduced by the Swiss Net Zero scenario domestically and those abroad, ensuring 160 

that processes producing material and energy commodities imported into Switzerland also undergo 161 

similar decarbonization efforts.  162 

Subsequently, the Python package pathways (Sacchi & Hahn-Menacho, n.d.) is used to systematically 163 

calculate the overall life cycle impacts of the scenario. The tool generates life-cycle environmental 164 

impacts for each final energy variable of the ESM scenario at each time step. Results are broken down 165 

by environmental indicator, product or service consumer, geographical location of the consumer, time 166 

step, geographical origin of impacts, and process category. As noted in Hahn Menacho et al. (2024), 167 

pathways addresses the issue of double-counting impacts in LCA supply chains by eliminating the 168 

contribution of final energy carriers within the supply chains of other final energy carriers. For 169 

example, the impact of diesel used in trucks is excluded from the electricity supply chain feeding into 170 

battery electric trucks, and vice versa. Access to the data package and the scripts used to produce the 171 

results in this study can be found in the Supplementary Information document (SI1, S5 and S8).  172 

2.2. Life cycle assessment 173 

2.2.1. Goal and scope 174 

This study defines the functional unit as the production, consumption and supply of final energy in 175 

Switzerland to satisfy the system energy demand from 2020 to 2050. This includes the necessary 176 

infrastructure for energy supply and usage. For example, the demand for a unit of energy stored in a 177 

stationary battery would be linked to the electricity grid demand, maintenance and losses, auxiliary 178 

components, and charging infrastructure. 179 
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In the STEM model, final energy consumers fall into four economic sectors: transport, industry, 180 

service, and residential. Each subsector is further split by the type of energy carrier used and the 181 

technology employed (e.g., “Industry|Electricity|Electric boiler”, “Industry|Electricity|Heat pump”, 182 

etc.). The datasets used for each final energy consumer that constitute our functional unit are 183 

available in the Supplementary Information (SI1, S5 and S8). 184 

2.2.2. Life cycle inventory (LCI) 185 

Life-cycle inventory (LCI) modeling requires comprehensive data collection, focusing extensively on 186 

the materials and energy consumed throughout the supply chain during the production, operation, 187 

and disposal of system components. The ecoinvent LCA database v3.10 (system model “allocation, 188 

cut-off by classification”) is used as the main source of background data (Wernet et al., 2016), further 189 

modified by premise to align inventories and technology shares with the STEM scenario. 190 

Additionally, premise enhances the database by including inventories for emerging technologies 191 

relevant to the energy system and linked to important material requirements. These include, amongst 192 

others: perovskite (Roffeis et al., 2022) and gallium arsenide (Pallas et al., 2020) photovoltaic cells; 193 

sodium-ion (S. Zhang et al., 2024), lithium-sulfur (Wickerts et al., 2023), lithium-air (F. Wang et al., 194 

2020), and vanadium redox-flow batteries (Weber et al., 2018); and, proton exchange membrane and 195 

alkaline electrolyzers (Gerloff, 2021). 196 

Regarding the co-production of metals in multifunctional mining processes, we modify the database 197 

to allocate according to physical mass balances: extraction of individual elements in the ore is fully 198 

attributed to the production of the respective metal; while other elementary and intermediate flows 199 

follow an economic allocation (SI1, S9), which is also the default option to deal with multi-functionality 200 

in ecoinvent (Wernet et al., 2016). As discussed in Berger et al. (2020), this approach ensures a correct 201 

mass balance. 202 

2.2.2.1. Material requirements and uncertainty 203 

Current LCI databases inadequately represent potentially scarce raw materials, particularly those used 204 

in very small quantities, such as platinum group metals (PGMs) and rare earth oxides. To fill this gap, 205 

we build on the research by Schlichenmaier & Naegler (2022) and gather additional data on the 206 

material requirements for various technologies. These technologies include wind turbines, electric and 207 

internal combustion engine vehicles, photovoltaic panels, concentrated solar power plants, nuclear 208 

plants, electric batteries (both mobile and stationary), fuel cells, and electrolyzers. We use the 209 

collected data to create probability distributions of each technology's current and future material 210 

needs. We define most of these probability distributions as triangular, using the median value found 211 

in the literature as the mode, with the lowest and highest values serving as the boundaries. The 212 

Supplementary Information (SI1, S2; and SI2) provides detailed data, distribution parameters, and 213 

references.  214 

Moreover, probability distributions are employed to represent the uncertainty surrounding future 215 

technological efficiency, such as, among others, the lifespan and conversion efficiency of electrolyzers, 216 

the module efficiency of photovoltaic panels, and the energy density of battery cells—all of which 217 

significantly impact the demand for material resources. The distributions characterizing the 218 

uncertainty around the efficiency of technologies and the energy density of battery cells can be found 219 

in the Supplementary Information (SI1, S3-S5). 220 
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Finally, the uncertainty regarding the market shares of future technologies is also accounted for. An 221 

algorithm generates pseudo-random market shares for each group of competing technologies from 222 

2020 to 2050 (e.g., gearbox versus direct-drive wind turbines), ensuring that these shares fall within 223 

anticipated intervals and collectively sum to 100%. The Supplementary Information (SI1, S1) details 224 

the expected market share intervals. 225 

The uncertainty in material requirements, combined with that of technological efficiency and market 226 

shares, forms the basis of the input data used in the Monte Carlo simulations and GSA performed in 227 

this study – further detailed in section 2.2.4. Figure 2 illustrates the implementation of such probability 228 

distributions along the electricity supply chain for battery-electric passenger cars. 229 

 230 

Figure 2. System boundaries and uncertainties are considered along the supply of one megajoule of final energy to the final 231 
consumer (i.e., a battery electric passenger car). System boundaries include the production, supply and use of final energy, 232 
but also the infrastructure needed to use it (e.g., grid, battery, electric motor, etc.). Infrastructure that is not considered to 233 
change due to a change in the energy carrier is omitted (e.g., the car chassis, road, etc.). In this example, the capacity of the 234 
onboard battery varies from 40 to 80 kWh (and is further normalized to one megajoule of electricity consumed by the 235 
vehicle). Several battery technologies compete to provide storage capacity, each associated with a probability distribution 236 
for the market share (specific to a year). Market share uncertainty values within the same market always sum to 100% for 237 
each Monte Carlo iteration. Each battery technology is associated with a probability distribution regarding the cell energy 238 
density, which also improves over time. At the electricity production level, within the scenario-defined technologies (e.g., 239 
photovoltaic panels), sub-technologies compete to supply electricity based on market shares associated with probability 240 
distributions. Each technology is also associated with probability distributions regarding material use. Efficiency and material 241 
use boundary values usually change over time as well. In the case of photovoltaic panels, the module efficiency determines 242 
the panel surface needed to reach the reference power output. 243 

2.2.3. Life cycle impact assessment (LCIA) 244 

We select eight key environmental impact categories to evaluate the environmental sustainability of 245 

the energy system scenario. These categories are chosen to capture the multidimensional aspects of 246 

environmental sustainability in the context of the energy-material nexus. We assess (1) climate change 247 

impacts, using the global warming potential (GWP) over a 100-year time horizon (Andreasi Bassi et al., 248 

2023); (2) particulate matter formation potential, linked to human health impacts (Huijbregts et al., 249 

1 MJ of electricity, 

consumed in battery 

electric car

1.15 MJ of 

electricity, from low-

voltage distribution 

network

X kg of electric 

motor

battery storage capacity 

(normalized by the 

vehicle’s lifetime and 

energy consumption)

1.2 MJ of electricity, 

from medium-

voltage distribution 

network

X km of low-voltage 

distribution network

1.25 MJ of 

electricity, from 

high-voltage 

transmission

network

X km of medium-

voltage distribution 

network

Y MJ of electricity, 

from wind

Y MJ of electricity, 

photovoltaic

…

Z kWh, Li-S

Z kWh, Li-NMC-955

Z kWh, Li-NCA

Z kWh, Li-LFP

Z kWh, SiB

Y MJ of electricity, 

from hydropowerZ MJ of electricity, 

wind (gearbox)

Z MJ of electricity, 

wind (direct-drive)

Z MJ of electricity, 

photovoltaic, CdTe

Z MJ of electricity, 

photovoltaic, GaAs

Z MJ of electricity, 

photovoltaic, 

Perovskite

Z MJ of electricity, 

photovoltaic, single-Si

X kg of electric 

charger

X kg of electric 

inverter

…

…

Y MJ of electricity, 

from natural gas

40 60 80

0% 100%

0.2 0.5

kWh/kg cell

0.2 0.5

0.2 0.5

0.2 0.5

0.2 0.5
0% 100%

0% 100%

0% 100%

Module eff.

0.0 0.4

Cadmium

kWh

0.0 0.6

Zinc

0.0 0.2

Neodymium

Legend

Market share uncertainty Efficiency uncertainty

Material use uncertainty Other uncertainty

X Constant value
Y Value based on scenario

Z Value based on scenario and market share uncertainty

0% 100% 0% 100%

0.0 0.2 40 60

0% 100%

0% 100%

0% 100%

0% 100%

0% 100%

0% 100%

0% 100%

0% 100%



8 
 

2017); (3) acidification, to evaluate the impact of acidifying substances deposit (EPLCA, 2022); (4) 250 

freshwater ecotoxicity, evaluating emissions harmful to freshwater ecosystems (Huijbregts et al., 251 

2017); (5) land use, quantifying total land area (all types) occupied over time; and, (6) net fresh water 252 

use, defined as the difference between freshwater abstraction and release. We also evaluate mineral 253 

resource depletion using (7) crustal scarcity, a scarcity-weighted minerals demand indicator that uses 254 

crustal concentrations as a proxy for long-term global elemental scarcity (Arvidsson et al., 2020); and 255 

(8) abiotic resource depletion for elements, where present production and reserves of individual 256 

elements are combined to measure the scarcity of the resources (van Oers et al., 2020). Finally, we 257 

report the physical annual demand for 64 metals classified as critical based on assessments from major 258 

international reports (Grohol & Veeh, 2023; Moreira & Laing, 2022) and scientific literature 259 

(Schlichenmaier & Naegler, 2022). 260 

2.2.4. Interpretation and global sensitivity analysis (GSA) 261 

GSA assesses the contribution of each input parameter to the total variability in the model outputs. 262 

This method helps us understand how distinct sources of uncertainty can affect the various 263 

environmental and resource indicators, including metal demands. Our analysis specifically targets 264 

parameters related to material and metal requirements, technological advancements, and the market 265 

penetration of energy-related sub-technologies, as explained in earlier section 2.2.3. Other sources of 266 

uncertainty are deliberately excluded. For example, we do not consider uncertainty data included in 267 

the process inventories of the ecoinvent LCA database. We also omit uncertainty pertaining to the 268 

STEM scenario results. 269 

Uncertainty distributions are applied to three key areas: 1) 500 inventory exchanges related to the use 270 

of material resources within technologies, 2) 103 inventory exchanges reflecting variations in the 271 

lifespan, use, and efficiency of energy technologies, and 3) 36 inventory exchanges representing sub-272 

technology market shares. These distributions are based on various model parameters detailed in the 273 

Supplementary Information (SI1, S1-5). All other exchange values in the LCA database are constant 274 

over time or modified according to the Net Zero scenario. The uncertainties are then propagated 275 

through Monte Carlo simulations. We report the 5th, 50th, and 95th percentile values of the resulting 276 

Monte Carlo distribution for each environmental and material indicator described in section 2.2.3. 277 

To identify which inputs have the most significant impact on the output distribution, we use the delta 278 

moment-independent method (DMIM). Originally introduced by (Borgonovo, 2007), this method is 279 

independent of the sampling generation technique (Plischke et al., 2013) and has been previously 280 

applied in LCA contexts (Kim, Mutel, & Froemelt, 2022; Kim, Mutel, Froemelt, et al., 2022). Delta 281 

indices range from 0 to 1, where higher values indicate a stronger influence on the output distribution. 282 

To ensure the robustness of our results, we conducted preliminary tests to determine the optimal 283 

number of Monte Carlo iterations, ultimately setting the iteration count to 2,000 to achieve 284 

convergence. 285 

It is important to emphasize that the variability in the distribution of results presented in the following 286 

sections arises solely from uncertainties within the supply chain of technologies relevant to the 287 

demand for CRMs. The scenarios generated by STEM are exploratory in nature and thus inherently 288 

uncertain. Multiple technological pathways and strategies can achieve net-zero greenhouse gas (GHG) 289 

emissions, and the scenario used here represents just one possible approach, minimizing system costs 290 

based on a specific set of deterministic model input parameters. As a result, major sources of 291 



9 
 

uncertainty that could significantly impact GHG emissions and other environmental indicators are not 292 

accounted for in this analysis, to highlight the uncertainty that arises from CRM-demanding 293 

technologies. 294 

3. Results 295 

The shift to a low-carbon energy system in Switzerland brings a marked increase in the demand for 296 

CRMs, driven largely by the adoption of electric vehicles (EVs) and renewable energy storage. For 297 

instance, as illustrated in Figure 3, the shift to EVs and large-scale battery storage, central to this 298 

transition, drives a substantial increase in lithium demand. The median annual lithium demand rises 299 

from 250 tons in 2020 to 2,000 tons by 2050. While the total demand continues to grow, the rate of 300 

increase slows over time due to expected improvements in battery energy density and material 301 

efficiency, which mitigate the need for even larger material inputs. These assumptions are built into 302 

the probability distributions applied to material intensities and technological advancements (SI1, S2-303 

S5). This growth, however, is subject to considerable uncertainty, with estimates ranging from 800 to 304 

over 3,000 tons in 2050.  305 

This uncertainty is partly driven by potential shifts in market shares among battery chemistries, such 306 

as sodium-ion batteries, which do not require lithium. The exact trajectory of these shifts will depend 307 

on a range of factors, including technological advancements, cost reductions, and policy incentives, all 308 

of which influence the adoption rates of competing battery technologies. In our model, the projected 309 

shares of different battery chemistries are determined using probability distributions that reflect 310 

anticipated intervals for market shares (SI1, S1). The pink error bars in Figure 3, which represent 311 

uncertainties exclusively from projected market shares, show a variance for lithium demand in 2050 312 

of -46% to +37%. However, the black error bars, representing the full uncertainty range, show a 313 

broader variance of -54% to +77%. This highlights that market share uncertainty alone does not 314 

account for the full variance in lithium demand. Other factors, such as material intensity and future 315 

technological advancements, also play critical roles in shaping these projections. As highlighted by the 316 

GSA (Figure 5 and SI1-S6), described in section 2.2.4, the electricity storage capacity of future batteries 317 

is identified as the main parameter influencing this variance.  318 

Similar dynamics are observed in other key metals for batteries, such as cobalt and vanadium, 319 

highlighting the complex balance between resource availability and technological development. 320 

Median vanadium demand, for example, is projected to rise sharply from 0.9 tons in 2020 to 321 

approximately 156 tons by 2050, with a wide range of uncertainty extending from 35 tons to 289 tons. 322 

This corresponds to a variance from the 2050 median demand of -77% to +85%, when accounting for 323 

all uncertainties. The adoption of low-lithium alternatives, such as vanadium redox-flow batteries for 324 

stationary energy storage, could reduce dependence on lithium but would simultaneously increase 325 

demand for vanadium. Beyond battery applications, vanadium plays an important role in producing 326 

high-strength steel alloys, which in our model are used in wind turbines, further contributing to 327 

increased vanadium demand. This illustrates how efforts to minimize reliance on one critical material 328 

may inadvertently increase dependency on another, underscoring the need for quantifying such 329 

consequences and a balanced approach to material management in the energy transition.  330 
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In parallel with these shifts, the phase-out of internal combustion engines (ICEs) significantly affects 331 

the demand for PGMs, such as platinum and palladium. As the automotive industry transitions to 332 

battery electric vehicles (BEVs) and hydrogen-based technologies, the demand for platinum—333 

commonly used in catalytic converters—declines, reaching approximately 540kg by 2040, only 30% of 334 

its 2020 demand. By 2050, platinum demand partially recovers to around 700kg, accounting for 42% 335 

of its 2020 level: despite advancements in catalyst efficiency, its use in electrolyzers becomes 336 

increasingly important. This underscores the complex interplay between declining uses and new 337 

emerging needs. This trend is also reflected in the surging demand for iridium – crucial for fuel cells 338 

and electrolyzers – which rises from negligible levels in 2020 to about 80kg by 2050.  Similarly, silver, 339 

though not currently classified as CRM by entities such as the European Union, experiences a fourfold 340 

demand increase from 17 tons to 66 tons by 2050, largely due to its role in electrolyzers and PV panels. 341 

PV technologies further exemplify the link between technology choices and material demand. Gallium, 342 

a key component in certain PV sub-technologies such as copper indium gallium selenide (CIGS) and 343 

gallium arsenide (GaAs) solar cells, experiences a marked increase in demand, particularly from 2030 344 

to 2050, as PV deployment accelerates. According to Figure 3, gallium demand could rise from 2.5 tons 345 

in 2020 to a median of nearly 40 tons by 2050. The variance in demand, ranging from as low as 20 tons 346 

to more than 50 tons, is largely driven by shifts in the market share of PV sub-technologies. At the 347 

lower end, increased deployment of cadmium telluride (CdTe) cells, which do not use gallium, drives 348 

demand down; while at the higher end, the widespread adoption of CIGS and GaAs significantly raises 349 

gallium demand. Crystalline silicon (c-Si) technologies also contribute to the gallium demand, although 350 

to a lesser extent than CIGS and GaAs. This underscores how the selection of specific PV sub-351 

technologies may heavily influence the demand for certain CRMs, emphasizing the need for strategic 352 

decisions to ensure material availability for the successful upscaling of solar energy. 353 

Wind energy also illustrates the impact of different low-carbon electricity production technologies on 354 

CRMs demand. Wind turbines deployment significantly impacts the demand for rare earth elements 355 

like neodymium, dysprosium, and praseodymium. Neodymium, crucial for producing permanent 356 

magnets used in wind turbine generators, experiences a more than 300% increase in demand as wind 357 

energy capacity expands, rising from 5 tons in 2020 to an estimated 17 tons by 2050. The variance in 358 

neodymium demand is influenced by the material intensity of different wind turbine designs and the 359 

choice between direct-drive versus gearbox turbines, with the former requiring significantly more rare 360 

earth elements. According to our GSA (Figure 5 and SI1-S6), neodymium oxide requirements in 361 

onshore gearbox wind turbines, driven by their greater market share, emerge as our model’s most 362 

influential uncertain parameter for neodymium extraction, which shows a variance of -26% to +28% 363 

by 2050. 364 

Finally, the mining sector presents a unique case of interconnectedness within the material-energy 365 

nexus. Sulfur, predominantly used in our model in upstream activities as sulfuric acid in refining 366 

various materials, more than doubles from 30 kton in 2020 to 70 kton by 2050. This increase reflects 367 

the rising need for refined metals to support the energy transition. Although sulfur is not scarce and 368 

does not currently face significant supply risks, it holds great economic importance, and its price has 369 

shown considerable volatility in recent decades (Blengini et al., 2020). Sulfur’s supply is intricately 370 

linked to the fossil fuel industry, as it is often produced as a byproduct of natural gas and petroleum 371 

refining, with few discretionary sources available (ecoinvent, 2023; Wagenfeld et al., 2019). 372 

Conversely, the demand for barium (SI1-S6, Fig. 8), mainly used in oil and gas drilling (ecoinvent, 2023; 373 
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USGS, 2023), is projected to decrease substantially, reaching only 14% of its initial demand, as a 374 

consequence of shifting away from fossil fuels. The interconnectedness between sulfur supply and 375 

fossil fuel production highlights potential resource availability and supply challenges as energy 376 

systems evolve. This aligns with the insights in (Månberger, 2021), which discusses the trade-offs 377 

associated with reduced fossil fuel use and its impact on the supply of critical resources, highlighting 378 

the importance of developing integrated models to anticipate potential barriers and ensure an 379 

effective transition to a sustainable energy future. 380 

As we shift focus to the overall environmental impacts, the analysis reveals a significant reduction in 381 

global warming potential for Switzerland’s energy system, with life-cycle GHG emissions dropping 382 

from approximately 40 megatons in 2020 to 4 megatons per year by 2050, as illustrated in Figure 4. 383 

This reduction reflects the goal of domestic net-zero emissions, while the remaining 4 megatons 384 

represent GHG emissions occurring abroad. In 2020, the percentage change between the median and 385 

the 5th and 95th percentiles is within ±0.5%. By 2050, as varying parameters become more relevant, 386 

this range expands to ±10%. The GSA identifies electricity storage capacity in electric vehicles as the 387 

most influential parameter driving uncertainty for this impact category. 388 

This reduction is associated with co-benefits such as decreased particulate matter formation and 389 

acidification. However, trade-offs emerge in other environmental categories, such as a rise in 390 

freshwater ecotoxicity by 40% (±9%). The same driver of variability —electricity storage capacity—391 

plays a significant role in these categories, further highlighting its importance in shaping 392 

environmental outcomes in our model. Additionally, the analysis reveals increased land use impacts, 393 

measured as the total area occupied over time to meet the final energy demand of the system. This 394 

increase is primarily driven by the deployment of bioenergy with carbon capture and storage, which 395 

results in a growing need for managed forest land. However, uncertainties around land use impacts 396 

remain limited (±2%), since we only consider uncertainties mainly affecting metals and materials 397 

consumption rather than land-use management or shifts in afforestation rates. 398 

Resource depletion indicators are most influenced by the uncertainties considered in our analysis. The 399 

crustal scarcity indicator, a proxy for long-term global elemental scarcity based on crustal 400 

concentrations, decreases from 5 gigatons of silicon-equivalent in 2020 to 4.7 gigatons (±16) by 2050. 401 

This indicator, which heavily weighs the scarcity of PGMs, declines as demand for platinum and 402 

palladium in internal combustion engines and exhaust systems phases out. In contrast, the abiotic 403 

depletion indicator for elements, which focuses on minerals and metals and excludes fossil fuel 404 

resources, shows a significant increase from 255 to 601 (-17%, +20%) tons of antimony-equivalent 405 

between 2020 and 2050, underscoring the substantial impact of uncertainties surrounding material 406 

demand.  407 

 408 
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409 
Figure 3. Annual life-cycle material demand per final energy consumer category for Switzerland’s Net Zero scenario. Pink 410 
error bars indicate the range between the 5th and 95th percentiles, considering only variations in projected technology 411 
market shares, with red dots marking the median (i.e., 50th percentile). Black error bars show the range between the 5th and 412 
95th percentiles when all sources of uncertainty are considered, with black dots representing the median. Note that median 413 
marks from both distributions do not necessarily align. Detailed results for 64 elements are available in the Supplementary 414 
Information (SI2, S6). Pie charts show the contribution shares of the final energy processes and sectors, respectively, to the 415 
total demand for each material. Individual processes contributing less than 5% are aggregated under “Other”. 416 
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 417 
Figure 4. Annual environmental life cycle impacts per final energy consumer category for Switzerland’s Net Zero scenario. 418 
Pink error bars indicate the range between the 5th and 95th percentiles, considering only variations in projected technology 419 
market shares, with red dots marking the median (i.e., 50th percentile). Black error bars show the range between the 5th and 420 
95th percentiles when all sources of uncertainty are considered, with black dots representing the median. Note that median 421 
marks from both distributions do not necessarily align. Impact categories include (1) global warming potential, measured in 422 
megatons of CO2 equivalent; (2) particulate measure formation, in kilotons of PM2.5 equivalent; (3) acidification, in million 423 
mol H+ equivalent; (4) ecotoxicity, in billion comparative toxic units; (5) land use, in square kilometer-year; (6) water use – 424 
comprises the abstraction of freshwater – in cubic kilometers; (7) crustal scarcity, in gigatons of silicon equivalent; and (8) 425 
abiotic depletion, in tons of antimony equivalents. 426 

 427 

 428 

 429 

 430 
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4. Discussion 431 

4.1. Key findings and implications 432 

The findings of this study underscore the critical importance of adopting a holistic perspective when 433 

designing and implementing energy transition policies. Firstly, life-cycle impacts must be considered 434 

to ensure that transition scenarios effectively reduce environmental burdens. While decarbonization 435 

efforts focus on reducing GHG emissions, our results highlight the necessity of considering a broader 436 

array of environmental impacts, such as particulate matter formation, water use, and resource 437 

depletion, to evaluate the co-benefits and trade-offs associated with reducing climate impacts and 438 

the general feasibility of transition pathways. 439 

Secondly, the comprehensive evaluation of sub-technologies and material intensities within the 440 

energy-material nexus is crucial. Neglecting to account for the full spectrum of sub-technologies and 441 

material requirements could lead to unforeseen bottlenecks or hidden impacts, potentially 442 

compromising the feasibility and effectiveness of energy transition scenarios. While ESMs and IAMs 443 

project broad technology deployments, such as total PV or wind capacities, they often overlook the 444 

detailed differences in material needs and effects on different impact categories that LCA can provide. 445 

This level of detail is valuable, as our study suggests that while the specific selection of sub-446 

technologies might not significantly impact the achievement of decarbonization targets, it 447 

substantially affects other environmental impacts and CRM demand.  448 

Furthermore, the GSA results highlight the factors in our model driving uncertainty in both material 449 

and environmental impacts, offering a valuable understanding for future research and mitigation 450 

efforts. As shown in Figure 5, electricity storage capacity in electric vehicles emerges in the evaluated 451 

Swiss scenario as the dominant factor affecting several environmental categories, including global 452 

warming potential, particulate matter formation, acidification and demand for CRMs. This reflects the 453 

strong influence that battery technologies have on shaping environmental outcomes. The impact of 454 

other specific products and processes is limited to single material demands, but in some cases even 455 

more pronounced: iridium demand is driven by its use in PEM electrolyzers, platinum demand by its 456 

use in ICEVs, and neodymium demand by its use in wind turbines. By revealing these critical 457 

sensitivities, the GSA pinpoints areas where technological advancements or material substitutions 458 

could have the greatest impact in reducing uncertainties and optimizing system sustainability. 459 

Ultimately, Figure 5 serves as a guide for identifying which parameters deserve the most attention 460 

and development to ensure the robustness of future energy transition strategies.  461 
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 462 

Figure 5. Heatmap of Delta values from a moment-independent global sensitivity analysis, highlighting the most influential 463 
uncertain parameters across key life cycle environmental impact categories. Rows represent the parameters, and columns 464 
represent the impact categories. For each category, only parameters with a normalized Delta value above 90% are shown, 465 
and the exact Delta values are annotated within each cell. 466 

4.2. Limitations and outlook 467 

While this study provides valuable insights into the material-energy nexus, several limitations must be 468 

acknowledged. One such limitation concerns recycling rates and mining practices. The analysis 469 

assumes that current practices in material extraction and recycling will continue into the future, 470 

potentially overlooking advancements in these areas, and leading to an overestimation of material 471 

extraction and associated environmental burdens. Future work should incorporate scenarios that 472 

account for technological improvements in recycling and more sustainable mining practices, which 473 

could reduce the material demand and associated environmental impacts. However, as material 474 

demand exhibits substantial growth rates, recycling will in any case only provide limited shares of 475 

material demand and thus we consider this limitation in our work of minor importance. 476 

Additionally, the study lacks detailed regionalization of environmental impacts, particularly important 477 

for categories such as water use, biodiversity, and particulate matter formation—areas relevant to the 478 

mining sector (Cabernard & Pfister, 2022; Northey et al., 2018). For instance, water requirements 479 

previously driven by cooling in combustion-based processes may shift to mining regions to support 480 

mineral extraction for renewable technologies; while particulate matter pollution —formerly 481 

concentrated in urban areas from combustion vehicles— is expected to increasingly affect mining 482 

zones as electric vehicle production scales up (Hahn Menacho et al., 2024). Enhancing the spatial 483 

resolution of these impacts would provide a more accurate assessment of the environmental 484 
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consequences of materials extraction and processing, allowing for more targeted and effective policy 485 

interventions. 486 

Finally, there is an opportunity to improve the granularity of material assessments in energy transition 487 

scenarios by integrating LCA with Material Flow Analysis (MFA). Currently, the demand for materials 488 

is linearized, i.e., evenly distributed over the entire lifetime of each infrastructure component, due to 489 

the nature of LCA, smoothing out peaks and troughs. Although this approach preserves cumulative 490 

material demand, it does not accurately reflect the temporal dynamics caused by installation, 491 

operation, and decommissioning phases – information usually provided by ESMs and IAMs. For 492 

instance, demand for tungsten, primarily used in our model in nuclear energy as tungsten carbide, 493 

decreases gradually over time (SI1, S6-Figure 8). However, with no new nuclear power plants 494 

projected and the planned decommissioning of existing ones, tungsten demand is expected to drop 495 

sharply, rather than taper off gradually. Similarly, for emerging technologies like PV, the bulk of 496 

material demand occurs during installation, rather than being evenly distributed across the 497 

technology's operational lifetime. By coupling MFA and LCA, future studies could offer a more dynamic 498 

and detailed understanding of material flows, better capturing the complexities of the energy 499 

transition and its resource implications (Barkhausen et al., 2023). 500 

Furthermore, the study highlights the need for improved indicators to assess resource depletion in 501 

the context of prospective LCA. The crustal scarcity indicator, for example, very much emphasizes the 502 

scarcity of PGMs, which could be misleading when interpreting the overall resource demand as this 503 

indicator suggests a decreasing need for scarce materials in our case study. Similarly, the abiotic 504 

resource depletion indicator may not fully align with the goals of prospective LCA, since it relies on 505 

current production and reserve data to project future resource availability. To address these 506 

shortcomings, future research should explore the integration of emerging criticality indicators, such 507 

as SPOTTER (Berr et al., 2022) or GeoPolRisk (Santillán-Saldivar et al., 2021), into the prospective LCA 508 

framework. These indicators could provide more accurate insights into the potential risks and 509 

vulnerabilities associated with CRM supply chains, supporting more informed decision-making in the 510 

energy transition. 511 

Future research should focus on validating these findings through alternative scenarios and enhancing 512 

the integration of LCA with MFA. Alternative scenarios could reach the net-zero goal in other ways, 513 

for example, by employing more carbon dioxide removal or more low-carbon synthetic fuels instead 514 

of direct electrification. Extending the scenario space will allow for a more dynamic and nuanced 515 

understanding of material demands over time. Developing more robust resource depletion indicators, 516 

particularly those incorporating geopolitical risks, will also be crucial in assessing long-term resource 517 

supply.  518 

5. Conclusion 519 

This study assesses Switzerland’s material-energy nexus within a net-zero transition scenario, focusing 520 

on life-cycle environmental impacts and CRMs demand. By systematically combining LCA with ESM, 521 

we address key gaps in understanding how emerging energy technologies and sub-technology choices 522 

will shape future resource demand and environmental outcomes. Through this framework, we 523 

estimated Switzerland’s future CRM demand, revealing substantial increases in materials like lithium 524 
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and vanadium, driven by EV and battery storage adoption, and highlighted the sensitivity of these 525 

projections to shifts in technology market shares and material intensities. Additionally, we identified 526 

drivers of uncertainty through global sensitivity analysis, such as electricity storage capacity in EVs, 527 

which significantly influences both material demand and environmental impacts. Furthermore, we 528 

developed an adaptable and reproducible workflow that allows for scenario-specific life-cycle impact 529 

assessments, which can be extended to different national context, providing a versatile tool for global 530 

energy analyses that consider a broad range of environmental impacts and material demand. 531 

Several novel findings emerge from this analysis, particularly concerning the sensitivity of CRM 532 

demand to sub-technology selection within energy systems – a level of granularity often overlooked 533 

in ESMs and IAMs. Our study demonstrates that while specific choices, like battery chemistry or PV 534 

sub-technology, do not substantially affect decarbonization targets, they have a significant influence 535 

on CRM demand profiles and other environmental impact categories, underscoring the importance of 536 

these variables in planning for a sustainable energy future. Additionally, the detailed examination of 537 

co-benefits and trade-offs across environmental impact categories, such as particulate matter 538 

formation and freshwater use, provides actionable insights beyond conventional GHG-focused 539 

transition analyses. 540 

The Swiss case study offers valuable insights for other countries, particularly those that need to scale 541 

up renewable energy installations and electrify their energy systems. Such countries, especially those 542 

lacking significant hydropower capacity, may face even greater material demand increases and 543 

environmental trade-offs as they deploy more photovoltaic and wind power installations along with 544 

additional stationary battery storage. At the same time, they stand to benefit from more substantial 545 

environmental co-benefits than Switzerland. Diversifying technology options emerges as a key 546 

strategy to reduce dependency on specific CRMs, alleviate supply chain pressures, and enhance the 547 

resilience of energy systems.  548 

In conclusion, a holistic approach to energy transition planning is essential. This study’s integrated 549 

workflow offers stakeholders a robust tool to assess both decarbonization goals and CRM needs, 550 

ensuring that the transition to low-carbon energy systems not only achieves emissions reductions but 551 

also considers long-term resource sustainability. These insights serve as a reference for policymakers 552 

and researchers aiming to navigate the complex landscape of energy transitions, with an emphasis on 553 

data-driven, resource-conscious planning. 554 

  555 
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Glossary 556 

▪ CRM: Critical Raw Material 557 

▪ ESM: Energy System Model 558 

▪ GHG: GreenHouse Gas 559 

▪ GSA: Global Sensitivity Analysis 560 

▪ IAM: Integrated Assessment Model 561 

▪ LCA: Life Cycle Assessment 562 

▪ PGM: Platinum Group Metals 563 

▪ STEM: Swiss TIMES Energy Model 564 

▪ TIMES: The Integrated MARKAL-EFOM System 565 
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