

Particle Physics

Summer Student Program 2024

Klaus Kirch, PSI & ETH Zürich July 17, 2024

Paul Scherrer Institute – ETH Domain

PSI groups at LHC

- High-energy physics group in CMS
 - 16 CMS members (including senior scientists, postdocs, PhD students, technicians and emeriti)
 - Leading contributions to detector development, physics analysis and ORD
 - Holding key positions within collaboration: Trigger Coordinator (M. Missiroli), Common Analysis
 Tools Coordination (C. Lange), TEPX Upgrade Coordinator (W. Erdmann), Secretary of CMS
 Management Board (Q. Ingram)
- High-performance computing and emerging technologies
 - Tier3 computing centre at PSI and Tier2 computing centre at CSCS
- LTP theory group
 - Phenomenology of physics at the LHC (Higgs, SM, SUSY, Exotica)
 - Coordination within LHC Higgs cross section working group (M. Spira)

PSI activities in CMS

- CH consortium (PSI, ETH,UZH) led design, construction, integration, commissioning of original and Phase-1 CMS pixel detector
 - Major parts built at Swiss institutes with components from local industry
- Key contributions to pixel detector operation, calibration, performance monitoring, local reconstruction, tracking and vertexing
- Active in physics analysis, in particular Standard Model, B and Higgs physics

CMS Phase-1 pixel detector (2017)

PSI

PSI Laboratory for Particle Physics

Particle Physics (LTP)

Prof. Dr. K. Kirch (ETHZ) 3200

Particle Physics Theory

Dr. M. Spira 3201

High Energy Particle Physics Prof. Dr. L. Caminada

3202

Muon Physics

Dr. S. Ritt 3203

UCN Physics

Dr. B. Lauss 3204

Electronics for Measuring Systems

U. Greuter 3205

Detectors, Irradiation, Applied Particle Physics

Dr. M. Hildebrandt 3206

Electronics Vocational Training and Service Pool

C. Kämpf 3208

- Pursue leading research in experimental and theoretical, accelerator-based particle physics at PSI and at CERN.
- Develop, apply and make available cutting-edge technologies.
- Organize and support user activities at CHRISP.
- Work together closely with CHIPP, universities and international collaborations.
- Train next generation of physicists and electronicians at PSI and at universities.
- Inform and educate the broader public.

The known particles

Pions, Muons, Neutrons, Protons

Composite system: The neutron

Composite system: The pion

Composite system: The pion

... and a source of muons

Fundamental particle: The muon

Fundamental particle: The muon

The lightest unstable particles of their kind

HIPA and ring cyclotron

produces

the world-wide highest intensities of these particles at low momenta:

Mesons:

Pions,

 π^+, π^-, π^0

Leptons:

Muons, μ^+ , μ^-

Baryons:

UCN, n

The Standard Model and beyond

A (the?) most successful theory

 ~consistent with all laboratory results, some tensions, theory & application to cosmology and astro suggest beyond SM physics

Laboratory experiments

- Precision measurements of SM input parameters
 - 19 (26+) param., masses, couplings, mixings, CP phases, θ_{OCD} , Higgs vev
- Searches for deviations & inconsistencies
 - Dark Matter, BAU, CPV, cLFV, B, L, Lorentz, Gravity, Dark Energy...
 - Often with tests of symmetries and conservation laws

Search for 'new' physics

High Energy

direct production of new particle

High Intensity

For example: Search for $\mu \rightarrow e\gamma$

Effects of particles in 'Loops'

Effects of 'new' particles in 'loops'

... excellent sensitivity when standard effects negligible.

Effects of 'new' particles in 'loops'

... excellent sensitivity when standard effects negligible.

Searches for charged lepton flavor violation

The present best limits on cLFV with muons

$$\mu^{+} \rightarrow e^{+}e^{+}e^{-}$$
BR < 1 x 10⁻¹²
SINDRUM 1988

 μ^{-} + Au \rightarrow e⁻ + Au BR < 7 x 10⁻¹³ SINDRUM II 2006

 $\mu^{+} \rightarrow e^{+} + \gamma$ BR < 3.1 x 10⁻¹³
MEG 2023
[90 % C.L.]

The MEG II Experiment

) PSI

- MEG II experiment searching for $\mu \rightarrow e \gamma$ aiming at B($\mu \rightarrow e \gamma$) < 6 x 10⁻¹⁴ @90%CL
- MEG result 2016: B($\mu \rightarrow e \, \gamma$) < 4.2 x 10⁻¹³ more than 28x improvement

Eur. Phys. J. C (2016) 76:434

- MEG II data taking 2021-26
- 2021 data analysis has recently been released, arxiv.org/abs/2310.12614

alone: $B(\mu \rightarrow e \gamma) < 7.5 \text{ x } 10^{-13}$

combined with MEG: B($\mu \rightarrow e \gamma$) < 3.1 x 10⁻¹³

• 2022&2023 → already ~5 times MEG data set

n2EDM - Search for a permanent neutron EDM

PSI

- at time of construction a new concept: separated sector ring cyclotron [H.Willax et al.]
- 8 magnets (280t, 1.6-2.1T), 4 accelerating resonators (50MHz), 1 Flattop (150MHz), \emptyset 15m
- losses at extraction ≤ 200W
- reducing losses by increasing RF voltage was main upgrade path

[losses ∞ (turn number)³, W.Joho]

- 590MeV protons at 80%c
- 2.4mA x 590MeV=1.4MW

The intensity frontier at PSI: π , μ , UCN

Precision experiments with the lightest unstable particles of their kind

Swiss national laboratory with strong international collaborations

IMPACT – Isotopes and Muon Production using Advanced Cyclotron and Target technologies

- 01/22 CDR published
- 07/22 Scientific Review
- 12/22 ETH Board: IMPACT for Swiss Roadmap of RIs 2023
- 2022-24 PSI funds pre-project
- 12/24 Swiss parliament decision about funding 2025-28
- Full implementation
- 08/28 start HIMB
- 08/30 start TATTOOS

Low momentum pion and muon beams

User facilities for particle physics

- PSI provides the world's highest intensity continuous beams and the largest integrated intensities
- **J-PARC** provides the world's highest intensity pulsed beams

At lower intensities, for other applications or at high momenta, muons are also available at: CERN, FNAL, RAL, TRIUMF, RCNP

Discussions/plans for new low momentum muon facilities: CSNS, RAON, FNAL

Future pulsed beams at FNAL and J-PARC will provide up to 10^{11} /s pulsed μ^{-} to dedicated exps.

HiMB at PSI should provide 10¹⁰/s low momentum positive muons for general purpose

Ultracold neutrons

User facilities for particle physics with UCN

- PSI is world-leading with the neutron electric dipole moment experiment and serving other exps.
- ILL PF-2 has been the world's UCN hub for more than 30 years and produced a plethora of results
- LANL is world-leading with the neutron lifetime experiment and serving also other experiments
- TRIGA Mainz is a smaller scale UCN source with neutron lifetime exp. and limited user program
- Others are not yet running experiments

Planned future installations and upgrades:

ILL (SuperSUNS, add. PF-2), TRIUMF-KEK (under construction), NCSU Pulstar, PNPI, FRM II, SNS (to produce UCN in one dedicated experiment); UCN2.0 at PSI to stay ahead of competition

Institutions active in particle physics at PSI

Particle physics experiments at PSI

- ~70 institutions world-wide participating
- ~350 individuals / ~700 visits per year
- 8'000-10'000 user days per year (1/3 of all at PSI)

The Laboratory for Particle Physics

- ~10 MCHF/year, incl. ~30% 3rd party funds
- ~60 FTE, incl. tenured and tenure track scientists, electronics engineers, technicians, postdocs, PhD students

Some PSI particle physics technologies

PSI's DRS-4 Chip in use around the world: more than 19'000 chips in about 200 experiments

Tour of HIPA and its user facilities

34

PSI Center for Neutron and Muon Sciences 17.07.2024