Online Track Reconstruction for the Mu3e Experiment

Haris Murugan

for the Mu3e-Collaboration

DPG Spring Meeting, 2024 T 94.6 7th March, 2024

Institute of Nuclear Physics, Johannes Gutenberg-Universität Mainz

H2020 MSCA ITN G.A. 858199

Overview

• Mu3e Experiment

- Mu3e Detector
- Detector Subsystems
- Signal and Background processes
- Readout System

• Online Event Selection

- Filter Farm
- Track Reconstruction
- Vertex Selection
- Parallel computing on GPU
- Performance

• Misalignment Studies

- Misalignment Modes
- Misalignment on Simulations
- Effect on Efficiency
- Track based Alignment
- Conclusion

Mu3e Experiment

Mag

- We aim to observe or exclude the decay of a positive muon to two positrons and an electron.
- If observed, would indicate Physics beyond The Standard Model.
- SINDRUM limit the sensitivity to Br < 10⁻¹² (1988), PSI.
- Phase I muon rate of 1x10⁸ s⁻¹
- Phase II muon rate of 2x10⁸ s⁻¹

Paul Scherrer Institute, Villigen

Detector Subsystems

Tracking detector

Timing detector

Signal and Background processes

6

Readout System

Filter Farm

• Objective - select signal candidate events by reconstruction of tracks and vertices. To reduce data rate by a factor of 100.

- NVIDIA GeForce RTX 3080 Ti.
- DE5a-NET FPGA card by Terasic.

Track Reconstruction

Mart

- 3D Multiple Scattering (MS) fit.
- Finds the curvature, minimising the MS angles for each triplet.
- Fits the triplets from first 3 layers after preselection.
- Helix trajectory is propagated to the 4th layer and the closest hit is found.
- The global curvature from both helix is used to find the track parameters.

Vertex Selection

PCA_{xy,1} PCA_{xy,2} PCA_{xv,3}

- With curvature the e^{-} and e^{+} can be identified.
- Only when all three tracks intersect in the transverse plane then the weights are calculated.
- The weights are from the MS in the first detector plane and due to the pixel size.
- The total energy of all particles, must match the muons rest mass and total momentum is zero.
- Frames with signal vertices are kept.

Parallel computing on GPU

- Each SM consists of 64 CUDA cores in 2080Ti and 128 CUDA cores in 3080Ti.
- Warps of 32 threads execute at once in streaming multiprocessors (SM)

Misalignment Modes

(A) Torsion (B) Curling (C) Shearing (D) Radial (F) Elliptical (E) Bowing (G) Stretching

(H) Sagitta

- Blue track is fitted with hits from ideal detector.
- When the detector is deformed elliptically, the blue track would have worse χ^2 , compared to purple track.
- Track fitting needs to account for such deformations and needs to identify true tracks.

Misalignment on Simulation

Offsets and Rotations

σ _{off,u,v} (mm)	$\sigma_{\mathrm{rot},\alpha,\beta}$ (mRad)	σ _{off,w} (mm)	$\sigma_{\text{rot}, \gamma}(\text{mRad})$
0.05 (0.45)	5 (10)	0.005 (0.1)	5 (10)

- Modification to the nominal (simulated) geometry by random Gaussian distributed values which reflect realistic misalignment errors.
- Deviations of more than 400 μm (0.4 mm) corresponding to 5 times the pixel pitch (pixel-size) are expected.

Effect on Efficiency

• $\sigma_{\text{off,w}} = 0.1 \text{ mm and } \sigma_{\text{rot},\alpha,\beta,\gamma} = 10 \text{ mRad were applied in all steps.}$

• Efficiency of Online Event Selection is compared with Monte Carlo truths.

Track-based Alignment

- Misalignments affect the efficiency of online track reconstruction.
- Weak modes of the detector misalignment causes track-based alignment software to fit deformed tracks.
- Track-based alignment needs constraints from global parameters. Which can be provided by the camera system.
- Precise position measurement of the detector segments using camera system would provide additional information regarding the detector geometry.

Conclusion

- Online track reconstruction achieves a peak performance of 2.3x10⁶ frames per sec.
- We aim to commission the filter farm and start data acquisition by the end of this year.
- Therefore, Phase I needs just 7 GPU farms with NVIDIA Geforce RTX 3080Ti. (Will be receiving the latest RTX 4090 soon)
- Misalignment in the detector geometry greater than 100 µm significantly affects the efficiency of the online track reconstruction.
- Track-based alignment must be integrated to Online track reconstruction to overcome such limitations.

Global memory layout

RAM CPU			
GPU Event 0 - 2MB			
Layer 0	x y z x y z x y z x y z Pointers		
000			
Layer 3	x y z x y z x y z Y z Pointers		
Time	8ns 16ns 24ns n ns		
IIIIe			
GPU Event 1 - 2MB			
Layer 0	x y z x y z x y z x y z Pointers		
000			
Layer 3	x y z x y z x y z X y z Pointers		
Time	8ns 16ns 24ns n ns		
HITIC			

Slope difference ∆z between the slopes of consecutive layer hits in the longitudinal plane.

Selection Cuts

$$\tan \lambda_{ij} = \frac{1}{h_{t,j} - h_{t,i}},$$
$$\Delta \lambda = \tan \lambda_{12} - \tan \lambda_{01}.$$

 $z_i - z_i$

• In transverse plane we observe the angle Φ_{ij} between hits of two consecutive layers in relation the the origin:

$$\cos \Phi_{ij} = \frac{\mathbf{h}_{t,i} \cdot \mathbf{h}_{t,j}}{h_{t,i} h_{t,j}},$$

The transverse radius of the circle going through all three hits

$$r_{t,c} = \frac{d_{01}d_{12}d_{20}}{2[(\mathbf{h}_0 - \mathbf{h}_1) \times (\mathbf{h}_2 - \mathbf{h}_1)]_z},$$

Track Reconstruction

- For reconstruction Triplet fit is used.
- We search for the track minimizing the objective function. Assuming no momentum loss and thus a constant curvature k.

$$\chi^2(\kappa) = \frac{\Phi_{\rm MS}(\kappa)^2}{\sigma_{\Phi}^2} + \frac{\Theta_{\rm MS}(\kappa)^2}{\sigma_{\Theta}^2}. \label{eq:chi}$$

• More than three hits for a full track fit requires to accommodate for multiple triplets.

$$\chi^2_{\mathrm{global}}(\kappa) = \sum_t^{n_{\mathrm{triplets}}} \chi^2_t(\kappa).$$

• A global curvature is found for all triplet combinations minimising the MS angles for each triplet.

Vertex Fit

- All combinations of two positrons and one electron are considered within each time slice. We calculate the total energy of all particles in the triplet using their curvature K.
- The total energy of all particles, must match the muons rest energy.
- The weighted mean is calculated only if all three reconstructed tracks intersect and it is calculated for all combinations of three intersections from three tracks.
- The χ^2 for a vertex estimate is computed from the differences between the point of closest approach and the weighted mean both in the transverse plane and in the z-coordinate.

