

Plant Applications with MELCOR 2.2: CIEMAT's Experiences

M. Garcia, J. Fontanet, R. Iglesias, L.E. Herranz

Unit of Nuclear Safety Research CIEMAT (Spain)

Ljubljana (Slovenia), 12-14 April, 2023

Areas of Work

Uncertainty Quantification in SAs

Hydrogen Management

- PARs behavior

DBA/DEC-A Analysis

Uncertainty Quantification in SAs

Ljubljana (Slovenia), 12-14 April, 2023

➤ Frame

 EU-MUSA project: Towards a harmonized approach for the UaSA application to SAs.

> Objective

Innovative management of SFP (Spent Fuel Pool) accidents (WP6).

> Scope

- MELCOR v2.2 code.
- SFP-BWR.

MUS

WP6: MELCOR EM (v2.2.15254)

CVH/FL Nodalization

- ➢ 8 CVs, 15 FLs
- SFP walls represented by concrete HSs (adiab. Cond.) at the outer surface (No HS_LBR/RBR card)
- EM focused on ST
 - > **FP initial masses**: WP6 specifications
 - Manual input through RN package ("RN1_FPN" card)
- Main Initial Conditions:
 - Liquid level: over the fuel racks (~ 4.5 m)
 - Pool temperature: 373.16 K
 - Atmosphere temperature: 353.16 K
 - Pressure: 1.0 bar (1.0136E+05 Pa)
 - Reactor Building is not modeled

WP6: MELCOR EM (v2.2.15254)

COR Nodalization

Ciemat

Centro de Investigacione

nergéticas, Medicambientale

y Tecnológicas

MINISTERIO DE CIENCIA

E INNOVACIÓ

R4: Empty Racks

SFP-PWR MELCOR option

- Racks were grouped in 4 radial rings
- Decay Power: 2.4 MW (1.9 Hot FAs + 0.5 Cold FAs)

Input through control function ("DCH_DPW" card)

Axial direction: the racks and the spent fuel were subdivided into 12 levels (8 levels for active fuel)

MU

GOBIERNO DE ESPAÑA E INNOVACIÓN Crero de Investigaciones Energidicas, Medicambienciales y Tecnológicas

Fraction of the core fuel degraded (%) (COR-COR DAMAGE) RC Results

Stumbles:

- Error 65: radiation subrutines
 - SFP-PWR option
 - No HS_LBR/RBR cards
 - COR_TST 0
- Error related to THs
 - Simplified nodalization
- MELCOR 2.2.15254 (no run with subsequent versions)

RC analysis:

- RC analysis is done with default values of the code
- Time onset of FPs release ~ 7.4 d
- 1% of degraded core as criteria to stop the computation (WP6 specifications)

Uncertainty Analysis Results

- Home-built python scripts (MELCOR 2.2/DAKOTA 6.7)
- Input-driven uncertainty propagation (15 features selected)
- Simple Random Sampling (SRS)
- Order statistics (Wilks; 93 runs to get 95/95)
- FOMs targeted: t_{onset}; Release of key RNs (NG, Cs, Ru)

Statistical parameter	Хе	Cs	Ru
MELCOR reference case (%i.i.)	24.21	24.21	0.12
Mean (% i.i.)	17.33	17.01	0.16
Median (% i.i.)	18.07	17.10	0.15
Lower bound (% i.i.)	11.44	11.25	0.08
Upper bound (% i.i.)	44.42	39.55	0.28
Standard deviation (% i.i.)	3.71	3.43	0.05

8

Some lessons learned

RC application:

- The scenario outlined is heavily conditioned by some hypotheses and assumptions made (i.e., the absence of "containment building"). This prevents from withdrawing meaningful generic conclusions from the calculations done. Nevertheless, substantial insights have been gained from the application of UaSA to SFPs.
- Despite the oversimplification of the scenario, modeling SFPs with SA codes still pose challenges related to the fuel assemblies distribution in the pool (notably other than in nuclear reactors) and to the first stages of the accident, when complex steam and air flows through fuel assemblies likely occur during the fuel assemblies uncover.
- MELCOR radiation model with the SFP-BWR core option could not be successfully activated, so that a SFP-PWR type core has been used as a "surrogate". This is an additional constraint that makes it hard to use the results for any generic physical interpretation.

Hydrogen Management

Ljubljana (Slovenia), 12-14 April, 2023

PARs behavior

➤ Frame

- SAMHYCO-Net (NUGENIA/TA2) and OECD-THEMIS project.
- CIEMAT contribution to the analyses of THAI-HR (Hydrogen Recombination) tests.

> Objectives

- Assess the predictability of MELCOR for PAR's recombination rate.
- Analyse updated recombination rate correlation for PARs efficiency.

> Scope

- MELCOR v2.2 code.
- FRAMATOME's design PARs.

THAI facility / MELCOR EM

Modelling:

- 5-node approach
- Form losses through the PAR volume set to capture the experimental velocity

BC (TFs):

- Wall T
- Injection mass rates

SAMHYCO-Net

Initial conditions:

- Gas composition
- T&P

HR-11 test / Model Approach

FRAMATOME's Original correlation

 $\begin{aligned} R_{H2} &\propto \mathcal{C}_{H2} \cdot \eta \cdot (k_1 \cdot P + k_2) \cdot \tanh(\mathcal{C}_{H2} - \mathcal{C}_{min}) \\ \eta &= 1 \quad if \ \mathcal{C}_{O2} \geq \mathcal{C}_{H2} \quad (Oxygen - rich \ cond.) \\ \eta &= 0.6 \ if \ \mathcal{C}_{O2} < \mathcal{C}_{H2} \quad (Oxygen - lean \ cond.) \end{aligned}$

Modified correlation

$$R_{H2} \propto \min(C_{H2}, C_{O2}) \cdot (k'_1 \cdot P + k'_2) \cdot \tanh(C_{H2} - C_{min})$$

Correlation dependency is suitable to be implemented in lumped parameter codes.

PAR's recombination rate:

- Mass sinks 'CV_SOU': H₂, O₂ (CFs)
- Mass sources 'CV_SOU': H₂O_v (CFs)

Plant application: MELCOR EM

PWR Containment

10-node approach

Unit

Unit of Nuclear Safety Research

Sequences

- 2" LOCA with fan coolers in the containment
- 2" LOCA with cont. sprays & cavity flooding
- Double-ended guillotine LOCA with fan coolers and sprays
- Station Black-Out

PARs distribution: 24 Framatome FR-1500 PARs

Compartment	# of PARs
Cavity	-
Cavity adjacent chamber	1
Lower compartment	1
SGA compartment	1
SGB compartment	1
SGC compartment	1
PRZ compartment	1
Upper compartment	13
Dome	3
Annulus	2

SAMHYCO-Net

Results (Upper containment)

SAMHYCO-Net

Some Remarks

- MELCOR model with a reduced number of nodes seems suitable to reproduce experiments for Hydrogen behavior
- Control Functions (CFs) in MELCOR provide high flexibility to implement general correlations for PARs' recombination rates.
- Comparison of correlation's modification in accident sequences simulated with MELCOR can lead to:
 - A significant difference in the recombination rate (oxygen lean conditions) BUT
 - A slight effect on the hydrogen molar fraction.

DBA/DEC-A Analysis

Ljubljana (Slovenia), 12-14 April, 2023

DBA/DEC-A Analysis

Frame

• EU-R2CA project: Reduction of radiological consequences of DBA and DEC-A.

> Objective

 Development of harmonized methodologies and innovative management approaches and safety devices for the evaluation and for the reduction of the consequences of DBA and DEC-A accidents in operating and foreseen nuclear power plants in Europe.

Scope

- Development of methodologies.
- Improvement of evaluation tools (MELCOR)
 - Iodine transport model extension.
- Evaluation of a series of reactor cases: LOCA and SGTR.

Cierro de Investigaciones E INNOVACIÓN Corro de Investigaciones E INNOVACIÓN CORRECTOR DE INNOVACIÓN CORRECTOR E INNOVACIÓN CORRECTOR DE INNOVACIÓN CORRECTOR DE INNOVACIÓN CORRECTOR E INNOVACIÓN CORRECTOR DE INVESTIGUES DE INDOVACIÓN DE INVESCOR DE INVESCOR DE INVESCO

Iodine Transport model: CIEMAT's extension

MELCOR EM (v2.2.18019)

Ciemat

Centro de Investigacioner

nerpéticas. Medicambientale

y Tecnológicar

MINISTERIO DE CIENCIA

INNOVACIÓ

NPP: 30 CV and 44 FL RCS: 2 loops RPV: 5 CVs Core: 4 radial rings, 14 axial levels SSs: HPSI, LPSI, ACS

ST (lodine spiking model):

Absolute release rate, normalized to plant power : 1.09 Ci/h • MWe (James P. Adams, Corwin L. Atwood. The iodine spike release rate during a steam generator tube rupture. Nuclear Technology, 361-371, October 1994.)

Main Steam Line Break (MSLB) before MSIV (Main Steam Isolation Valves) with a double ended rupture of 3 SG tubes at the cold leg side tube sheet (DEC-A)

Preliminary Results & Further Work

An extended iodine transport model has been implemented in MELCOR to consider the effect of water vaporization in the SG in the release and transport of iodine from fuel to the environment and tested in a DEC-A SGTR sequence. From the preliminary results:

- In the scenario modeled, there is no damage in the fuel rods; therefore, the main radioactive source to the environment comes from the iodine release from the reactor trip until the end of the transient.
- An iodine spiking model to bring the activity release to the secondary side has been proposed and implemented. At this time, this model should be reviewed and improved to consider the removal of iodine by the radioactive decay and by the reactor water cleanup system.
- According to the preliminary results, partitioning appears as the dominant mechanism in the iodine release to the environment.

FINAL REMARKS

- MELCOR has become an essential tool for CIEMAT in the area of LWR analysis.
- CIEMAT is profusely using MELCOR in research and application activities.
- MELCOR has been the backbone of CSN-CIEMAT agreements, and it will be again.
- New environments for CIEMAT use of MELCOR: Uncertainties, SFPs, DBA & DEC-A.
- CIEMAT's expertise on SA analysis with MELCOR being used in other technologies.

Thank you for your attention

23