
P R E S E N T E D B Y

Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology and Engineering Solutions of Sandia

LLC, a wholly owned subsidiary of Honeywell

International Inc. for the U.S. Department of

Energy’s National Nuclear Security Administration

under contract DE-NA0003525.

MELCOR Data and Control
Utilities

Lar r y Humphries

SAND2022-4172TR

MELCOR Data and Control
Presentation Overview

MELCOR provides data utility packages for
performing commonly required functions
—Handling of data (e.g., tabular input or output)

—Evaluation of functions for variables and/or control logic

—Materials properties

This presentation covers MELCOR data and
control packages
—Tabular Functions (TF) Package: General interface to tabular

data

—External Data Files (EDF) Package: General interface to data
files as input or output

—Control Functions (CF) Package: General interface to control
logic and user-defined functions

 Includes recent improvement

Session Data and Control | Page 3

Tabular Functions (TF)
Package

MELCOR Tabular Functions (TF) Package
Overview

Tabular Function (TF) utility provides unified
treatment

◦ Define 1-dimensional tables of data pairs for arbitrary
independent and dependent variables

◦ Specify extrapolation conditions at the boundary

◦ Value between the specified data pairs generated by linear
interpolation

Multiple MELCOR packages use tabular data

◦ Mass and/or energy sources for hydrodynamics (CVH),
heat structures (HS), or aerosol/vapor fields (RN1),
examples as:

◦ Gas source/sink for fire and explosion in CVH

◦ Aerosol sources for fire and explosion in RN

◦ Imposed time-dependent flow velocities in hydrodynamics
(FL)

◦ Definition of time-specified volume conditions (CVH)

◦ Materials properties (MP)

◦ Definition of control functions (CF)

MELCOR Tabular Functions (TF)
User Input

 REQUIRED for each tabular function
—User-defined tabular function name

—Number of data pairs (x,y) to define y=f(x)
—Multiplicative scale factor

 Optional for each tabular function
—Additive constant (default = 0)
—Boundary condition for evaluation of x outside

the range
 Default is to extend the table with constant

boundary value

 Can also linearly extrapolate or treat as an
error

 Upper and lower limits independently
specified

 Calling package specifies tabular
function type (e.g., velocity vs. time)
and tabular function name

 Value returned:
—TFn = Scale x Tablen(x) + Additive Const.

MELCOR Tabular Functions (TF)
TF Input: Data Pairs

x y

0 0

1 0

1 2

2 2

2 12

5 12

5 150

8 150

8 576

10 576

10 1100

Function defined by (x,y) data
pairs
—Can be as few as one pair for constant

value

Discontinuous (step) functions
allowed, with the same x value
in two (or more) pairs

Generally, data pairs are
entered in order of non-
decreasing x
— If there are no discontinuities, pairs

can be input in any order and will be
internally sorted

MELCOR Tabular Functions (TF)
Example TF Input

 Input block for energy source in CVH volume

CV_ID CV456
! CV_SOU table for source data
! | Energy to pool or atmosphere or mass of material
! | | Rate or integral
! | | | Source of data (function of time)
! | | | | TF name
! v vv vvvv vv vvvv
CV_SOU 1 ! N SourceInfo

1 MASS RATE TF ‘H2MASS’ ...
TF_INPUT
! TF_ID – tabular function definition
! | Name Multiplier
! | | | Additive const. (optional)
!vvvv vvvvvvvvvvv vvvvv vvv
TF_ID ‘H2MASS’ 0.01 0.0 ! Multiplier is desired MASS RATE
TF_TAB 1 ! NTFPAR X Y

1 0.0 1.0 ! Constant value of 1.0
! (Value Returned = 0.01 x 1.0 + 0.0 = 0.01)

Steps for Adding TF in SNAP

2) Provide Name, Number, Factors,
Constant, Bounds

3) Add Data Pair(s)

TF_INPUT
! TF_ID – tabular function definition
! | Name Multiplier
! | | | Additive const. (optional)
!vvvv vvvvvvvvvvv vvvvv vvv
TF_ID ‘H2MASS’ 0.01 0.0 ! Multiplier is desired MASS RATE
TF_TAB 1 ! NTFPAR X Y

1 0.0 1.0 ! Constant value of 1.0
! (Value Returned = 0.01 x 1.0 + 0.0 = 0.01)

1) Create New Tabular Function

FL_VTM 1 !NFLT FLNAME NTFLAG NFUN
1 FlowPath151 TF ‘Jet-V’ ! Velocity from

TF_INPUT
! TF_ID – tabular function definition
! | Name
! | | Multiplier for table data
!vvvv vvvvvvv vvvv
TF_ID ‘Jet-V’ 10.0 ! Multiplier is rated flow velocity
! Three points in table

v
TF_TAB 3 ! NTFPAR X Y

1 0.0 1.0
2 100.0 1.0
3 150.0 0.0

MELCOR Tabular Functions (TF)
Example TF Input (2)

Input block for forced jet pump velocity

Default extrapolation option is to extend the table with constant value
at lower and upper boundaries

0

10

0 t
100 150

Time-dependent velocity for

flowpath ‘FlowPath151’

described by a Tabular Function

(TF) named ‘Jet-V’

Variable Input and Named
Comment Blocks

ASCII

CommentBlock t9expfl

(((t9expfl

! t9 test

VariableValue {{{pres=100927.0}}} {{{temp=302.15}}} {{{o2m=0.208}}} {{{co2m=0.0005}}}

)))

(((t11expfl

! t11 test

VariableValue {{{pres=101250.0}}} {{{temp=292.15}}} {{{o2m=0.2081}} {{{co2m=0.0004}}}

)))

CV_ID 'i-lower' 100

CV_THR NONEQUIL FOG ACTIVE

CV_PAS SEPARATE ONLYATM SUPERHEATED

! ptdit pvol

CV_PTD PVOL {{{pres=}}}

! atmid tatm

CV_AAD TATM {{{temp=}}}

! nmmat

CV_NCG 3 RHUM 0.5

! n namgas mass

1 'N2' 0.7915

2 'O2' {{{o2m=}}}

3 'CO2' {{{co2m=}}}

Define Variables in Global Input Use Variables in CVH input

SNAP

Define Variables in Numerics Input Use Variables in CVH input

Session Data and Control | Page 11

External Data Files (EDF)
Package

MELCOR External Data Files
(EDF) Overview

A general means of communication (read or write) with
external data files containing time history data
◦Facilitate input of data (e.g., source definition and/or boundary
condition) too large for TF

◦Output data histories for use with another code or special purpose
plot program

External Data File (EDF) utility provides unified
treatment
◦Defines file types, data format, and time control of data read and
write

◦Handles connection, opening, positioning, input or output, and
closing of named file

◦Any package can request interpolation to any time within current
time step in any READ file

MELCOR External Data Files (EDF)
File Types and Structures

Three types of external data files
◦READ: data read in for use by MELCOR packages
◦WRITE: user-selected data written to specified file
◦PUSH: collection of data written at request of
another MELCOR package

Each file contains values of time and one or
more dependent variables, referred to as “data
channels”

Each record in the file contains a value of time
and the value(s) of the dependent variable(s) at
that time

MELCOR External Data File (EDF)
Input

Required input for each external data file
◦User-defined name or ID (EDF_ID)

◦Direction and mode of data transfer (READ, WRITE, PUSH)

◦Name of file on computer system

Required input for WRITE and PUSH data files
◦Control information for time interval between records (start time
and time increment)

Required input for WRITE data files only
◦List of dependent variables to be written, chosen from available
control function arguments

MELCOR External Data File (EDF)
Input (2)

Optional input for each external data file
◦External data file format (default is
unformatted)

◦Format specification uses FORTRAN syntax
◦Time offset between data and MELCOR
calculation
◦Intended to handle data with different time reference

◦Useful for experimental data or in interfacing with another
simulation code

◦ tFile = tMELCOR + tOffset

MELCOR External Data Files
Example Input using EDF - WRITE

Input fragment to write to an external data file containing user-
selected variables of interest for post-processing

EDF_INPUT
! User identification
! | Name
! | | Direction and mode of transfer
!vvvvv vvvv vvvv
EDF_ID SPECIAL-DATA WRITE ‘specdat.dat’ ! Name of file on system
EDF_CHN 3 ! Number of data channels (3) to be written

1 CVH-P(TANK) ! pressure
2 CVH-TLIQ(SP) ! Pool temperature
3 CF-VALU(FEEDWTR_FLOW) ! control function, feedwtr_flow

! EDF_DTW for write increment control
! | Starting at time TWEDF
! | | Write a record every DTWEDF seconds
!vvvvvv vvvvv vvvvvv
EDF_DTW 2 !NT TWEDF DTWEDF

1 500.0 1.0
2 1000.0 10.0

! Note dependent variables (data channels) must be ‘control function’
! arguments

MELCOR External Data Files
Example Input using EDF - WRITE

EDF_INPUT
! User identification
! | Name
! | | Direction and mode of
transfer
!vvvvv vvvv vvvv
EDF_ID SPECIAL-DATA WRITE ‘specdat.dat’ !
Name of file on system
EDF_CHN 3 ! Number of data channels
(3) to be written

1 CVH-P(TANK) ! pressure
2 CVH-TLIQ(SP) ! Pool

temperature
3 CF-VALU(FEEDWTR_FLOW) !

control function, feedwtr_flow
! EDF_DTW for write increment control
! | Starting at time TWEDF
! | | Write a record
every DTWEDF seconds
!vvvvvv vvvvv vvvvvv
EDF_DTW 2 !NT TWEDF DTWEDF

1 500.0 1.0
2 1000.0 10.0

! Note dependent variables (data channels)
must be ‘control function’
! arguments

ASCII SNAP

MELCOR External Data Files
Example Input using EDF - READ

Input fragment for steam source read from an
unformatted file

• Each record in file ‘../data/steam.dat’ contains
values of () in British
units.  

tt

tdH,tdM,t 

CV_ID CV123
! Integral steam mass and enthalpy from EDF 7 (British units)
CV_SOU 2 !N, SourceInfo

1 MASS INTEGRAL EDF EDF7 1 H2O-VAP 0.4535924 ! pound to kg
2 AE INTEGRAL EDF EDF7 2 1055.06 ! BTU to J

...
EDF_INPUT
! User identification
! | Name
! | | Direction and mode of transfer
!vvvvv vvvv vvvv
EDF_ID EDF7 READ ‘../data/steam.dat’ ! Name of file on system
EDF_CHN 2 ! Number of data channels
EDF_TIM 7200.0 ! t=0 in MELCOR is 7200s on file

Session Data and Control | Page 21

Control Functions (CF)
Package

MELCOR Control Functions (CF)
Overview

“Control Functions” are simply user-defined functions of
MELCOR-calculated variables
◦ May be LOGICAL- or REAL-valued

◦ All functions are evaluated at the start of every time step

◦ All control-function-based models are numerically explicit

◦ Recent improvement

Many uses, not just control
◦ Define door behavior, failure conditions, chemical reactions.

◦ Define internally-calculated sources and boundary conditions

Many variables in MELCOR database are available as arguments
for control functions
◦ Any CF variable can be written to an external data file

◦ Any CF variable can be added to the plot file

MELCOR Control Functions
Control Function Arguments

Many variables in MELCOR time-dependent database are
available as function arguments
◦Not all variables, due to coding required to access them

◦Most are REAL-valued, but a few are LOGICAL

◦Listed, by package, in the various User’s Guides

Most packages use names of form xyz-name
◦“xyz” identifies the package and “name” the variable

◦e.g.) CVH-TOT-M(O2) is total O2 mass in CVH package

Simple names for those defined by Executive Package
◦EXEC-TIME is problem time

◦EXEC-DT is (system) time step

◦EXEC-CPU is (total) computer time

Where To Find CF Arguments

Notice SNAP refers

to ‘CVH variables’

as ‘Volume

Variables’

Notice SNAP list

refers to CPUC rather

than CVH-CPUC

UG list refers to

CVH-CPUC

Listed & Described in
package UG (i.e., CVH)

Drop-down list of SNAP supported
CF arguments in Database Variables

Database Variables (CF arguments available to model)

Control Function arguments must be
added to Database Variables before they
can be used for input.

Used as input to control functions

Control Function arguments are organized
by package

◦ General Variables (EXEC)

◦ Burn Variables (BUR)

◦ Path Variables (FL)

◦ Heat Variables (HS)

◦ Core Variables (COR)

◦ Nuclide Variable (RN)

◦ Sprayer Variables (SPR)

◦ Decay Variables (DCH)

◦ Recombiner Variables (PAR)

◦ Fan Cooler Variables (FCL)

◦ Cavity Variables (CAV)

◦ Fuel Dispersal Variables (FDI)

Adding a CF argument to the database
◦ Right Click Package category and select

‘New’

◦ New variable appears in list

◦ Make selection to MELCOR CF
arguments

25

Example: Add swollen liquid level

for wetwell to database.

MELCOR Control Functions
Control Function Argument Arrays

Many control function arguments are
essentially elements of arrays
◦Index is user-defined name of volume,
flowpath, etc.

◦Index is added to name in a parenthesis
◦CVH-P(ROOM1) is pressure in ‘ROOM1’ volume

◦CVH-TVAP(ROOM1) is atmosphere temperature in ‘ROOM1’
volume

◦Arrays may have more than one index
◦FL-MFLOW(vent,all) is total mass flow in flowpath ‘vent’

◦EDF(out-10, 2) is data channel 2 in EDF ‘out-10’

◦RN1-ADEP(HS1, LHS, CE, TOT) is total deposited mass of
CE class on the left hand side (LHS) of heat structure ‘HS1’

MELCOR Control Functions
Direct Use of CF Arguments

Any CF argument can be written to an external data file
(EDF package)

EDF_INPUT
EDF_ID ‘Misc Data’ WRITE ‘Misc.dat’ ! File name on system
EDF_CHN 3 !N New Name Value

1 CVH-P(CV150) ! Pressure in volume CV150
2 FL-MFLOW(FL199,ALL) ! Mass flow in path FL199
3 CVH-TVAP(CV150) ! Atmosphere temperature in

! Volume CV150
! EDF_DTW for write increment control
! | Starting at time TWEDF
! | | Write a record every DTWEDF seconds
!vvvvvv vvvvv vvvvvv
EDF_DTW 1 !NT TWEDF DTWEDF

1 1000. 10. ! Output frequency
EDF_FMT 4E12.5 ! Format: time + 3 variables

MELCOR Control Functions
Direct Use of CF Arguments (2)
Any CF argument can be added to the plot file (EXEC_PLOT)
◦ Add any number in MELGEN input: written for entire run

◦ Add any number on MELCOR restart: included in the plot file for the duration
of current execution

EXEC_PLOT 7

1 CF-VALU('Failure')

2 CF-VALU('Hole')

3 CF-VALU('E+R Flag')

4 CF-VALU('Overpress')

5 CF-VALU('Filter Path')

6 FL-I-EFLOW('BP-IN',POOL)

7 CVH-LIQLEV('Room2')

ASCII SNAP

Note that a CF argument must be added to Control

System Database before it can be assigned to a plot

variable

MELCOR Control Functions
Composite Functions

Values of control functions are available for use as
arguments of other control functions
◦Can construct composite functions such as

Functions are evaluated in the numerical order of
the CF number (not on order read)
◦A function should ordinarily use only previously-defined
functions as arguments

◦There are exceptions, where the value from the previous
time step is desired
◦ Evaluating out of order will use the previous time step value

  IMsin

Control Function connections30

Example: Activate Sprays when

containment pressure exceeds

1.2E5 Pa.

Connecting output from
one CF to input of
another CF

Graphically

Drag both CF objects to the view
and use connection tool

Cannot make connection from
property window

Connecting control
function arguments to the
input of a control function

◦ Drag control function
object and all Database
variables to view

◦ Make adjustments to
multipliers later from
properties window

◦ Cannot make connection
from property window

MELCOR Control Functions
CF Input: Required Input

Required input for each control function
◦User-defined name

◦Function type (Add, EXP, SIN, L-AND, L-OR, etc.)
◦ Type determines whether value is REAL or LOGICAL

◦Number of arguments

◦List of arguments

Required input for REAL-valued control
function
◦Multiplicative scale factor

MELCOR Control Functions
CF Input: Optional Input

Optional Input for each control function
◦ Initial value (real, true or false)

◦ Only needed if value will be needed early

Optional Input for REAL control function
◦ Additive constant for function (default = 0.0)

◦ Evaluated as CFn = scale*fn[X(t)] + add

◦ Upper and lower bounds

◦ Results bounded within limits

◦ Units (used for plotting purposes only)

Optional Input for LOGICAL control function
◦ Message to be output when function switches state

◦ Report user-defined ‘events’ in the output files

◦ Logical function classification as ‘LATCH’ or ‘ONE-SHOT’

◦ If initially FALSE, ‘ONE-SHOT’ can be TRUE for one step only; if initially
TRUE, ‘LATCH’ can only be .FALSE. once

CF_Units is the ASCII record for

specifying units for a control

function. Currently, the SNAP

MELCOR plugin does not support

this feature.

MELCOR Control Functions
Built-in Functional Forms

Most FORTRAN and simple math functions
—Arithmetic, trigonometric, hyperbolic, and LOGICAL

Tabular function (using table in TF package)

 IF-THEN-ELSE structures

Numerical integrals and derivatives
— Includes a proportional-integral-differential (PID) controller

Hysteresis function
—References TF package to defined loading/unloading curves

A variety of “trips”
—Trips are REAL-valued; value returned is time since trips

—Simplifies logic involving delays

—Usable as timer or ramp-generator

MELCOR Control Functions
Built-in Functional Forms (2)
Larson-Miller creep rupture Control Function

(LM-CREEP)
—Evaluates cumulative damage based on the Larson-Miller

creep rupture failure model and gives time to rupture in
seconds

Pipe stress control function (PIPE-STR)
—Evaluates maximum stress in a thick-walled cylindrical

pipe under internal pressure

User-Defined function (FORMULA)
—Allows definition of a complicated function on a single

record instead of series of records

Lag function
—Evaluated as a scaled change in the function value by

scaling the change in the argument (Time Lag) as well
providing a multiplication scale for the argument.

Exercise 2.5a
Create an Integration TYPE CF

cf_id 'co2mass-int' 535 INTEG

CF_SAI 1.0 0.0 0.0

cf_arg 2 !n

1 cf-valu('co2mass') 1.0 0.0

2 exec-time 1.0

 Import 2.5a_start.inp into SNAP or work with the text file.

 Create a CF to integrate the rate of CO2 generation (sourced into
the problem) to calculate the cumulative mass of CO2 generated.

— Name the CF ‘co2mass-int’

— Number the CF #535

— Make it an INTEG type

— Use the CF ‘co2mass’ as the integrand

— Integrate over time.

— Plot results or check values in output file

ASCII Solution
SNAP Solution

Order of Operations in Evaluating
MELCOR Control Function

Demonstrate the order of operations MELCOR uses to
evaluate the following control function

...
CF_INPUT
! User identification
! | Name
! | | Type of function (add argument)
!vvvv vvvvvv vvvvvv
CF_ID 'CF12' ADD
! Multiplier for function
! | Added constant
CF_SAI 0.0 70.E6
! Bounds used
! | LowerBound
! vvvv vvv UpperBound
CF_UBL BOTH 2.0 7.0
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN(optional)

1 EXEC-TIME 1.0 0.0
2 CF-CONST 1.0

Session Data and Control | Page 37

Order of Operations in Evaluating
MELCOR Control Function

1ST Step

Evaluate the individual arguments
—Arg(n) = Package_Arg_Value(n) * ARSCAL + ARADCN

...
CF_INPUT
! User identification
! | Name
! | | Type of function (add argument)
!vvvv vvvvvv vvvvvv
CF_ID 'CF12' ADD
! Multiplier for function CFSCAL
! | Added constant CFADCN
CF_SAI 1.0 0.0 2.0 ! Initial value
! LowerBound
! vvv UpperBound
CF_UBL Both 2.0 7.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN(optional)

1 EXEC-TIME 1.0 0.0
2 CF-CONST 1.0

Session Data and Control | Page 38

Order of Operations in Evaluating
MELCOR Control Function

2nd Step

Perform function on the scaled argument(s)
—For this case: Func_Arg = Arg(1) + Arg(2)

...
CF_INPUT
! User identification
! | Name
! | | Type of function (add arguments)
!vvvv vvvvvv vvvvvv
CF_ID 'CF12' ADD ! Func_Arg = Arg(1) + Arg(2)
! Multiplier for function CFSCAL
! | Added constant CFADCN
CF_SAI 1.0 0.0 2.0 ! Initial value
! LowerBound
! vvv UpperBound
CF_UBL Both 2.0 7.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN(optional)

1 EXEC-TIME 1.0 0.0 ! Arg(1) = Problem_Time*1.0+0.0
2 CF-CONST 1.0 ! Arg(2) = 1.0

Session Data and Control | Page 39

3rd Step

Apply function scaling and additive values
— InterFunc = Func_Arg * CFSCAL + CFADCN

...
CF_INPUT
! User identification
! | Name
! | | Type of function (add argument)
!vvvv vvvvvv vvvvvv
CF_ID 'CF12' ADD
! Multiplier for function CFSCAL
! | Added constant CFADCN InterFunc=Func_Arg*CFSCAL+CFADCN
CF_SAI 1.0 0.0 2.0 ! Initial value
! LowerBound
! vvv UpperBound
CF_UBL Both 2.0 7.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN(optional)

1 EXEC-TIME 1.0 0.0
2 CF-CONST 1.0

Order of Operations in Evaluating
MELCOR Control Function

Session Data and Control | Page 40

4th Step

 Impose upper and lower boundaries
— Func = max(LowerBound,min(InterFunc,UpperBound))

...
CF_INPUT
! User identification
! | Name
! | | Type of function (add argument)
!vvvv vvvvvv vvvvvv
CF_ID 'CF12' ADD
! Multiplier for function CFSCAL
! | Added constant CFADCN
CF_SAI 1.0 0.0 2.0 ! Initial value
! LowerBound
! vvv UpperBound
CF_UBL Both 2.0 7.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN(optional)

1 EXEC-TIME 1.0 0.0
2 CF-CONST 1.0

Order of Operations in Evaluating
MELCOR Control Function

MELCOR Control Functions
Simple Examples

Simple examples first to demonstrate CF format and
usage
◦More examples and complete list of built in function types
given in CF package user’s guide

◦There are often several ways to build a function

MELCOR Control Functions
Example Input Using CF

 Input block for energy
source in core
— (same as TF example input

shown earlier, but uses CF)

CV_ID CV110
! Results equivalent to TF example earlier,
but use CF
CV_SOU 1 ! N SourceInfo

1 PE RATE CF CF12
...
CF_INPUT
CF_ID 'CF12' 001 EQUALS
CF_SAI 0.0 70.E6
CF_ARG 1 ! NARG CHARG ARSCAL

1 EXEC-TIME 0.0
! Must specify one argument
! Value of ‘CF12’ = 0.0 x [(EXEC-TIME x 0.0) +
0.0] + 70.E6 = 70.E6

CF Input

CV Input

MELCOR Control Functions
Example Input Using CF (2)

 Alternate form 1 for constant control function

CF_ID ‘Pi’ 10 EQUALS
! Multiplier for function
! vvvvv
CF_SAI 3.1415 ! Add 0.0 (default)
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN

1 EXEC-TIME 0.0 1.0

CF_ID ‘Pi’ 10 EQUALS
CF_SAI 1.0 ! Mult 1; Add 0.0 (default)
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN

1 EXEC-TIME 0.0 3.1415

Value returned is
3.1415 x [(EXEC-TIME x 0.0) + 1.0] + 0.0 = 3.1415

 Alternate form 2 for constant control function

Value returned is
1.0 x [(EXEC-TIME x 0.0)+3.14156] + 0.0 = 3.14156

CF_ID ‘Pi’ 10 EQUALS
CF_SAI 1.0 ! Mult 1; Add 0.0 (default)
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN

1 CF-CONST 3.1415

 Best Practice (not implemented in SNAP) Argument EXEC-TIME may

need to be added to model

database.

Value returned is 1.0 x [3.14156] + 0.0 = 3.14156

S
N

A
P

 I
m

p
le

m
e

n
ta

ti
o

n
 o

f
a

lt
e

rn
a

te
 f

o
rm

 2

Session Data and Control | Page 44

MELCOR Control Functions
Example Input Using CF (3)

Example CF Input: Confinement failure with message

! LOGICAL function, .true. if arg1 >
arg2
CF_ID 'Failure' 100 L-GT
CF_LIV FALSE ! Initial value is .false.
CF_CLS LATCH ! Once .true., stays .true.

CF_MSG FULL-OUTPUT ‘Confinement Failed’
CF_ARG 2 ! Argument Scale Add

1 CVH-P(‘CV300’) 1.0 0.0
!Pressure in volume CV300

2 CVH-P(‘CV900’) 1.0 1.E5
!Pressure in volume CV900 + 1.E5

Writes to all files at

completion of time step
Message to be written

CF becomes true if CV300 pressure
exceeds CV900 by 1 bar

MELCOR Control Functions
Example Input Using CF (3)

Example CF Input: Confinement failure with message

! LOGICAL function, .true. if arg1 >
arg2
CF_ID 'Failure' 100 L-GT
CF_LIV FALSE ! Initial value is .false.
CF_CLS LATCH ! Once .true., stays .true.

CF_MSG FULL-OUTPUT ‘Confinement Failed’
CF_ARG 2 ! Argument Scale Add

1 CVH-P(‘CV300’) 1.0 0.0
!Pressure in volume CV300

2 CVH-P(‘CV900’) 1.0 1.E5
!Pressure in volume CV900 + 1.E5

Writes to all files at

completion of time step
Message to be written

CF becomes true if CV300 pressure
exceeds CV900 by 1 bar

MELCOR Control Functions
Example Input Using CF (4)

Example CF Input: Opening a valve (or door) in a flowpath

FL_VLV 1 ! NV VLVNAME FLNAME KEYTRIP NVFONF
1 ‘Valve1’ ‘FL399’ NoTRIP ‘Hole’

…
CF_INPUT
! REAL function, equivalent to IF-THEN-ELSE

vvvvvvvv
CF_ID 'Hole‘ 101 L-A-IFTE
CF_SAI 1.0
! Argument Scale Add
CF_ARG 3 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(‘Failure’) 0.0 0.0 ! LOGICAL, true after failure
2 EXEC-TIME 0.0 1.0 ! Hole = 1.0 if arg 1 true

3 EXEC-TIME 0.0 0.0 ! Hole = 0.0 if arg 1 false

CF ‘Hole’ gives open fraction

Options: NoTrip, Trip, NoTripCV

In the SNAP implementation the

valve is a property (optional) for

a flowpath and is not a separate

table input.

MELCOR Control Functions
Example Input Using CF (5)

Generate restart and plot
at time of failure

EXEC_INPUT
EXEC_RESTARTCF ‘E+R Flag’
EXEC_PLOTCF ‘E+R Flag’
...

CF_INPUT
CF_ID ‘E+R Flag’ 105 L-EQUALS
CF_LIV FALSE ! Initial value is
.false.
CF_CLS ONE-SHOT ! .true. only once
CF_ARG 1

1 CF-VALU(‘Failure’) 0. 0.

(MELCOR input)
restart or
plot dump if
CF ‘E+R Flag’
is .true.

LOGICAL function ‘E+R Flag’, set equal to
argument (L-EQUALS) determines edit.
(Start of step on which CF becomes true)

(1
)

E
d
it
 M

E
L

C
O

R

In
p
u
t

(2
)

E
d
it
 E

X
E

C
 i
n
p
u
t

u
n
d
e
r

M
o
d
e
l
O

p
ti
o
n
s

ASCII

Session Data and Control | Page 48

MELCOR Control Functions
Example Input Using CF (6)

Calculate maximum pressure in volume 200

! REAL function, 2 or more arguments
! vvv
CF_ID ‘Peak P.200’ 110 MAX
CF_SAI 1.0 0.0 0.0 ! Initialize to zero
! Argument Scale Add
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CVH-P(‘CV200’) 1.0 0.0 ! *CURRENT*
! pressure in volume CV200

2 CF-VALU(‘Peak P.200’) 1.0 0.0 ! *PREVIOUS*
! value of maximum

This is an example of a CF that references itself. In

this case, it uses the value from the previous

timestep.

MELCOR Control Functions
Example Input Using CF (6)

Calculate maximum pressure in volume 200

! REAL function, 2 or more arguments
! vvv
CF_ID ‘Peak P.200’ 110 MAX
CF_SAI 1.0 0.0 0.0 ! Initialize to zero
! Argument Scale Add
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CVH-P(‘CV200’) 1.0 0.0 ! *CURRENT*
! pressure in volume CV200

2 CF-VALU(‘Peak P.200’) 1.0 0.0 ! *PREVIOUS*
! value of maximum

This is an example of a CF that references itself. In

this case, it uses the value from the previous

timestep.

MELCOR Control Functions
Example Input Using CF (7)

Built in function ‘PIPE-STR’ expressed with ‘FORMULA’ in a
single control function

! Maximum stress in a thick-walled pipe under internal pressure
! given as, PIPE-STR(t)=[(Ro

2+Ri
2)*Pi-2Ro

2Po]/(Ro
2-Ri

2)

CF_ID ‘Stress’ 120 FORMULA
CF_SAI 1.0 0.0
CF_FORMULA 5 ((Ro^two+Ri^two)*Pi-two*Ro^two*Po)/(Ro^two-Ri^two)

1 Pi CVH-P(CV500) ! Inner pressure
2 Po CVH-P(CV8) ! Outer pressure
3 Ri 0.37 ! Inner radius (constant value)
4 Ro 0.45 ! Outer radius (constant value)
5 two 2.0 ! (constant value)

! Liquid fuel remained calculation
CF_ID ‘RemainFuel’ 1001 FORMULA
CF_SAI 1.0 0.0 3.2933
CF_FORMULA 3 fuel-brate*dt

1 fuel cf-valu(RemainFuel) ! Old value of RemainFuel
2 brate CF-VALU(gasburnrate) ! CF for burn rate
3 dt exec-dt

Calculate unburned gasoline remaining using ‘FORMULA’

Warning: There are two restrictions: (1) a logical FORMULA CF that is
equal to its single logical argument is not permitted, (2) the single-
character ‘E’ or ‘e’ is not permitted as a SHORTNAME

Alternate Ways for Calculating
Pipe Stress

P
re

vi
o

u
sl

y
 S

h
o

w
n

 2
 W

a
y
s

Using FORMULA type CF

CF_ID ‘Stress’ 120 FORMULA
CF_SAI 1.0 0.0
CF_FORMULA 5 ((Ro^two+Ri^two)*Pi-two*Ro^two*Po)/(Ro^two-Ri^two)

1 Pi CVH-P(CV500) ! Inner pressure
2 Po CVH-P(CV8) ! Outer pressure
3 Ri 0.37 ! Inner radius (constant value)
4 Ro 0.45 ! Outer radius (constant value)
5 two 2.0 ! (constant value)

Using PIPE-STR type CF

CF_ID Stress PIPE-STR
CF_SAI 1.0 0.0
CF_MSC 0.37 0.45
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CVH-P(CV500) 1. 0. ! Inner pressure (hot leg)
2 CVH-P(CV8) 1. 0. ! Outer pressure (containment)

𝜎𝑚𝑎𝑥 𝑡 =
𝜋 𝑅𝑜

2 + 𝑅𝑖
2 − 2𝑅𝑜

2 ∙ 𝑃0

𝑅𝑜
2 − 𝑅𝑖

2

Alternate Ways for Calculating
Pipe Stress

Using MELCOR Classic Control Functions (MELCOR 1.8.5)

CF_ID STRESS DIVIDE 16
CF_SAI 1.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(NUMERATOR) 1. 0.
2 CF-VALU(DENOMINATOR) 1. 0.

CF_ID Numerator ADD 15
CF_SAI 1.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(TERM1) 1.0 0.
2 CF-VALU(TERM2) -1. 0.

CF_ID TERM1 ADD 14
CF_SAI 3.1415 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(RO2) 1. 0.
2 CF-VALU(RI2) 1. 0.

CF_ID TERM2 MULTIPLY 13
CF_SAI 1.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(RO2) 2. 0.
2 CVH-P(CV8) 1. 0.

CF_ID DENOMINATOR ADD 12
CF_SAI 1.0 0.0
CF_ARG 2 ! NARG CHARG ARSCAL ARADCN

1 CF-VALU(RO2) 1. 0.
2 CF-VALU(RI2) -1. 0.

CF_ID RO2 POWER-I 11
CF_MSC 2.0
CF_SAI 1.0 0.0
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN

1 CF-CONST 0.45
2 CF-VALU(RO1) -1. 0.

CF_ID RI2 POWER-I 10
CF_MSC 2.0
CF_SAI 1.0 0.0
CF_ARG 1 ! NARG CHARG ARSCAL ARADCN

1 CF-CONST 0.37
2 CF-VALU(RO1) 1. 0.

𝜎𝑚𝑎𝑥 𝑡 =
𝜋 𝑅𝑜

2 + 𝑅𝑖
2 − 2𝑅𝑜

2 ∙ 𝑃0

𝑅𝑜
2 − 𝑅𝑖

2

This method not recommended!

Harder to read and more prone to

mistakes!

Session Data and Control | Page 59

Example: T-O-R
CF_ID ‘Hole’ T-O-F
CF_SAI 0.5 0.0 0.0
CF_MSC -1.0 2.E5
CF_ARG 1 ! Pressure calculated by CF

1 CFVALU(‘pressure’) 1.0 0.0

Value of trip is different whether state
variable CF (‘pressure’) is evaluated before
or after CFVALU(‘Hole’).

Difference is time-step dependent.

Using CVH-P(CV300) as we did in our previous
example does not have this dependency

Numbering of CF Determines
Order of Evaluation

 User assigns a number to a Control Function

 CFs are evaluated in order of increasing number (be aware of various
states of CFs)

CF_ID 'Hole‘ 101 L-A-IFTE

User

assigned

number

Session Data and Control | Page 60

MELCOR Control Functions
Input Changes on Restart

 Change any CF and TF parameters
from the restart
—Allow addition of new CFs and TFs

—Easy to run variations of a failure criterion

—Run multiple scenarios that branch late in a
sequence

 Define input to include several failure
paths

 Run alternate sequences by restarting
from a point before failure, changing
break sizes, leak paths, or bounds/limits
to allow a different path

 No need to re-run a long pre-failure
calculation

 Continue calculation from last restart
dump
—Need to set ‘MEL_RESTARTFILE’ record in

environmental data appropriately

 e.g., MEL_RESTARTFILE ‘RUN1.RST' NCYCLE -
1

Session Data and Control | Page 61

MELCOR Control Functions
Input Changes During a MELCOR Run(2)

Change actual value of control function thru
READ (for REAL-valued) and L-READ (for
LOGICAL-valued) option during a MELCOR
run
—Requires a new file containing name of CF and new value

New value type must match type of CF (REAL or
LOGICAL)

New file name specified on “EXEC_CFEXFILE” record

—Can be used to simply turn-on or –off a valve without
stopping and restarting a calculation

—Both L-READ and READ control functions could be used
with SNAP on-the-fly simulations.

Session Data and Control | Page 62

Control Function Ranges

The range is an object that is
defined once in the database and
then can be referenced by other
control function arguments. The
range specifies an ordered list of
objects such a control volumes,
COR cells, materials, or
components

name type ndim Number
CF_RANGE CVRANGE CVOLUMES 2 30
CONSTRUCT 2
1 CVTYPE=‘PRIMARY’
2 DC

REMOVE 1
1 LowerPlenum

Define a Range (ASCII):

Define a Range (SNAP):

Session Data and Control | Page 63

Control Function Ranges

 A range can be referenced by
control functions and control
function arguments. The
hashtag (#) that precedes
range specified for the
volume in the CF argument
indicates a range of control
volumes rather than a single
volume.

CF_ID 'CVMass2' 1010 ADD

CF_SAI 1.0 0.00

CFVALR (INITIAL VALUE)

CF_ARG 1

1 CVH-MASS(#CVRANGE,’H2O-VAP’)

1.0 0.0

Reference a Range (ASCII):

You may need to

add the

CV_MASS

control function

argument to the

SNAP database.

Reference a Range (SNAP):

Session Data and Control | Page 64

Viewing a Control Function
Network in SNAP

• Create new view by right-clicking on

Views in navigator pane (View 5)

• Right click on Control Functions in

navigator pane

• Add to view previously created (View 5)

Exercise 2.5c
Add a Formula TYPE CF

Methane Gas Reaction:

1. Use CF_FORMULA to model CO2 mass generation rate
(kg/s)

2. Create a CF Network view from SNAP
1. Create a new view

2. Right-click on the CF navigator and add to this new view.

𝐂𝐇𝟒 + 𝟐 𝐎𝟐 → 𝐂𝐎𝟐 + 𝟐𝐇𝟐𝐎

Control function ‘o2mdotc’ gives the rate at
which oxygen is consumed in the fire
— If we know the O2 mass consumption rate [kg/sec], then the CO2 mass

generate rate [kg/sec], ‘co2mdotc’ is related since 2 moles of O2 yields
1 mole of CO2

— Thus, the formula would be ‘o2mdotc’*0.5*mwco2/mwo2

— Molecular weights of CO2 and O2 are provided in the input as CFs

— MWco2=cf-valu(‘mw_co2’),

— MWo2=cf-valu(‘mw_o2’)

Session Data and Control | Page 66

Exercise 2.6
Adding a Range and Vector CF

 Add a CVOLUME range, ‘o-vol’ to
include all of the outer CVs (o-
upper, o-middle, o-lower)

 Create an ‘ADD’ type CF that sums
all CO2 mass for that range of CVs.
Subtract the initial mass of CO2 in
the range of volumes to show
changes in mass.
— May be easiest to run MELGEN to get the

initial mass in the range

 Run MELGEN and plot the mass
over time and compare with the
integral CO2 source

 Create a Range ‘i+m vol’ to include
all i- and m- CVs and a Range
‘environment’ to include all
Environment CVs.
— Subtract initial mass

 Create ‘ADD’ type CFs that sums
all CO2 mass for those range.

 Perform a mass balance on CO2
mass
— Show CO2 mass in Range ‘o-vol’, Range

‘i+m vol’, Range ‘Environment’ and the
integrated CO2 mass, 'co2mass-int’
CF#535.

— What’s missing

End of Data and Control

