

Mupix: Monolithic sensors for the Mu3e experiment

Luigi Vigani University of Heidelberg Vertex 2022 25/10/2022

Mu3e: Physics Motivation

- Search for $\mu \rightarrow eee$
 - Standard Model: BR (μ → eee) < 10⁻⁵⁴
- New physics might enhance BR
- Current limit:
 - BR (μ → eee) < 10⁻¹² (SINDRUM, 1988)
- Aimed single-event sensitivity:
 - BR ($\mu \rightarrow eee$) < 2 · 10⁻¹⁵ (Phase 1)
 - BR (μ → eee) < 10⁻¹⁶ (Phase 2)
- Phase 2: PSI High Intensity Muon Beamline
- Phase 1 pre-production starting by end of the year

- Tracking electrons coming from muon decays at rest (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

- Tracking electrons coming from muon decays (~10⁸ Hz in Phase I)
- Magnetic field (1 T)

Complex cooling system

Experimental sensitivity

Invariant mass of signal decay, radiative decay and accidental background (Bhaba+Michel)

Momentum resolution crucial for detecting the peak at muon mass...

Material budget is key factor!

1 MeV resolution with 0.1% * X/X $_0$ per layer

Mu3e TDR at Nucl.Instrum.Meth.A 1014, 165679

9

Experimental sensitivity

Layer 0/1

Layer 0/1

Layer 1/2

Layer 1/2

MuPix sensors

- Monolithic HV-CMOS
 - Readout electronics embedded inside silicon bulk
 - In deep n-well
 - No need for hybridization
 - Can be thinned while maintaining high performance

MuPix sensors

- Monolithic HV-CMOS
 - Can be thinned while maintaining high performance
- 180 nm H18 technology derived from IBM
 - AMS until 2018
 - TSI afterwards
- Long R&D campaign
 - Mupix7 first fully monolithic
 - Mupix8 first large area
 - Mupix9 implemented slow control
 - Mupix10 with final size
 - Used for prototyping
 - Mupix11 final chip
 - Characterization ongoing

MuPix sensors: MuPix10/11

- ~2x2 cm² active area
- Chip periphery on bottom
- 250 mW/cm² power consumption

MuPix sensors: MuPix10/11

- ~2x2 cm² active area
- Chip periphery on bottom
- 250 mW/cm² power consumption
- Signal collected and amplified by pixels
- Analogue signal driven to periphery
- Each pixel mirrored in periphery

 Analogue signal digitized
- State machine collects hits from double columns
- Continuous read-out!
- 4 LVDS link
 - 3 per matrix (inner trackers)
 - 1 mulitplexed (outer layers)

MuPix sensors: design challenges

- 2 LVDS input lines as bus lines (common to 3/9 chips)
 - Clock and Serial input
 - 125 MHz clock
- 9 Data lines
 - 3x3 inner layers or 1x9 outer layers (multiplexed)
 - 1.25 Gbit/s
- 3 DC lines per ladder
 - VDD+GND sense Recover voltage drops
 - Temperature sense >Hardware interlock
- Slow control
 - ADC to read internal voltages and temperature
 - Readings sent out via data links
 - Extra temperature diode (analogue output)

MuPix sensors: design challenges

ntries

normalized

0.1

0.08

0.06

0.04

0.02

500

1000

- Hit-delay circuit
 - Hit recorded after a fixed delay from ToA
 - Easier time sorting procedure
 - Incidental effect: max value on ToT
- No active or passive components to "help" on flexes
- Proved to work until 1 MHz particle rate
 - Within specs

D. Immig

Experiment's validation

M3

- Prove performance requirements
 - Lab tests
 - Testbeams
- Operate with HDIs
- Operate in experimental conditions
 - Prototyping
 - Beam, target, magnet
 - Cosmic only
- Thermo-mechanical mockup
 - See backup

pixel size [µm ²] sensor size [mm ²] active area [mm ²] active area [mm ²] sensor thinned to thickness [µm] LVDS links maximum bandwidth [§] [Gbit/s] timestamp clock [MHz]	$ \begin{array}{r} 80 \times 80 \\ 20 \times 23 \\ 20 \times 20 \\ 400 \\ 50 \\ 3 + 1 \\ 3 \times 1.6 \\ \geq 50 \end{array} $
RMS of spatial resolution [µm] power consumption [mW/cm ²] time resolution per pixel [ns] efficiency at 20 Hz/pix noise [%] noise rate at 99% efficiency [Hz/pix]	$ \leq 30 \\ \leq 350 \\ \leq 20 \\ \geq 99 \\ \leq 20 $

110 V breakdown

Efficiency plateau well defined above 20 V

Mupix10 detailed studies

Testbeam at DESY

Alpide telescope

6 layers

5 µm resolution

EuDAQ + Corryvreckan

Mupix10 detailed studies

99.92%

99.85%

99,77%

99.69%

99.61%

99.53%

99.45%

99.38%

99.30%

98.82%

97.58%

96.33%

\$6.09%

93.84%

92.59%

91,35%

90.11%

88.85%

20

20

30

in-pixel xtrack [µm]

30

in-pixel xtrack [µm]

-60 V

0 V

-30

-20

In-pixel efficiency

100 μm thick

43 mV threshold

A.M. Gonzales

Tunable threshold for each pixel

Tuning with threshold scans:

Low threshold dispersion

Tuning by lowering threshold while keeping noise constant: maximize efficiency!

MuPix10 devices thinned at different thicknesses (by mechanical grinding only)

Thinning

Investigated thinning with AtlasPix3.1: with and without plasma etching

Aluminum HDis tested with Mupix10

Differential impedance matching (100 Ohms)

Tested with long single chip HDI

Length: 24 cm. Max length in experiment: 18 cm

DAQ and experimental concept

Prototype of vertex detector

Jun/Jul 2021 and 2022

50 µm-thin chips mounted on katpon foils

Connected to ladder-boards

Same shape as inner tracker, slightly larger radii

External connection with ribbon cables

DAQ and experimental concept

DAQ and experimental concept

DAQ and experimental concept

Operation in experimental conditions

Mag

DAQ and experimental concept

Inside Magnet

More pics at https://www.flickr.com/pho tos/nberger/albums/72157 719305216074/page1/

Operation in experimental conditions

Results

With beam (2021)

Layer 0-1 correlation!

With cosmics (2022)

More analysis ongoing

Conclusions

- Mu3e is a CLFV experiment which uses HV-MAPS to track electrons and positrons from muon decays
 - High rates
 - Low energy
- Tight experimental constraints on pixels \rightarrow HV-CMOS!
- MuPix development at the forefront of HV-CMOS R&D
- MuPix10 satisfies most of experimental requirements
- Prototype of vertex detector successful
- MuPix11 testing ongoing
- Pre-production of Mu3e starting by end of the year

Backup

Mupix11 results (preliminary)

Single pixel read-out: in-cell

Single pixel read-out: periphery

Comparator in digital cell

Records Time-of-Arrival (ToA)

Records time of falling edge

Time-over-Threshold (ToT) computed

2 threshold mode:

- hit flag raised with high threshold
- ToA recorded with low threshold
- Falling edge on high threshold Decreases time-walk

Backup: crosstalk

Cross-talk

Multiple metal layers (TSI specific) used to minimize inter-line capacitances. Cross-talk probability < 1.5%

Neighbouring pixels are routed on different lines: cross talk distinguishable from charge sharing

Mupix10 detailed studies

Large threshold -> bias towards delta rays

Operation in experimental conditions

Backup: chip picking

Backup: thinning issue

Atomic force microscopy on backside

Thermo-mechanical stability

Silicon heater prototype

Reproduction of inner tracker with same materials and connections

Chips are just passive silicon heaters

Thermo-mechanical stability

Silicon heater prototype

Test stand with Helium cooling system

Thermo-mechanical stability

- Temperature difference linearly depending on heat dissipation
- Expected ΔT < 70 K for 350 mW/cm² (conservative limit)
- Cooling concept works
- More detailed studies to come

Silicon heater prototype

Temperature to power relation for Layer 0 Ladder 1

52

Thermo-mechanical stability

0

2

Ladder ID

5

0

2

A w

5 6

0

Ó

5

5

nominal - 215 mW/cm²

0

1

2

Ladder ID

Ó

0

1

2

tadder ID

0

2

2 3

Chip ID

Chip ID

inverted - 215 mW/cm²

Comparison of nominal and inverted flow for Layer 1 Comparison of nominal and inverted flow for Layer 0

Silicon heater prototype

Production of inner layers

Heidelberg/PSI

Quick demo: https://youtu.be/0SYqHSbH3U4

Production of outer layers

Oxford/Bristol/Liverpool

Single chip testing

Probe card for single chip: one Mupix layed inside the socket, the knob presses it against the needled. The same card can be used in probe stations with different needles.