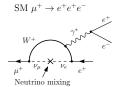


Track reconstruction for the Mu3e experiment

DPG Dresden


T 127.5 2023-03-23 @ WIL/C129 15:50-16:05

Alexandr Kozlinskiy (JGU Mainz, Institut für Kernphysik)

Mu3e Experiment

Search for charged Lepton Flavor Violation

- Through a decay $\mu^+ \to e^+ e^+ e^-$
- Allowed in the Standard Model but not observable (Br $< 10^{-54}$)

• Any observation will point to New Physics

Current experimental status:

- SINDRUM (1988) Nucl. Phys. B299(1988)1
- Br $<10^{-12}$ at 90% c.l

Mu3e aims for sensitivity of $2 \cdot 10^{-15}$ (Phase 1)

- Under construction at Paul Scherrer Institute using existing beam line ($\pi E5$, $10^8 \mu/s$)
- Further improve to 10^{-16} (Phase 2) with new beam line (HIMB)

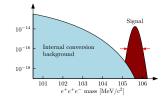
Signal

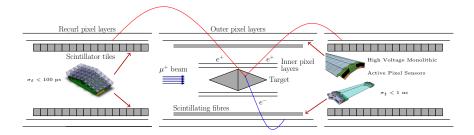
Signal $(\mu \rightarrow 3e)$:

- Decay at rest to two positrons and one electron
 - Common vertex & time
 - Invariant mass: $M_{e^+e^+e^-} = m_{\mu}$
 - Total (missing) momentum: $\sum \mathbf{p}_e = 0$
- Require good momentum, vertex and time resolution
- $\bullet\,$ Tracks with maximum momentum of 53 MeV/c
 - Large Multiple Scattering (MS) \rightarrow minimize material budget

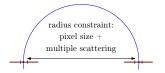
Background sources

1st - random combinations:

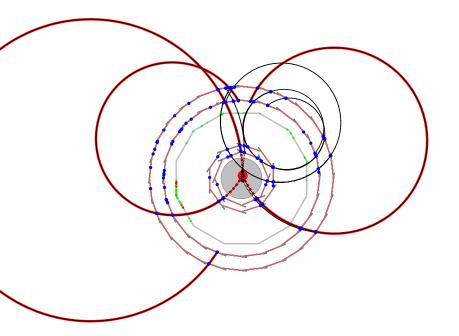

- Overlap of several $\mu^+ \rightarrow e^+ + 2\nu$ and/or e^{\pm} scattering
- Contribution from *fake* tracks
- Signature: not same vertex, time, etc.


2nd - internal conversion:

- $\mu^+ \rightarrow e^+ e^+ e^- + 2\nu$
- Signature: missing momentum & energy

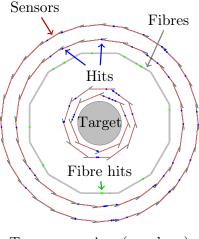


Detector - recurl stations



- Muons stop on target and decay at rest
- 4 pixel layers provide hits for track reconstruction
- Particles bend back in magnetic field and measured again, improving momentum resolution

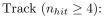
• Two recurl stations to improve acceptance for such particles


Track reconstruction

Event

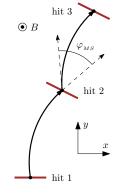
 $10^8 \mu/{\rm s}$ stop and decay on target

- Hit rate of 10⁹ per second + fibre and & tile hits
- Continuous readout: use time slices of 64 ns as events
- 10-20 hits per layer per event $\rightarrow O(10^3)$ track fits per event $\rightarrow 10^{10}$ track fits each second
- Need fast and efficient track reconstruction

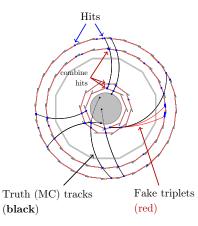


Transverse view (xy-plane)

Triplet fit

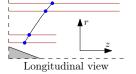

Track in magnetic field:

- Described by helical trajectory
- Minimum 3 hits to reconstruct track (triplet)
- Multiple Scattering (MS) in middle point
- One parameter: 3D curvature
 - \rightarrow fit: minimize MS


- Sequence of triplets
- Minimize combined χ²
 → weighted average of
 individual triplets

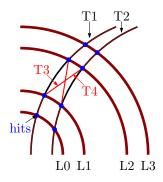
NIM A844(2017)135

Reconstruction: from triplets to short tracks



Triplet (3 hits) seeds:

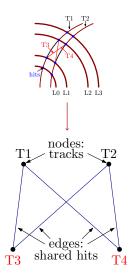
- Combine hits from first 3 layers
- Fake rate $\approx O(1)$ (1 per truth track)


Short (4 hits) tracks:

- Combination of triplet and hit in outer layer
- Fake rate $\approx O(0.1)$

Reconstruction: resolve algorithm

- Some particles can recurl several times (10 and more) in central station
- These particles produce a large number of closely packed hits that result in a large number of reconstructed short tracks (**true** and **fake** combinations)
- Need a way to disentangle (resolve) these groups of tracks, otherwise these events/tracks would be unusable

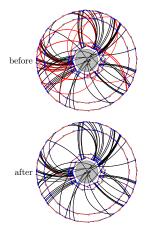


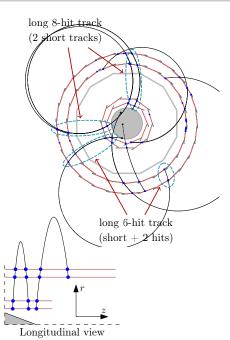
 $\begin{array}{l} {\bf T1} \mbox{ - first recurl of particle} \\ {\bf T2} \mbox{ - second recurl of same} \\ {\rm particle} \end{array}$

T3/T4 - are fake tracks

Reconstruction: resolve algorithm

- The idea is to create graph of connected tracks,
- where each node is a track and edges connect tracks that share hits (intersecting tracks),
- and find largest subset of disconnected nodes (tracks) \rightarrow standard graph theory exercise

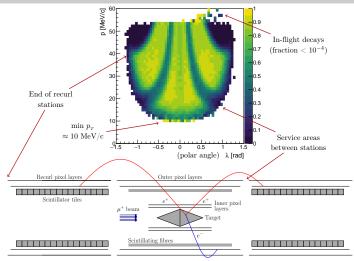



Reconstruction: resolve algorithm

- Exponentially hard algorithm, partially due to unknown number true tracks
- High granularity and efficiency, low noise \rightarrow estimate number of tracks as $N_{hit}/4$

Short track performance:

- Factor 5 reduction in fake rate (from 0.16 to 0.03)
- No efficiency loss (select several sets within distance to minimum $\chi^2)$


Long 6-hit tracks:

• Combine short track with pair of hits in outer layers

Long 8-hit tracks:

- Combine 2 short tracks with opposite curvature
- Fake rate $\approx O(0.1) O(1)$ combination of short tracks from wrong turns
- Direction (charge) ambiguity \rightarrow reconstruct recurl chain

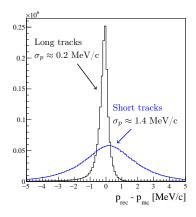
Acceptance and efficiency

- Acceptance: $\epsilon_{acc} \approx 70\%$ (1 hit per layer, min p_{T} , etc.)
- Short tracks: $\varepsilon_{\scriptscriptstyle short} \approx 90\% \cdot \varepsilon_{\scriptscriptstyle acc}~(\chi^2~{\rm cut})$
- Long tracks: $\varepsilon_{\scriptscriptstyle long}\approx 70\%\cdot\varepsilon_{\scriptscriptstyle short}$ (gaps, etc.) \to analysis

Summary

- Efficient and fast tracks reconstruction is necessary to reach design sensitivity of $2 \cdot 10^{-15}$
- Track reconstruction handles high occupancy and large MS by utilizing knowledge of high efficiency and low noise of the detector, allowing to reconstruct above 90% of particles within detector acceptance with about 2.5% of the fake tracks (at Phase 1)
- For more information see TDR NIMA **1014** (2021), 165679

Backup


Momentum resolution

Short tracks (4 hits)

- $\langle \sigma_p \rangle \approx 1.4 \ {\rm MeV/c}$
- Depends linearly on momentum

Long tracks (6 and 8 hits)

- $\langle \sigma_p \rangle \approx 0.2 \text{ MeV/c} (\min 100 \text{ KeV/c})$
 - (×10 better than short tracks)
- Allows to separate signal from internal conversion decays

