

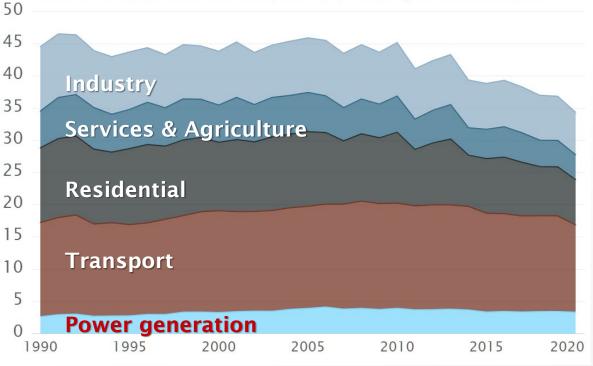
Evangelos Panos, Tom Kober, Kannan Ramachandran, Stefan Hirschberg Laboratory for Energy Systems Analysis

Switzerland's national emissions mitigation pathways: towards net-zero CO2 emissions in 2050

ECEMP 2022 Conference, 5-7 October 2022, Online

CO2 emissions in Switzerland: -23% in 2020 from 1990

CO₂ emissions by sector (Mt/yr.)


from fuel combustion and industrial processes, excluding international aviation

Challenges in the Swiss transition $\frac{1}{2}$ to net-zero CO₂ emissions in 2050:

- Limited renewable sources
- Seasonal and daily balancing

CO2 storage

- Population increase
- Energy security

Milestones in the Swiss energy & climate policy

CO2 TAX 2010	Emissions Trading Straight Ahead 11 2011	2015	INCREASING ENERGY EFFORENCY 3 MITTROBUST TO F ENERGY 3 MITTROBUST TO F ENERGY 3 MITTROBUST TO F ENERGY 3 MITTROBUST TO F ENERGY 3 MITTROBUST TO F ENERGY 3 MITTROBUST TO F ENERGY 3 MITTROBUST TO F ENERGY TO F EN	2019-2020	Abstimmung C02-Gesetz 13. Juni 2021
Introduction of the CO2 levy for heating fuels: 36 CHF/tCO2 (Jan 2010) (in 2020, 120 CHF/tCO2)	Negotiations for linking Swiss and EU ETS The linking entered into force in Jan 2020	Switzerland is the first country submitting its climate action plan ahead of Paris Agreement (<i>Feb 2015</i>)	 New Energy Act comes into force: 1. Increase energy efficiency 2. Increase use of renewables 3. Withdrawal from nuclear (Jan 2018) 	The Swiss Federal Council commits to Net-Zero emissions in 2050 (<i>Sep 2019</i>) The Swiss parliament votes the revision of the CO2 Law (<i>Sep 2020</i>)	The Swiss Federal Council adopts the long term climate strategy (<i>Jan 2021</i>) The Swiss voters rejected the revision of the CO ₂ Law (<i>Jun 2021</i>)

Research project SCCER JASM to assess the Swiss energy transition

The Swiss Competence Centres for Energy Research (SCCERs) programme:

 250 MCHF for 2013-2020 to 8 challenges of transition (biomass, storage, industry, buildings, transport, electricity, grids, society)
 SCCER JASM (~5.6 MCHF) is a cross-SCCER joint activity assessing net-zero pathways

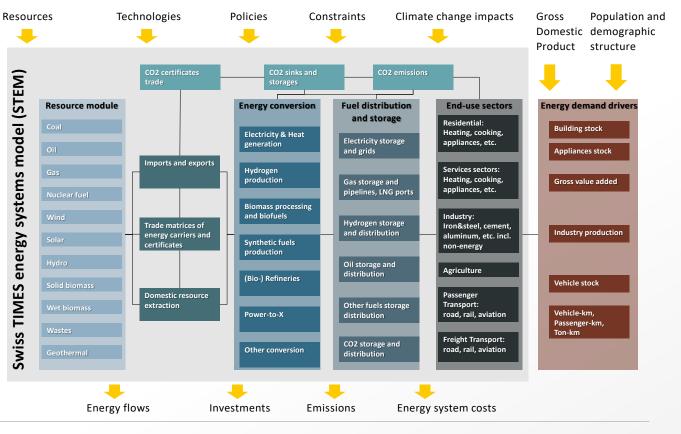
Schweizerische Eidgenossenschaft

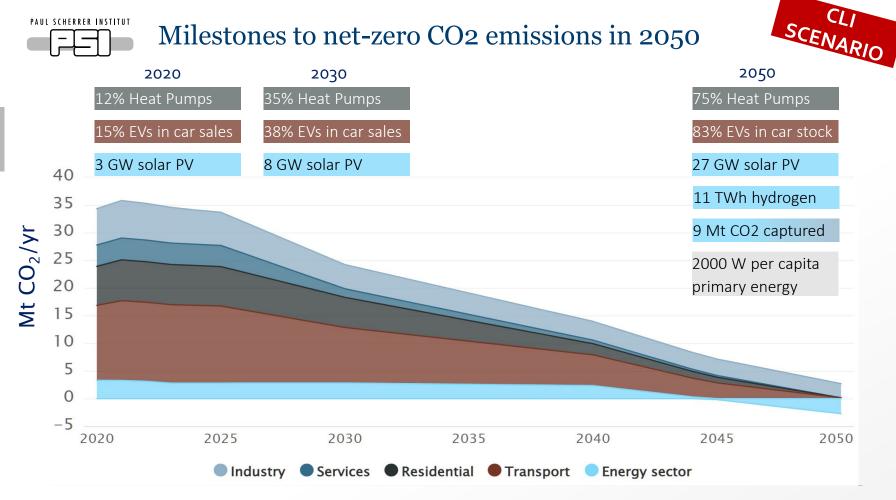
Confédération suisse

Swiss Confederation

Confederazione Svizzera Confederaziun svizra

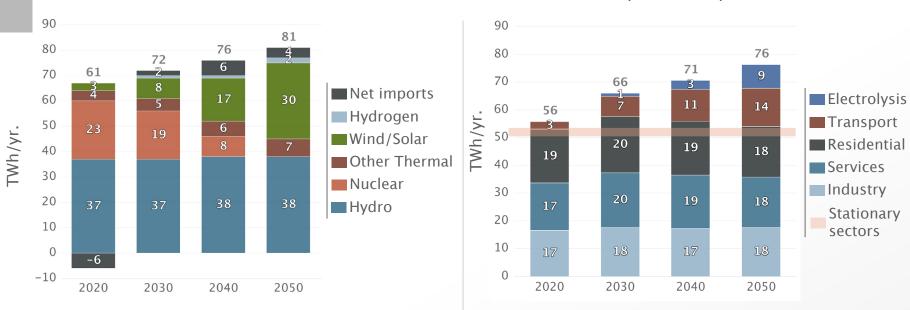
Scenarios*	Energy trade availability	Renewables and CCS deployment	Society and lifestyles	Policies
CLI: core scenario	good	cost optimal	cost optimal	technology and building standards
ANTI: fragmented solutions	moderate	moderate	fragmentation	local markets
SECUR: energy security	low	cost optimal	pay for security	zero net imports
		. h (


*a subset of the STEM JASM scenarios is shown here, focusing on those discussed in this presentation


Panos, E., Kober, T, Kannan, R., Hirschberg, S. (2021). Long Term Energy System Transformation Pathways – Integrated Scenario Analysis with STEM. https://doi.org/10.3929/ethz-b-000509023 SCCER JASM website https://doi.org/10.3929/ethz-b-000509023 Page 4

Swiss TIMES energy systems model (STEM)

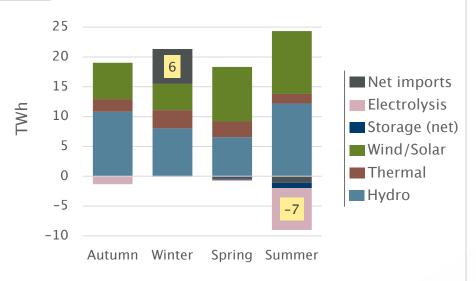
- Entire energy system
- Transition pathways
- Long term horizon
- 288 hourly time steps
 - Seasons
 - Days
- Age structure of assets
- Unit commitment
- Ancillary markets
- Grid topology
- Endogenous RES variability
- Endogenous load profiles
- Demand side management



Electricity supply

Electricity becomes more weather dependent SCENARIO while new demand comes from transport and electrolysis

Electricity demand by sector


Electric cars: 8 TWh, 6 GWp, for charging in 2050

A net-zero energy system <u>calls for flexibility</u> from all actors & sectors, and at different time scales

Seasonal imbalances in electricity in 2050

Deployment of flexibility options in 2050

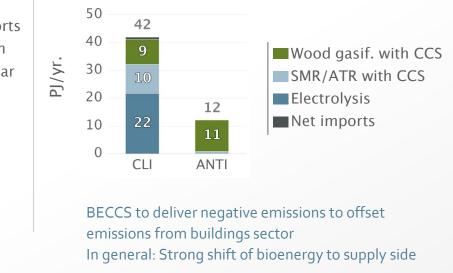
Flexibility option	Deployment (capacity)
Pump storage	4.5 GW ,520 GWh
Stationary batteries	2.1 GW ,11.5 GWh
Thermal storage	5.8 GW , 35 GWh
Thermal storage (seasonal)	1.4 TWh
H2 storage (seasonal)	1.6 TWh
Vehicle-to-Grid (V2G)	output 0.5 TWh (from 13% of the electric cars)
FCR+ reserve demand	+ 45% from 2020 (624 MW)
Electricity shifts (DSM) in industry, services, residential	10% of demand (5.5 TWh)

CC(US) needs to be developed and links to international CO₂ storage sites need to be secured

Carbon capture, utilisation, and storage in 2050

0.2 Biofuel production	production: 3.2 Mt CO2	
 3 H₂ production biomass 2 	Total Captured: 8.6 Mt CO2 Captured from industry : 2.7 Mt CO2	CO2 exported/traded 6.3 Mt CO2
0.8 Electr. prod. biomass11.2Electr. prod. wastes	Captured from H2 production : 2.4 Mt CO2 Captured from biofuels production: 0.2 Mt CO2	CO2 domestically sequestrated: 2.1 Mt CO2 CO2 Utilised in fuel synthesis: 0.2 Mt CO2

What if renewable energy uptake is slow?

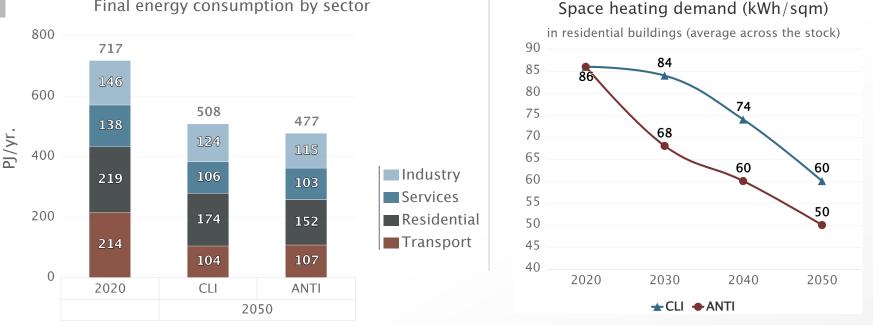

Electricity supply gap of 11 TWh in 2050 hinders decarbonisation of the end-uses

90 81 80 70 Net imports 61 70 Hydrogen 60 30 22 Wind/Solar TWh/yr. 50 23 Thermal 10 40 Nuclear 30 Hydro 20 38 37 38 10 0 -6 -102020 CLI ANTI 2050

Electricity supply

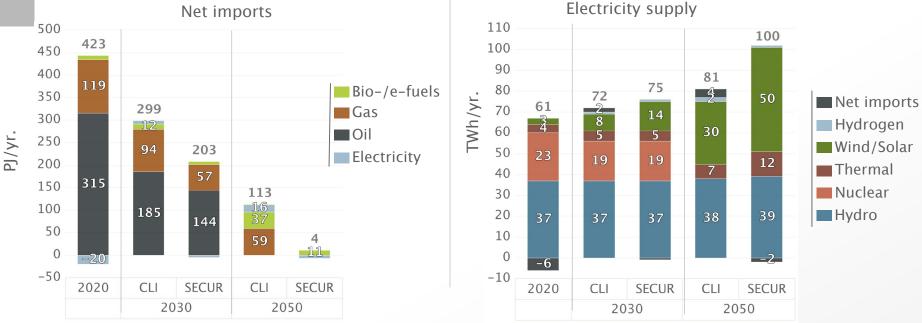
Domestic H₂ production is limited and H₂ use is prioritised to industry and transport

Hydrogen supply in 2050



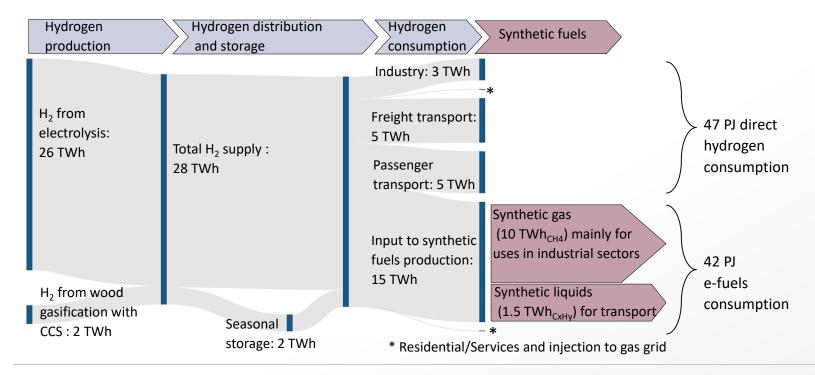
Extensive energy conservation measures

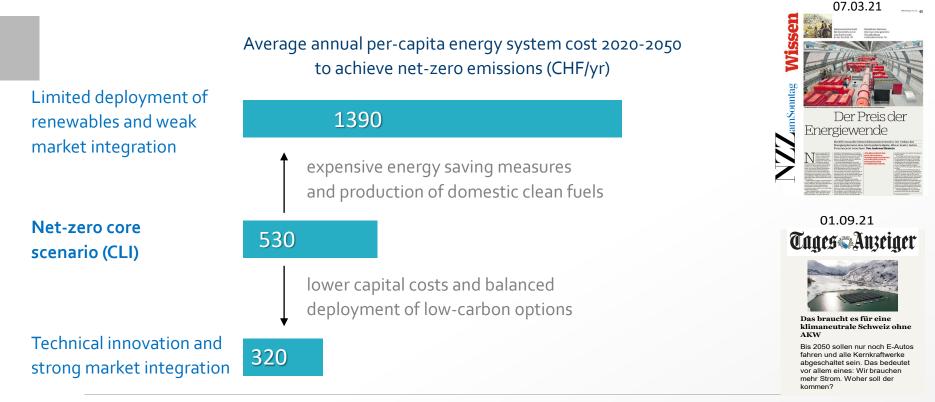
Building renovations brought forward


Final energy consumption by sector

Import independence of fossil fuels is possible but bio/e-fuels imports are needed

Electricity supply increases by accelerating and fully exploiting solar, wind & geothermal potentials


Net imports



Can achieve net-zero and be self-sufficient?

Direct H₂ consumption and e-fuels substitute in SECUR >90% of the CLI imports in 2050

"Price Tags" of the Swiss transition to net-zero in 2050

PAUL SCHERRER INSTITUT

compared to "Baseline" that achieves -40% CO2 emissions reductions in 2050 from 1990

- Achieving net-zero is technically feasible, under:
 - coordinated sectoral policies accounting for systemic interdependencies
 - accelerated deployment of domestic renewable resources : doubling RES capacity every 10 years
 - higher energy efficiency in buildings : *saving 7 11 TWh of heat per year, keep stable electricity demand*
 - bioenergy remaining potential to energy supply with CCS: + 32 PJ/yr., or 2/3 of the total consumption
- Net-zero systems require flexibility options provided by all actors
 - thermal storage of equal importance with electricity storage, for demand side management
- Hydrogen makes achievable both net-zero and import independency but it comes at a cost
 - Large PtX investment needs : (22 BCHF CAPEX or 1/3 of the energy-system-wide CAPEX in 2040/50)
 - But, without H₂ the net-zero target is not feasible for Switzerland
- When analysing ambitious energy and climate targets at national scales, we need to:
 - to work further to improve the "realism" of the modelled pathways (not only technical, but also societal)
 - to increase modelling details to identify local constraints and best-fit options
 - develop participatory processes in scenario development and communication

Wir schaffen Wissen – heute für morgen

Dr Evangelos Panos Energy Economics Group Laboratory for Energy Systems Analysis Paul Scherrer Institute <u>evangelos.panos@psi.ch</u>