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Abstract

This project seeked to evaluate the validity of continuous phase step-
ping for acquiring images with Talbot-Lau interferometry. Differential
phase contrast computed tomography with continuous phase stepping
yielded comparable results to discrete phase stepping. An imaging
pipeline was developed that could acquire data over a desired period
for continuous stepping. The periodicity of the phase stepping has
been evaluated over the whole piezo range to calibrate further mea-
surements.
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Chapter 1

Introduction

Ever since X-rays were discovered in the late 19th Century, they have been
used in a wide variety of ways. One area in which they have proved espe-
cially useful is in projection imaging through the volume of materials due
to their highly penetrative capabilities. X-rays are a type of electromagnetic
radiation that have wavelengths ranging from 0.01 nm to 10 nm [1][Ch. 7].
X-rays can penetrate through biological tissue, which makes them useful for
medical imaging and radiotherapy.

1.1 X-ray generation, interactions with matter and the
simplest X-ray images

The oldest, but still used, method for X-ray generation is the X-ray tube;
today, these are the primarily used radiation sources for medical imaging,
due to them being relatively inexpensive. A negatively charged filament,
or cathode, is heated in order to induce emission of electrons. An anode,
typically made of tungsten, is given a positive charge. The voltage differ-
ence between the anode and cathode accelerates the electrons towards the
anode. As the electrons strike the anode, X-ray generation occurs via two
mechanisms: characteristic radiation and Bremmstrahlung [1][Ch. 7]. Char-
acteristic radiation occurs when an emitted electron knocks an electron from
an inner shell of an atom in the anode out of its orbit. An outer shell elec-
tron moves down energy levels to fill this hole, and in so doing releases a
photon, the energy of which is specific to the differences in energy levels of
the anode element. During Bremmstrahlung, an electron emitted from the
cathode will decelerate and its trajectory will be altered as it passes close to
an atom in the anode. This causes the emission of photons, the energy of
which is a continuous spectrum [1][Ch. 7].
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1. Introduction

Figure 1.1: On the left, a schematic of an X-ray tube. On the right, a historic vacuum X-ray

tube. Images taken from [1][Ch. 7].

When X-rays coming out of a tube travel through matter, they undergo a
phase shift and a decrease in intensity - or attenuation - due to the material’s
refractive index. For X-ray photon energies, the complex index of refraction
for a medium can be expressed as [1][Ch. 9]

n = 1 � d + ib (1.1)

d contains the phase information and b contains the attenuation information.
The degree of attenuation depends on the attenuation coefficient of materi-
als in the beam path, which is medium-dependent, as well as the distance
traveled through a given sample. The mathematical formula that governs
this drop in intensity is the Beer-Lambert Law [1][Ch. 7]:

I =
Z

Emax

0
Io(E)e�

R
µ(x,E) dx

dE (1.2)

In Eq. 1.2, Io is the initial intensity of each photon energy, x is the position in
the sample, µ is the attenuation coefficient (which is photon energy depen-
dent) at x and E is the photon energy. This equation involves an integration
over photon energy when the illumination is polychromatic.

X-rays are useful for imaging, owing to their high penetrability due to their
high frequencies. In projection, or absorption images, a film or detector
array is placed behind the sample. Before imaging a sample, a flat-field
measurement is necessary. This is a map of the X-ray intensities that strike
the detector with no sample present. A projection image is produced by
comparing the intensity recorded when a sample is present with the flat-
field measurement. The intensity of the sample image is given by the Beer-
Lambert Law (Eq. 1.2), with Io being the flat-field intensity. This method of
imaging is called radiography, and is most commonly used in order to image
patients’ bones. Images of bones achieve good contrast due to the fact that
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1.1. X-ray generation, interactions with matter and the simplest X-ray images

bones and soft tissue have significantly different attenuation coefficients; for
example, at a photon energy of 30 keV, bone’s attenuation coefficient is 2.556
cm

�1 [2] and soft tissue’s (ICRU-44) attenuation coefficient is 0.402 cm
�1

[2]. A drawback of this imaging modality is that it does not produce good
contrast for materials with attenuation coefficients that are close in value;
breast tissue’s attenuation coefficient is 0.347 cm

�1 [2], which is comparable
to ICRU-44. This makes absorption imaging unsuited to applications that
require imaging of different types of soft tissues.

Figure 1.2: On the left, radiographic images of an arm with fractures. On the right, metal rods

used to fix the fractures. Images taken from [1][Ch. 7].

In order to image different types of soft tissue, the phase shift can be ex-
ploited. d for X-rays is typically higher than b by a factor of 1000 [1][Ch. 9].
In theory, it should be possible to get from d a signal that is 1000x stronger
than an attenuation-based image. One approach that enables the retrieval of
phase information is Talbot-Lau Interferometry.
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1. Introduction

1.2 Talbot-Lau Interferometry (TLI)

Figure 1.3: A schematic of a Talbot-Lau interferometer. The setup used for this report had the

object be positioned downstream of G1, rather than upstream as shown here. Image taken from

[1][Ch. 9].

Talbot-Lau interferometry relies on the interference properties of electromag-
netic waves. G0 is an absorption grating i.e. its bars strongly attenuate light
incident on them. G1 is a phase grating i.e. its bars cause a phase shift
in light that passes through them. This allows constructive or destructive
interference to occur between light rays that pass between a slit or bar of
G1. Due to the Talbot effect, a Talbot carpet is formed downstream of G1.
At periodic distance intervals, an interference profile with a clearly distin-
guishable black-and-white pattern is formed. G2 is placed at one of these
distance intervals.

Figure 1.4: A simulated Talbot carpet. The beam moves from left to right. Image taken from

[1][Ch. 9].

Akin to how in Young’s experiment a pinhole was used to produce coher-
ent light, the grating G0 serves as an array of pinholes; coherent light is
required in order to produce the interference effects that are used to get TLI
readings. Using a grating rather than a pinhole allows a greater photon
flux to progress towards the sample. This produces a stronger signal than a
pinhole and allows the X-ray source to be used more efficiently.

G2 is called the analyzer grating and like G0 is an absorption grating. This
is present immediately upstream of the detector. The detector’s pixels are
larger than the width of the interference pattern’s period, which is why G2
is used to resolve the pattern via a process called phase stepping.
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1.2. Talbot-Lau Interferometry (TLI)

Figure 1.5: An example of a phase stepping curve with a fitted sinusoid. Image taken from

[1][Ch. 9].

As shown in Fig. 1.4, the intensity readings for each phase step can be fitted
to a sinusoidal function. This sinusoid is applied to each detector pixel in a
process called signal retrieval and is modeled by:

I f it(x) = Imeasured


0.5Vmeasured ⇥ cos

✓
2p

period
x + j

◆
+ 0.5

�
(1.3)

x in Eq. 1.3 denotes the phase steps, V denotes the visibility (covered in Eq.
1.6) and j denotes the phase. The fitted sinusoid has three useful properties:
an offset, amplitude and phase. In order to produce useful TLI data, a phase
stepped flat-field measurement is required. Using the sinusoidal fits for the
sample and flat-field measurements, three values can be obtained as the
result of TLI: attenuation, phase and dark field. Attenuation is essentially
a comparison of the mean or offset values of the sinusoidal curves, and is
given by [1][Ch. 9]:

µ = �ln

✓
Ân

i=1 Ri

Ân

i=1 Oi

◆
(1.4)

In Eq. 1.4, R denotes the fit for the phase stepping measurements of the
flat-field - or reference - and O denotes the fit for the measurements of the
sample - or object. n is the total number of phase steps. The phase can be
found by calculating the phase shift of the sample measurement relative to
the flat field:
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1. Introduction

jshi f t = jR � jO (1.5)

The dark field signal (D) is a function of the visibilities of the flat-field VR

and of the sample object VO [1][Ch. 9]:

VR =
max(R)� min(R)
max(R) + min(R)

(1.6)

D = �ln

✓
VR

VO

◆
(1.7)

Attenuation images can help distinguish attenuating macroscopic features
from a background but do not achieve high contrast between fine details.
Phase contrast images contain more information on high spatial frequency
details such as edges [1][Ch. 9]. Dark field signals are sensitive to scattering
in the sample; such images can contain fine details that attenuation cannot.

1.3 Computed Tomography (CT)

A drawback of projection images is that the recorded intensity at each pixel
represents the combined effects of all the various attenuation coefficients
along the beam path i.e. a line integral of the attenuation coefficients which
is given by the Beer-Lambert Law (Eq. 1.2). In order to calculate the coef-
ficients, and to therefore find the spatial make up of a sample, computed
tomography can be used. Unlike projection images (Fig. 1.5), CT can find
spatially specific information across three-dimensional slices. CT involves
taking projection images from a range of angles in order to find out how
different substances in a sample are spatially arranged. An example of an
instance in which this method is useful is taking images of lungs, which
may be obstructed by ribs. If a projection image was taken, the attenuation
by the ribs would be too strong and no soft lung tissue would be visible. By
performing a tomographic image, one could recover the tissues contained
within a slice of interest. Computed tomography relies on a few key princi-
ples, the first of which is the Radon Transform [1][Ch. 8]:

p(q, s) =
Z Z •

�•
f (x, y)d(xcosq + ysinq � s)dxdy (1.8)

The Radon Transform shows that any integrable function of interest f (x, y)
can be represented by line integrals over that function’s domain. In Eq. , the
line is given by s = xcosq + ysinq. The Dirac delta function selects only those
x and y values that lie on the respective line. By going from q = [0, p] and
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1.3. Computed Tomography (CT)

s = (�•, •), the complete set of line integrals can be retrieved uniquely. In
the context of CT imaging, Radon transforms are performed by measuring
the projection of the sample at different angles (q) and stacking these with
respect to the angle. The result of this is called a sinogram, as the curves
look sinusoidal. The Radon Transform is the process of converting a function
f (x, y) to its line integral values with respect to angle. Since measurements
taken downstream of the sample are projections, the intensities of which
depend on the attenuation coefficients present in the beam path, f (x, y) can
be thought of as a spatial map of the sample’s attenuation coefficients. To
find this is the goal of CT.

Figure 1.6: The sample being measured (left) and the sinogram resulting from its Radon trans-

form (right). Image taken from [1][Ch. 8].

The next important concept for CT is the Fourier Slice Theorem. According
to the Fourier Slice Theorem, if the 2D Fourier transform of f along a straight
line passing through the origin along an angle q is taken, one will retrieve
the Fourier transform of the projection of the sample taken at the angle q. In
effect, it is possible to find the Fourier transform of the unknown function
f (x, y) by sampling the Radon transform (the projections) in Fourier space
along lines of different angles.
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1. Introduction

Figure 1.7: An illustration of the Fourier Slice Theorem, taken from [1][Ch. 8].

If we know the Radon transform of f (x, y), which is physically obtained as
a sinogram, we can find f . This is done by multiplying the Fourier trans-
form of Eq. 1.8 with a filter in the Fourier space, and then performing an
inverse Fast Fourier Transform on the multiplication’s result. One such filter
is |x| where x is the spatial frequency. Sampling radially results in a greater
density of samples in the near-zero frequencies. Less higher frequency in-
formation results in a lower resolution. Using this filter ensures that high
frequency information is represented in the final result. Other filters may
also be used; at high frequencies data is noisier, so there may be the need
for a filter that tapers off at high frequencies [1][Ch. 8].

f (x, y) =
Z p

0

Z •

�•
P(x, q)|x|e2pixs

dxdq (1.9)

The process of going from the Fourier transform (P(x, q)) of the sample
projections to a spatial map f (x, y) of the sample’s attenuation coefficients
is known as Filtered Backpropagation (Eq. 1.9). A special type of filter
known as a Hilbert filter [1][Ch. 9] can be used to find the d, or phase shift,
of different media in a sample.
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1.3. Computed Tomography (CT)

For each projection angle, signal retrieval can be performed. The signal
retrieved data, after flat field correction, can then be reconstructed through
CT in order to yield three tomographic images; these are spatial maps of the
attenuation, phase shift and dark field.
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1. Introduction

1.4 Aim of Thesis

The goal of this semester project was to show that phase stepping measure-
ments can be obtained using continuous movement of the phase stepping
grating. A working acquisition script would be developed in order to im-
plement this on a Talbot-Lau interferometer prototype operated by Prof.
Stampanoni’s group at the Paul Scherrer Institute. Motion profiles suited
to continuous movement would need to be implemented and an analysis
pipeline to handle signal retrieval would also be developed. Data would
be reconstructed and compared to discrete (stop-and-shoot) phase stepping.
An imaging protocol to acquire data for continuous phase stepping of a
desired period would be developed. With a view to future fast stepping ap-
plications, the periodicity of phase stepping curves would be evaluated for
different G0 positions and types of phase stepping.
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Chapter 2

Setup

Prof. Stampanoni’s group at the Paul Scherrer Institute operates Talbot-Lau
interferometer prototypes. All experiments were performed on a modular
setup which allowed for the efficient alteration of parts and geometries.

Figure 2.1: A picture of the setup used for the experiments

2.1 Components

X-ray source: The radiation source used was the X-ray tube Comet MXR-
225HP/11 with a conical beam. An aluminum plate was used as a high pass
filter for the light.

Gratings: As per Section 1.2, three gratings - named G0, G1 and G2 - were
used in order to perform Talbot-Lau interferometry. G0 served as the absorp-
tion grating in order to create an array of spatially coherent light sources and
was placed directly downstream of the tube. G0’s other key function was
to be translated perpendicular to the beam path to achieve phase stepping.
G1 was a phase grating placed immediately upstream of the sample and its
function was to produce a Talbot carpet. Like G0, G2 was an absorption
grating. It was placed immediately upstream of the detector and served as
the analyzer grating. All gratings had a duty cycle of 0.5.
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2. Setup

Phase stepping: Translation of G0 perpendicular to the beam path for phase
stepping was executed by a P-841.60 piezo motor and an E-709 piezo driver
manufactured by Physik Instrumente. The driver was instructed using Python;
the modules used were GCSDevice [3] and pitools [3] from the pipython [3]
library.

Sample: The sample was placed between G1 and G2. It was placed on a
stage which could be vertically translated as well as rotated. Rotation was
used to acquire tomographies.

Detector: A Dectris Titlis T02402 75-0 detector was used to acquire images.
This was a 2D array of detector pixels. Cadmium telluride crystals were
used.

2.2 Piezo driver modes for continuous phase stepping

To achieve continuous phase stepping, modes were used that would move
G0 in a linear fashion. These modes are called wavetables, and are predeter-
mined trajectories that the piezo driver would always execute to completion.
During the execution of the linear wavetables, G0 would first accelerate, then
move linearly and then decelerate.

The wavetable executed can be divided into some number of table points;
this number was 2000 for the wavetables used in this report. For each point,
the driver would refresh depending on a servo update time in order to en-
sure that the piezo motor’s position was where it should be. This update
time was 0.1 ms [4].

Figure 2.2: A general plot of the linear wavetables used for continuous phase stepping. The

y-axis represents the displacement of the piezo motor from its rest position, and the x-axis

represents time. This figure was taken from the instruction manual for the E-709 piezo driver by

Physik Instrumente [4].
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2.3. Signal retrieval

Wavetable number Amplitude [µm] Tablepoints
1 4.51 2000
2 20 2000

Table 2.1: Details of wavetables used [4].

2.3 Signal retrieval

The signal retrieval would fit a sinusoidal function - given by Eq. 1.3 - to the
phase stepping data. For each pixel, the recorded intensities corresponding
to each phase step would be signal retrieved. The period calculation would
involve testing different test period values within a bracketing interval; the
period that yielded the least squares difference of the sinusoid compared to
the data would be the period returned. After flat-field and sample measure-
ments were acquired with a known period in mind, a sinusoidal function
with this period would be fitted to the data prior to flat-field correction.

2.4 Rotational motor for CT

The motor that rotated the sample for the purpose of varying angular pro-
jection images was limited in that it could only execute a constant rotational
speed of integer RPMs. In order to perform tomographic images at slower
speeds, the motor was controlled such that it took small steps at a high
frequency.
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Chapter 3

Computed Tomography for Discrete
and Continuous Phase Stepping

To show that continuous phase stepping is feasible, it was necessary to ac-
quire images with discrete and continuous phase stepping. These images
would then be compared through a quantitative metric: the contrast-to-noise
ratio (CNR, described in Section 3.3). The benefit of performing continuous
phase stepping would be reduced acquisition times compared to discrete
stepping. Whereas for the former where G0 is constantly moving, in the lat-
ter image acquisition must be halted while G0 is stepped to its next position.

In order to compare discrete and continuous phase stepping, four tomo-
graphic image sets of a phantom were acquired and then compared via their
CNRs. For each image acquired, two flats were acquired for the purposes
of flat-field correction. A flat-field measurement would be taken prior to
and after the main sample measurement. The two flat-field measurements
would then be averaged and signal retrieved. Performing this correction en-
sured that the final image would be free from noise such as from the phase
drift from the X-ray source.

The total exposure time was a control variable, and the exposure time chosen
for each image was 25 minutes. Discrete and continuous phase stepping
images were acquired at two rotational speeds, 0.2 and 1 RPM.

3.1 Discrete phase stepping

5 phase steps were used for these measurements. For data acquisition dur-
ing each phase step, G0 would be stationary. After the respective projections
were acquired, the piezo motor would then move G0 a distance equal to
1/5th of the pre-calculated G0 period to reach the next phase step.

Before the acquisition of the complete discrete phase stepping tomography,
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3. Computed Tomography for Discrete and Continuous Phase Stepping

a short flat-field measurement was performed (exposure time = 20 s). After
retrieving the signal, the optimal period for G0 would be calculated and
then used for the acquisition detailed below.

Over the course of the measurement with slow rotation (0.2 RPM) of the
sample, the sample would complete 5 rotations over the course of the ex-
posure time, and one tomographic image would be acquired for the entire
duration. After each 360o rotation of the sample, G0 would be moved to the
next phase step. The benefit of slow rotation is that each projection angle of
the sample would yield frames with higher statistics.

For fast rotation of the sample at 1 RPM, the sample would complete 25
rotations. For each subdivision of 5 rotations, one complete phase stepping
image would be taken; G0 would be stepped after each 360o rotation. After
performing flat-field correction, the five images would be averaged before
tomographic reconstruction. Acquiring 5 images meant that the statistics of
this measurement could be compared to the slow rotation’s data.

Figure 3.1: The stepping and sample rotation protocol used for a rotation speed of 0.2 RPM.
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3.2. Continuous phase stepping

Figure 3.2: The stepping and sample rotation protocol used for a rotation speed of 1 RPM.

In post-processing, the frames acquired during the piezo move time between
phase steps were removed before analysis. The number of frames removed
equaled the piezo move time multiplied by the detector frame rate. This
frame removal was performed after increments representing each complete
set of angular projections for each phase step.

3.2 Continuous phase stepping

This involved using a continuous movement profile of the piezo driver, also
known as a wavetable (described in Section 2.3), during data acquisition.
Wavetable 1 was used for these measurements. The amplitude, or ending
location of the wavetable and therefore G0, was a fixed value of 4.51 um.
Unlike for discrete phase stepping, no frame removal due to piezo motion
between phase steps is required. Similar to discrete phase stepping, flat-field
measurements were taken prior to and after the main sample image.

For the slow rotation measurement at 0.2 RPM, the sample would complete
5 rotations over the course of the exposure time (25 mins), and one image
would be acquired for the entire duration. Over this duration, the piezo
driver would execute the wavetable once. Thus, for each rotation, the data
acquired would correspond to 1/5th of 4.51 um. During each rotation, as the
angle of rotation increased from 0 to 360o, there was a linearly increasing
phase shift due to the continuous motion of G0. This shift needed to be
subtracted from the flat-field corrected signal prior to reconstruction. If Nproj

projections were taken and the period calculated from the retrieved signal
was pG0,calculated with ni being the index of a particular projection, then the
corresponding phase shift for that projection is given by:

17



3. Computed Tomography for Discrete and Continuous Phase Stepping

Dphase shi f t,i =
2p ⇥ ni

Nproj

⇥ Wavetable amplitude

pG0,calculated

(3.1)

During the fast rotation measurement at 1 RPM, The sample would complete
25 rotations. Each subdivision of 5 rotations would correspond to a G0
movement equaling 1/5th of 4.51 um. Each 360o rotation corresponded to
1/25th of G0’s assumed period. Thus, there are 25 phase steps for continuous
phase stepping at 1 RPM, as opposed to 5 phase steps for discrete phase
stepping. After performing flat-field correction, the five images would be
averaged before tomographic reconstruction. Similar to the slow rotation,
there was a linearly increasing phase shift for each projection angle which
needed to be subtracted prior to reconstruction. This is also governed by Eq.
3.1.

3.3 Data and CNR calculation

CT reconstructions were performed using the ASTRA-Toolbox [5].

Figure 3.3: Tomographic phase contrast reconstruction of phantom acquired with slow rotation

at 0.2 RPM. Left: discrete phase stepping. Right: continuous phase stepping.
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3.3. Data and CNR calculation

Figure 3.4: Tomographic phase contrast reconstruction of phantom acquired with fast rotation

at 1 RPM. Left: discrete phase stepping. Right: continuous phase stepping.

The performance of each acquisition mode was evaluated by calculating the
contrast to noise ratio (CNR) for the phase contrast images. The CNR was
calculated for various patches in the phantom, which correspond to differ-
ent materials. The patches were chosen such that they contain a relatively
homogenous area (Fig. 3.5). The CNR for each patch was given by:

CNRpatch,i =
µpatch,i � µsample body

sbackground

(3.2)

Figure 3.5: Patches used to calculate the CNRs. Left: the patches displayed on a phase image

of the phantom. The blue patch below the cluster of 6 patches was used to find the average for

the sample body, and the red patch on the top left of the phantom was used to find the standard

deviation of the background noisy region. Right: The phantom with the corresponding patches

labeled 1 through 6.
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3. Computed Tomography for Discrete and Continuous Phase Stepping

Patch no. D—0.2 RPM C—0.2 RPM D—1 RPM C—1 RPM
1 2.34 2.52 2.97 1.49
2 2.57 2.16 4.46 3.65
3 5.31 4.57 5.91 5.21
4 12.47 14.56 16.99 15.44
5 5.21 6.60 10.24 6.35
6 6.45 5.15 7.62 5.48

Table 3.1: CNRs calculated for phase contrast images recorded with four acquisition modes. ’C’

and ’D’ denote continuous and discrete phase stepping respectively.

3.4 Discussion

It should be noted that the images acquired using continuous phase step-
ping had an intrinsic blur. This was because during the binning process for
each phase step, frames would be binned that were recorded over a range
of G0 positions. This is unlike discrete phase stepping, where the frames
binned were recorded for a fixed G0 position. Additionally, using the entire
wavetable - including the acceleration and deceleration of G0 - meant that
there was oversampling at the start and end of the wavetable relative to the
linear, more uniform region. This is addressed in Chapter 4.

The CNRs (Table 3.1) for tomographic imaging at the low rotation speed of
0.2 RPM are similar for discrete and continuous phase stepping. This can be
explained by the fact that due to the slower rotation, data can be acquired
for a greater duration for each angular projection relative to a faster rotation
speed.

For fast rotation at 1 RPM, discrete phase stepping outperforms continuous
phase stepping (see Table 3.1) for every patch. Patches 1 and 5 are note-
worthy as discrete phase stepping outperforms continuous by significant
amounts (2.97 vs 1.48 and 10.24 vs 6.35 respectively). For 0.2 RPM, continu-
ous stepping outperforms discrete stepping for these same patches as well
as for patches 1 and 4, which indicates that continuous phase stepping can
improve results for slow rotation speeds.
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Chapter 4

Piezo Control for Continuous Phase
Stepping

As mentioned in Chapter 3, G0 is moved perpendicular to the beam direc-
tion in order to achieve phase stepping. This is done using a piezo motor,
which operates based on a principle called the piezoelectric effect; a piezo-
electric material expands and contracts depending on the electric voltage
applied across it.

In the computed tomography image acquisition in Chapter 3, the accelerat-
ing and decelerating nature of the piezo driver’s wavetable (Fig. 2.2) meant
that there was oversampling towards the beginning and end of G0’s move-
ment profile. In order to ensure uniform sampling, it was necessary to ac-
quire the image only during the linear region of the wavetable. There were
two components to this: finding G0’s position for each frame and selecting
the linear region G0’s movement profile. After this, an acquisition protocol
could be written that would acquire frames over a linear span matching a
desired period of G0.

4.1 Matching frames to G0’s position

The function that controls the piezo driver to move G0 contained a loop that
recorded the piezo’s position and its respective time. Before this loop, an
array was created that contained the desired frame times. In this array, the
interval between each entry equaled the time for each frame’s acquisition.
In order to match the desired frame time to the piezo’s time, a threshold
was used when comparing the piezo time and the desired frame time. The
difference between the piezo time and the frame time needed to be under
this threshold for G0’s location and time to be stored. The threshold was
on the scale of below 4 ms and scaled linearly as the imaging duration
increased. This was done to minimize computational memory usage over
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4. Piezo Control for Continuous Phase Stepping

longer wavetable durations and to ensure complete recording of the piezo
positions and times.

Figure 4.1: The discrepancy between the recorded G0 times and the ideal frame times, displayed

as a percentage of the single frame duration. This plot corresponds to an imaging duration of

300s.

4.2 Finding the linear region of G0’s movement profile

After matching G0’s position to the frames, the linear region of the wavetable
needed to be extracted. This was done in two steps: fitting G0’s posi-
tions and the respective times with a polynomial and examining the second
derivative of this fit to select the linear region. The first step was achieved by
using the function poly f it that is in the numpy library on Python [6]. The de-
gree chosen was 15 as this was the highest degree for which overfitting did
not occur. For the second step, the threshold for the second derivative with
respect to time scaled with the inverse of the imaging time. To find the time
at which the linear region started, the array with the second derivatives was
iterated through. For a point to be classified as linear, the absolute value of
each point as well as the mean of the absolute values of the next five points
needed to be under the threshold. The same was done for finding the point
when the linearity stops, but with backward iteration through the second
derivative values rather than forward.

Once the start and end locations for which G0’s movement was linear were
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4.2. Finding the linear region of G0’s movement profile

found, the span of the linear region could be calculated. Signal retrieval
could then be performed on the flat field measurement’s frames that corre-
sponded to the linear region. This retrieval would yield the period of G0.
By iterating through the array containing G0’s position for each frame, one
could find the duration at which the distance linearly moved equaled the
calculated period. The quality of the polynomial fit was better if more data
was available. Therefore, in order to find the ideal table point at which lin-
earity started (further explained in Section 4.3), a wavetable executed for a
duration of 600 s was used.

Figure 4.2: The raw G0 positions plotted with the polynomial fit for an imaging duration of

300s. Left: at the start of the wavetable. Right: towards the end of the wavetable.
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Figure 4.3: Top left: the first derivative of the polynomial fit. From t = 75 s to 550 s, the value

here is constant (with negligible deviations) and nonzero, which indicates linearity. Top right:

the second derivative of the polynomial fit. From t = 75 s to 550 s, the value here is zero (with

negligible deviations), which indicates linearity. Bottom left: the raw data and fit at the start of

the linear region. Bottom right: raw data and fit towards the end of the linear region.
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4.3. Implementing acquisition for a desired G0 period

Figure 4.4: The entirety of G0’s recorded positions and times, along with the linear region. The

blue point represents the table point at which linearity begins.

4.3 Implementing acquisition for a desired G0 period

In order to generalize this process for different imaging durations, the num-
ber of table points in the wavetable and the servo update time were used.
With these values, one could calculate the table rate, which gives the number
of servo-loop cycles to be used for each table point [4] The table rate could
be calculated as follows [4]:

Table rate =
Wavetable duration

Ntable points ⇥ Timeservo update

(4.1)

In order to find the table point at which G0’s movement starts to be linear,
the time at which linearity started was used. Eq 4.1 can be rearranged to
give:

Nlinearity,start =
Timelinearity,start

Table rate ⇥ Timeservo update

(4.2)

Eq. 4.2 could also be used to find the table point Nperiod corresponding to the
location where G0 had moved by one period in a linear manner. The goal
of converting the times to table points was to find an acquisition protocol
that operates independent of the imaging duration. The image should be
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acquired when G0 is within the interval of these table points. Knowing the
desired table points and the imaging duration, one could find a new table
rate:

Table rate =
Imaging duration

(Nperiod � Nlinearity,start)⇥ Timeservo update

(4.3)

The wavetable duration calculated must ensure that the linear motion span-
ning G0’s calculated period occurs over a time interval equaling the imaging
duration. By plugging the acquisition table rate from Eq. 4.3 into Eq. 4.1,
this wavetable duration could be calculated:

Wavetable durationacq =
Ntable points

(Nperiod � Nlinearity,start)
⇥ Imaging duration (4.4)

In order for the data acquisition to start at the right time, a time interval
between the initialization of the wavetable and the start of acquisition was
necessary. This time interval was given by:

Wait time =
Nlinearity,start

Ntable points

⇥ Wavetable durationacq (4.5)

Using the approach detailed above, an imaging acquisition protocol was
implemented that could acquire frames over the span of a chosen period for
any given imaging time. This was tested by measuring two flat field images
for different imaging durations and comparing their phase images.

Figure 4.5: The di↵erence in phase between flat field images acquired for imaging durations of

30s and 120s.

4.4 Discussion

The matching of piezo times with frame times (Section 4.1) was successful
according to Fig. 4.1. The percentage discrepancy between piezo and frame
times would increase with imaging duration and frame rate. The latter was
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4.4. Discussion

to be expected due to the time resolving limits of the time readout program.
For a higher frame rate, even if the percentage discrepancy was larger, the
absolute time discrepancy was still small i.e. on the order of ¡5 ms. The
reason that the percentage discrepancy increased with imaging duration had
to do with how the piezo readout times and frame times were compared; the
threshold used for this scaled with imaging duration while the frame rate
stayed the same.

As evidenced by Fig. 4.5, the difference in phase of two flat field images with
different imaging durations (30 s and 120 s) was negligible, which showed
that the acquisition protocol worked as intended. The phase difference be-
tween the two durations being negligible showed that phase stepping data
was collected over the same G0 range. Desired periods could therefore be
imaged independently of imaging duration.

27





Chapter 5

G0 Period Calculation for Various
Phase Stepping Methods

Continuous phase stepping can be applied to fast stepping TLI methods; this
can help reduce acquisition times as well as the amount of data required for
reconstructions. An example of this is the sliding window interlaced method
proposed by I. Zanette et al [7].

Figure 5.1: Left: stepping window zigzag method. Right: stepping window interlaced method.

w denotes the projection angle and Xg denotes the phase stepping axis. A data point being

shaped as a star indicates that it can be used in more than one phase stepping curve. This image

was taken from [7].

The methods shown here would entail using each reading for more than
one phase stepping curve i.e. a single reading could be used to fit multi-
ple projections [7]. In order to take a high number of angular projections,
fast stepping would be required. This could potentially be done via the
wavetables already detailed. However, for this to be applied to tomographic
imaging, the period of G0 must be known precisely for every position of G0.
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5.1 Period calculation for continuous phase stepping

Periods were calculated from flat field measurements using signal retrieval.
Five flat images were acquired for exposure times ranging from 10 to 300 s
and the respective periods were stored.

For continuous phase stepping, wavetables 1 and 2 were used; these had an
amplitude of 4.51 µm and 20 µm respectively. The frames that were acquired
during the linear region of the wavetable were selected, and the distance
traveled by G0 over this region were recorded. The frames were then binned
into distance intervals of 0.82 µm. This interval was chosen as it enabled 5
phase steps to be included in the linear span of wavetable 1. Wavetable 1
and 2 measurements contained 5 and 22 phase steps respectively. In the for-
mer case, the signal retrieval least squares fit yielded periods that were well
below the expected value when performed over all the phase steps. So, sig-
nal retrieval was performed on the first 5 phase steps of the measurements
from Wavetable 2.

Figure 5.2: Periods calculated for di↵erent imaging durations for continuous phase stepping

with wavetable 1.
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5.2. Period calculation for discrete phase stepping

Figure 5.3: Periods calculated for di↵erent imaging durations for continuous phase stepping

with wavetable 2.

After averaging all the recorded periods, wavetables 1 and 2 yielded a pe-
riod of 4.350 ± 0.027µm and 4.315 ± 0.064µm respectively. The reason for
wavetable 3’s higher standard deviation was the selecting of the first 5 phase
steps. These 5 phase steps represented a smaller proportion of the exposure
time than Table 5 and therefore contained less statistics.

Looking at Fig. 5.2, continuous phase stepping measurements made at low
durations had a generally higher average calculated period. From a duration
of 30 s and up, the average period varied less. This is due to having higher
statistics i.e. more measured photons than lower durations.

5.2 Period calculation for discrete phase stepping

The process from Section 5.1 was repeated for discrete phase stepping. The
step size used was the same as the binning intervals for the continuous phase
stepping measurements. The distances spanned by G0 were chosen such
that they were equal to the linear distances spanned by wavetables 1 and 2.
Like in Section 5.1, the signal retrieval for the span matching wavetable 2
was performed on the first 5 phase steps.
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5. G0 Period Calculation for Various Phase Stepping Methods

Figure 5.4: Periods calculated for di↵erent imaging durations for discrete phase stepping match-

ing the linear span of wavetable 1.

Figure 5.5: Periods calculated for di↵erent imaging durations for discrete phase stepping match-

ing the linear span of wavetable 2.
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5.3. Calculating periods for different starting phase steps

The discrete phase stepping measurements matching the linear spans of
wavetables 1 and 2 yielded periods of 4.439± 0.027µm and 4.413± 0.040µm.
Unlike for the continuous stepping measurements, the average periods calcu-
lated from lower imaging durations were not noticeably greater than longer
durations for discrete phase stepping.

5.3 Calculating periods for di↵erent starting phase steps

Because the signal retrieval for the longer span (wavetable 2) was performed
on only the first 5 phase steps out of 22, it was necessary to see whether
choosing a different set of 5 phase steps would yield the same period. The
signal retrieval was performed for different windows of 5 phase steps each.
This was done for continuous and discrete phase stepping. The step sizes
were kept constant and matched to the binning distance interval for wavetable
2.

Figure 5.6: Calculated periods and starting steps for continuous phase stepping with wavetable

2.

As shown by Fig. 5.6, the periods calculated for continuous phase stepping
were dependent on the phase step that was chosen as the start of the window.
This needed to be tested with discrete phase stepping in order to show that
the result was consistent with continuous phase stepping. This was done for
two spans: one that matched the linear region for wavetable 2 and one that
was significantly greater. The latter contained 88 phase steps and spanned
72.16 µm.
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5. G0 Period Calculation for Various Phase Stepping Methods

Figure 5.7: Calculated periods and starting steps for discrete phase stepping with the same step

size as wavetable 2. In red: calculations for 88 phase steps. In blue: calculations for the discrete

stepping measurement with the same span as the linear region of wavetable 2.

5.4 Discussion

The mean periods for the first 5 phase steps discrete phase stepping (Section
5.2) were generally greater than in the continuous case (Section 5.1). For
discrete stepping, the means for both spans were above 4.4 µm, whereas
for continuous stepping the means were closer to 4.3 µm. The discrepancy
relative to continuous measurements was 0.089 and 0.098 µm for wavetables
1 and 2 respectively. All of these periods are generally close to the expected
G0 period of 4.2 µm, although continuous phase stepping yields a result that
is closer.

In Section 5.3, the discrete phase stepping measurements’ calculated periods
showed the same behaviour as the continuous measurement. Because this
was repeatable, the results must be a system property. Other than the win-
dow with a starting step of 0, the other windows yielded periods that were
significantly lower than the expected G0 period of 4.2 µm. The measurement
over a larger span also showed low periods. However, the periods seem to
stabilize after a starting step of 20. This information is potentially useful if
fast phase stepping is desired; the period at different G0 positions could be
used for calibration for an application such as interlaced stepping [7].
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Chapter 6

Conclusion

Continuous phase stepping was shown to be a valid way of acquiring phase
stepping data (Section 3.3). For slow rotations (0.2 RPM), its CNRs were
comparable with discrete stepping, but it was outperformed by discrete step-
ping for higher rotation speeds (1 RPM). DPC values reconstructed from the
tomographic images show that the method yielded valid results, as these val-
ues were similar for discrete and continuous phase stepping. To improve on
comparisons between the two methods, one could measure the total imaging
duration which would include the time taken for stepping and translation of
the sample for flat-field measurements. If continuous phase stepping can be
done in a shorter total duration with similar image quality, then this would
help the group at PSI to save time during data acquisition. Certain applica-
tions, such as helical scanning, cannot afford to have dead time while G0 is
discretely stepped, but continuous phase stepping would be well suited to
such an application.

The imaging protocol to acquire data over a desired period for continuous
phase stepping was implemented successfully. This protocol seeked to per-
form such imaging in a manner that was general with regards to imaging
duration and it did so successfully (Fig. 4.5). Additionally, a pipeline for
piezo position readout corresponding to each acquired image frame was
integrated in the system control scripts (Fig. 4.1).

It was found that the period of the phase stepping curve was dependent
on the grating’s position. This knowledge can be applied as a calibration
metric to a future implementation of fast stepping methods such as inter-
laced stepping [7]. The wavetables could be executed in a manner which
runs consecutive linear profiles with added offsets. This could help achieve
interlaced stepping [7]. A next step could be to develop a scheme that imple-
ments this and couple it with the knowledge of the G0’s position-dependent
periodicity to organise frames into phase steps based on their G0 position.
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