
Johannes Gutenberg University Mainz

Faculty 08 Physics, Mathematics and Computer Science
Institute of Computer Science and Institute for Nuclear Physics

AG Berger

Master Thesis

Online Event Selection using GPUs for the Mu3e
Experiment

Fritz Valentin Henkys

1. Reviewer Prof. Dr. Niklaus Berger
Institute for Nuclear Physics
Johannes Gutenberg University Mainz

2. Reviewer Prof. Dr. Bertil Schmidt
Institute of Computer Science
Johannes Gutenberg University Mainz

February 09, 2022

Fritz Valentin Henkys

Online Event Selection using GPUs for the Mu3e Experiment

Master Thesis, February 09, 2022

Reviewers: Prof. Dr. Niklaus Berger and Prof. Dr. Bertil Schmidt

Johannes Gutenberg University Mainz

AG Berger

Institute of Computer Science and Institute for Nuclear Physics

Faculty 08 Physics, Mathematics and Computer Science

Staudingerweg 09

55128 Mainz

Abstract

The Mu3e experiment searches for physics beyond the Standard Model using the
lepton flavour violating decay µ+ → e+e−e+. Observing this heavily suppressed
decay or setting a new upper limit on the branching ratio to 2 · 10−15 requires a
high muon rate and a detector with high momentum and vertex resolution. These
requirements result in high data rates of 100Gbps of sensor data, mainly consisting
of noise.

In this work we present improvements and the implementation of the Online Event
Selection algorithm, used to filter this datastream. It is used to reduce the data rate
by a factor of over 100, by classifying time slices of detector data as important. We
utilize the massively parallel architecture of graphics processing units using CUDA,
achieving a speedup of over 2 compared to the previous implementation, while
being able identify more than 94% of signal time slices correctly.

iii

Zusammenfassung

Auf der Suche nach neuer Physik jenseits des Standardmodells untersucht das Mu3e
Experiment den stark unterdrückten Zerfall des Myons µ+ → e+e−e+. Das Beobachten
dieses Zerfalls würde neuen physikalischen Theorien den weg bereiten. Mu3e ver-
sucht entweder diesen zu entdecken oder ein neues oberes Limit für die Zerfallsbre-
ite des Zerfalls auf 1 · 10−15 zu setzen.

Der hierfür genutzte Detektor wurde mit Fokus auf einer hohen Impuls- und Vert-
expräzision entwickelt um die Zerfälle von 1 · 108µ/s beobachten zu können. Diese
Menge an Zerfällen erzeugt eine geschätzte Menge von 100Gbps an Daten, die zu
großen Teilen aus Hintergrundprozessen bestehen. Um diese Datenrate um den
Faktor 100 zu reduzieren wurde die Online Event Selection entwickelt, der Zeitab-
schnitte der Detektordaten in Echtzeit analysiert. Es wird beurteilt ob der Zeitab-
schnitt interessant aussieht und nur dann weitergeleitet.

In dieser Arbeit stellen wir diesen Prozess inklusive Verbesserungen vor. Wir haben
den Algorithmus auf Grafikkarten von NVIDIA, mit Hilfe von CUDA implemen-
tiert und erweitert. Unsere Version ist dabei doppelt so schnell wie die vorherige
Implementierung und schafft es mehr als 94% aller Zeitabschnitten mit dem Sig-
nalevent richtig zu klassifizieren und über 97% der Partikelpfade korrekt zu rekon-
struieren.

iv

Contents

1 Introduction 1

1.1 Lepton Flavour Violation . 2

1.2 Online Data Processing . 3

2 Mu3e Experiment 5

2.1 Experimental Setup . 6

2.2 Signal and Background Processes . 6

2.2.1 Signal Event . 7

2.2.2 Background Processes . 7

2.3 The Mu3e Detector . 8

2.3.1 Concept . 8

2.3.2 The MuPix Pixel Detector . 10

2.3.3 Scintillating fibers . 11

2.3.4 Scintillating Tiles . 12

2.4 Data Acquisition . 12

2.4.1 Data Rates . 13

3 Online Event Selection 15

3.1 Mathematical Notation . 16

3.2 Helical Tracks . 16

3.3 Selection Cuts . 19

3.4 Track Reconstruction . 24

3.4.1 Single Triplet Fit . 25

3.4.2 Triplets Fit . 29

3.5 Vertex Fit . 30

3.5.1 Finding Possible Event Vertices 31

3.5.2 Signal Estimation . 34

4 Implementation and Testing 35

4.1 The CUDA Programming Model . 35

4.2 Global Memory layout . 37

4.3 Parallelization of the Algorithm . 38

4.3.1 Loading a Frame . 38

4.3.2 Selection Cuts . 39

v

4.3.3 Track Reconstruction . 40
4.3.4 Vertex Reconstruction . 41

4.4 Online Monitoring . 43
4.5 Benchmarks . 43

4.5.1 Test Setup . 44
4.5.2 Accuracy . 45
4.5.3 Parameter Tuning . 45
4.5.4 Thread, Block and Stream Count 46
4.5.5 Muon Rates . 47

5 Summary and Outlook 51
5.1 Outlook . 52

Bibliography 53

vi

1Introduction

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²

⅔

½

up

d
≃4.7 MeV/c²

−⅓

½

down

c
≃1.28 GeV/c²

⅔

½

charm

s
≃96 MeV/c²

−⅓

½

strange

t
≃173.1 GeV/c²

⅔

½

top

b
≃4.18 GeV/c²

−⅓

½

bottom

L
E

P
T

O
N

S

e
≃0.511 MeV/c²

−1

½

electron

νe
<1.0 eV/c²

0

½

electron
neutrino

μ
≃105.66 MeV/c²

−1

½

muon

νμ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≃1.7768 GeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

V
E

C
T

O
R

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV/c²

0

1

Z boson

W
≃80.39 GeV/c²

±1

1

W boson
S

C
A

L
A

R
 B

O
S

O
N

S

H
≃124.97 GeV/c²

0

0

higgs

Fig. 1.1: Elementary particles of the Standard Model.
Source: [42]

The Standard Model (SM) of particle physics [18] is a well known and established
model describing the elementary particles, which are shown in Fig. 1.1, as well
as three of the four fundamental interactions. The final particle, the Higgs-Boson,
of the SM was observed in 2012 at the Large Hadron Collider (LHC) in CERN,
and awarded with the Nobel Prize [1]. While it is a successful and self-contained
model, it is missing pieces for describing ’everything’. For example the gravitational
interaction, one of the four fundamental interactions, is not covered by it. Other
phenomena like dark matter and energy are not explained by it as well, fueling the
need for research beyond the SM.

Since the SM does not encompass everything, physicists search for theories to ex-
plain those phenomena. One of those phenomena is the observation of neutrino
oscillation in the Super Kamiokande and Sudbury Neutrino Observatories, awarded
with the Nobel Prize 2015 [39].

1

The new theories need to be validated by experiments, like Mu3e. These experi-
ments have high requirements for precision, resulting in huge amounts of data to
be collected. To process and validate the measured data a mixture of online and
offline analysis is used, requiring high performant hardware and implementation.

1.1 Lepton Flavour Violation

Neutrino oscillation introduced the first observation of Lepton Flavour Violation.
Lepton Flavour is a conserved property according to the SM and is described by
the Lepton number Lℓ:

Lℓ = nℓ + nℓ̄, (1.1)

where nℓ and nℓ̄ are the number of leptons and antileptons in the family [18]. The
lepton families, as seen in Fig. 1.1, are:

• Electrons,

• muons,

• tauons.

Lℓ, ℓ ∈ {e, µ, τ} has to hold over all lepton families together as well as for each
family itself in each reaction.

Possible reactions are Lepton decays, like the Michel Decay µ+ → e+νeνµ̄, which is
the most common decay for muons at rest. It has a predicted probability of close
to 100% [6]. This probability of a particle decay happening is called the branching
ratio.

The observation of neutrino oscillation shows that lepton flavour may not have to
be conserved in all reactions. This opens up the possibility for many reactions, pre-
viously heavily suppressed by the SM, to be observed, like µ+ → e+e+e−. This
decay has according to the SM a branching ratio of < 10−54, thus making it nigh un-
observable by experiments in the near future [6]. Observing this decay would be a
big step for finding new physics beyond the SM. The Mu3e experiment searches for
the aforementioned decay with higher efficiency than previous experiments, aiming
to find the decay or setting a new upper bound for the branching ratio, previously
set by SINDRUM to < 10−12 [9].

2 Chapter 1 Introduction

1.2 Online Data Processing

Since new events have low predicted branching ratios and were not previously ob-
served by other experiments, they require high event frequencies to be observable
in an acceptable amount of time, as well as good resolutions to be able to observe
them at all [6]. Both of these result in a requirement for high frequency particle
beams and thus very high rates of measured data by the detectors. As an example
the ALICE experiment at LHC expects to detect 3TBps of detector data in their third
run [31].

These data rates often include a lot of noise and background signals, not needed
for storage or further analysis [6]. Alternatively the data is used in real time for
important trigger decisions [21], for online calibration or is compressed [32]. Most
of these tasks require a lot of independent calculations, perfectly fit for parallel
hardware like Field Programmable Gate Arrays (FPGA) or Graphics Processing Units
(GPU).

A lot of these detectors use a mix of FPGAs and GPUs for different tasks. While the
FPGAs are used for packing and streaming the data [6], the GPUs perform many
of analysis calculations, like particle identification, by track reconstruction. These
tasks are offloaded to GPUs due to their better floating point performance compared
to FPGAs and high amount of parallelism compared to CPUs.

In this thesis we build upon the Online Event Selection previously introduced by D.
vom Bruch [13]. This algorithm filters the incoming data stream for storing and
offline analysis, removing out as much unnecessary data as possible. In this thesis
we are presenting each step of the algorithm. We have analyzed each step and
added improvements in speed and accuracy in each step and fully implemented
and tested the algorithm on the GPU. Our implementation achieves a speedup of 2
for the targeted muon rate of 1µ/s compared to the previous implementation.

We will first introduce the Mu3e experiment in Chapter 2, then explain the algo-
rithm in Chapter 3, leading to the implementation on GPUs in Chapter 4.

1.2 Online Data Processing 3

2
Mu3e Experiment

In the search for new physics beyond the standard model, the Mu3e experiment [6]
searches for the lepton flavour violating decay µ+ → e+e+e−, giving it its name. A
previous upper limit on the branching-ratio of this decay was set by the SINDRUM
experiment in 1988 [9] to 10−12 with a 90% confidence level. Mu3e aims to improve
these results by up to three orders of magnitude in its first phase.

The experiment is planned to be performed in two phases. In phase I the project
uses the πE5 beam line at the Paul-Scherrer-Institute (PSI) with a muon rate of
1 · 108µ/s. Over the course of one year data will be collected observing over 2 · 1015

muon-decays, setting a new upper limit for or measuring the branching ratio of this
decay. For phase II the High Intensitiy Muon Beam (HIMB) at PSI will be used,
providing an estimated muon rate of over 1 · 109µ/s, with the goal of achieving
an even higher sensitivity of 10−16 detected muon decays. In this chapter we will
introduce the phase I experiment [6].

Fig. 2.1: The compact muon beamline used for the Mu3e experiment as a CAD-Model. The
incoming proton beam (red) is aimed at target E, where muons are created and
bundled into a muon beam (green), which is then aimed at the Mu3e experiment.

Source: [16]

5

a) Signal b) Internal Conversion c) Combinatorial

Fig. 2.2: Schematics of the signal and background topologies. Electron tracks are in blue,
positrons in red. The signal a) has a clear point of origin for all tracks and no
extra particles, In contrast internal conversion b) produces two extra particles,
absorbing some of the electron/positron momentum. For the combinatorial back-
ground c) no clear point of origin exists for the three tracks.

Source: [16]

2.1 Experimental Setup

The High Intensity Proton Accelerator (HIPA) at PSI [36] creates a proton beam of
590MeV. When directing the beam at a carbon target, it produces positive pions π+

at the target surface, which then decay into muons via the decay

π+ → µ+νµ. (2.1)

Since this is not the only decay happening [6], the resulting particles are filtered
and the muons are collected by magnets into a secondary beamline, called the πE5.
This setup is shown in Fig. 2.1. The beamline then directs the 108µ/s into the Mu3e
experiments’ solenoid magnet, where they are stopped by a double cone target and
decay at rest.

2.2 Signal and Background Processes

The signal event we want to detect is the µ+ → e+e+e− decay. As previously ex-
plained in Chapter 1 this decay is very rare and highly suppressed in the SM. Thus
a lot of other decays and processes happen, constituting the measured background
for this experiment [6]. Differentiating background from signal events is an impor-
tant part of the detector concept. In this section we will introduce different possible
background processes and how to differentiate them from the signal.

6 Chapter 2 Mu3e Experiment

Decay Approx. Branching Ratio Reference
µ+ → e+νeν̄µ 100% Michel decay
µ+ → e+γνeν̄µ 1.4% (for Eγ > 10MeV) Radiative decay [17]
µ+ → e+e−e+νeν̄µ 3.4 · 10−5 Internal conversion [11]

Tab. 2.1: List of the most frequent muon decay modes allowed by the standard model
building the main sources of background particles in the experiment. The branch-
ing ratio describes the fraction of particles decaying in this decay mode.

2.2.1 Signal Event

First we define the characteristics needed to identify a signal event. In this decay
all three resulting particles stem from the same decay. As such their point of origin
coincides and is called the event vertex. The muon decaying at rest defines the
combined momentum and energy of the signal event, since the laws of energy and
momentum conservation dictate

Etot = Ee+
0

+ Ee+
1

+ Ee− = mµ = 105.7MeV
c2 (2.2)

and
pµ = pe+

0
+ pe+

1
+ pe− = 0. (2.3)

Using Eq. (2.2) and Eq. (2.3) as well as the knowledge of a single point of origin
the signal event is well defined [6].

2.2.2 Background Processes

Due to the rarity of the signal, most electrons and positrons detected will not orig-
inate from the signal decay µ+ → e+e+e−. Instead, there are other more frequent
processes and decays creating positrons end electrons which need to be differenti-
ated from signal particles. The most notorious decays are listed in Table 2.1. These
background sources can be separated into two groups, namely internal conversion
and combinatorial background.

During the radiative decay a radiated photon may undergo internal conversion into
an electron-positron pair, where the resulting particles look similar to the signal
decay. Therefore, they are building one important background process, which is
shown in Fig. 2.2 b) and Table 2.1. The created neutrinos by the radiative decay
are not directly observable and the created electrons and positrons share the same
point of origin. It can not be distinguished from the signal event by reconstructing
the event vertex, therefore Eq. (2.2) and Eq. (2.3) need to be used instead. Neither

2.2 Signal and Background Processes 7

Fig. 2.3: A particle passing through a material gets scattered along the way, e.g. through
Coulomb Scattering by nuclei. This sum of these phenomena is called Multiple
Scattering. This picture shows the offset and kink angle that can be used to
describe this.

Source: [38]

equation is satisfied, since some energy and momentum is taken up by the two
neutrinos. Consequently a very good energy/momentum resolution is needed for
the detector to properly distinguish internal conversion events from the signal.

The combinatorial background is the mix of superposition of events happening that
produce e+e+e− triplets. The main source for positrons is the Michel decay, due
to it being the most likely muon decay, as seen in Table 2.1. These positrons alone
are not enough to build a fake signal event, but there are other possible sources
for electron tracks, including, but not limited to, Bhabha scattering in the target
material, creation of an electron-positron pair by the radiative decays’ photon or
Compton scattering in the detector material [6]. Combinations of these events
could look similar to the signal, as seen in Fig. 2.2 c), however these tracks are
not created by the same event and therefore do not share the same point or time
of origin. For proper detection of the combinatorial background precise timing
information and a good vertex reconstruction is needed.

2.3 The Mu3e Detector

In this section, we introduce the Mu3e detector, designed with a good momentum
and vertex resolution, as well as precise timing information.

2.3.1 Concept

The design of the particle detector has to meet the performance requirements in-
troduced in the previous section, involving multiple trade-offs. A high momentum

8 Chapter 2 Mu3e Experiment

and vertex resolution is required, therefore the positional tracking capabilities of
the particles passing through the detector is important.

When passing through material, a particle is deflected multiple times by the atoms
resulting in an extra kink θ and offset y when leaving the material, as shown in
Fig. 2.3. This process is called Multiple Scattering (MS) and the root mean square
of the kink scales with the particles’ momentum p

θ ∝ 1
p

√
x

X0
, (2.4)

with x
X0

as the material’s thickness in units of radiation length X0 [22]. The parti-
cles created by the decaying muons have a low momentum and cannot exceed an
energy of 53MeV

c [13]. Therefore the detectors’ thickness, called material budget,
has to be kept small. Gaseous detectors, like time projection chambers [13], are of-
ten used in MS dominated environments, but cannot handle the high particle rates
needed to reach Mu3e’s high sensitivity goals. Respecting this, monolithic pixel sen-
sors are the best trade-off in accuracy, speed and material budget for Mu3e. Since
precise timing information is needed as well, extra layers consisting of scintillating
fibers and tiles are used in conjunction with the pixels [6].

In order to be able to measure the particle momenta, a magnetic field is required
to curve their tracks. This curvature depends on their charge, where electrons are
bent into a different direction than positrons, making it possible to differentiate
their tracks. Hence, the whole detector is set in a 1T solenoidal magnetic field,
designed to be as uniform as possible [6]. The strong magnet adds the extra benefit
of keeping the track curves relatively small in diameter, resulting in the need for
only a small detector along the radial axis.

For a successful track reconstruction at least three measurements need to be taken,
while a good momentum measurement needs to correctly measure the curve of
the particles’ track. Therefore, multiple detector layers are needed. Due to the
curved nature of the tracks, the sensors need to be arranged along the longitudinal
axis of the tracks. This leads to the concept shown in Fig. 2.4 introducing three
main detector parts, each in a cylindrical shape and consisting of multiple layers.
The pixel layers are bundled in sets of two, to keep the MS error low between
them [13].

In the central part of the detector one double pixel layer is used with a radius only
slightly bigger than the target’s radius, for a good vertex resolution. A second set
of double layers is set with a bigger radius accompanied by a layer of scintillating
fibers just below them. Using these four layers a preliminary particle track can be
reconstructed.

2.3 The Mu3e Detector 9

transverse view

longitudinal view

Fig. 2.4: Mu3e detector schematic cut along the longitudinal axis of the barrels, consisting
of pixel, scintillating fibers and scintillating tile layers. The muon beam hits the
target in the center where electrons (blue) and positrons (red) are created. These
move on helical tracks through the multiple layers of the detector.

Source: [16]

The outer parts of the detector are used to detect particles returning back towards
the cylinder axis. These are used to better estimate the tracks curve, increasing the
momentum resolution. Here, only one set of the pixel layers is used, followed by
scintillating tiles inside. For these recurl stations, scintillating tiles are used instead
of fibers, introducing a higher material budget, since these are the last checkpoints
used for reconstruction and have a better background suppression.

2.3.2 The MuPix Pixel Detector

Pixel detectors consist of semiconductor junctions of p- and n-doped regions, re-
sulting in regions free of charge carriers inbetween them, called the depletion
zone [19]. This results in an electric field from the p-doped region to the n-doped re-
gion. When a particle passes through the depletion zone it interacts with the atoms,
creating new electron-hole pairs. These new free charge carriers move along the
electric field, inducing a current measurable by readout electronics of the detector.
Voltage can be applied to further increase the depletion zone size and the charges’
speed, resulting in an increased signal size and better time resolution.

10 Chapter 2 Mu3e Experiment

Fig. 2.5: Schematic of four pixels. For the front right pixel the on-chip electronics and a
cross-section showing the electric field is shown.

Source: [16]

Active pixel sensors like this are no novelty and are used in other experiments,
such as ALICE [8, 14]. Some of them managed to reduce the material budget by
including the read-out electronic on the chip itself, but their time resolution is too
low for Mu3e. Others have a good enough time resolution, like TIMEPIX [5], but
are too thick for Mu3e to use. Consequently, a new pixel sensor, called MuPix,
was designed [7]. The result is a High Voltage Monolithic Active Pixel Sensor (HV-
MAPS), which is currently in its 10-th revision, called MuPix11 While it is still in
development the final chip is planned to have a pixel size of 80×80µm on a 2×2cm
area and can be thinned down to 50µm. The manufacturing process used for this
chip allows for high voltages of up to 120V and a time resolution of below 11ns.
In Fig. 2.5 the layout of a pixel and its associated electronic is shown. The major
part of the chip is the pixel area, which is divided into multiple submatrices. These
submatrices are connected downstream by a digital circuit used to evaluate and
process pixel states.

In the detector these chips will be glued onto ladders mounted on cages for the lay-
ers, building an approximate cylinder for each station. When assembled, alignment
of the pixel sensors will be determined on a per chip basis for precise measure-
ments. Possible deformations of the cages happening throughout the beamtimes
will be accounted for using an online alignment system [37].

2.3.3 Scintillating fibers

Scintillating fibers are used in the central part of the detector for their precise timing
measurements and low material budget. When a charged particle passes through
them, it interacts with the material, exciting electrons into a higher, but volatile en-
ergy level. The electrons quickly return to a de-excited state, emitting light in visible

2.3 The Mu3e Detector 11

Fig. 2.6: A particle passing through scintillating material excites electrons. The photon
created during de-excitation can be guided by reflection to one of the fibers ends.

Source: [24]

wavelengths. The scintillating material is coated in a carrier material, which guides
the emitted light through internal reflection to one of its ends, seen in Fig. 2.6. At
a fibers’ end silicon photomultipliers amplify the light on arrival into a measurable
electrical charge, read out by the MuTrig system [15].

The fibers are required to have a sensitivity of close to 100% and a time resolution
below 0.5ns, for sufficient background suppression of tracks not reaching the recurl
stations.

2.3.4 Scintillating Tiles

In the recurl stations scintillating tiles instead of fibers are used. They work simi-
lar to the fibers, but since they are located at the end of the particles tracks their
material budget has no constraints, besides the tight space they have to fit in. They
consist of plastic scintillator split into multiple small tiles, ordered along the inner
part of the cylinder. The scintillating tiles are required to have a sensitivity of 100%
and a time resolution of less than 100ns for efficient detection of particle triplets
and reducing background signals [6].

2.4 Data Acquisition

Data collected by the detector is compressed, sorted and filtered by the multi-
layered data acquisition system (DAC), which we will introduce in this section. The
Mu3e detector has no trigger system, therefore the data is collected and processed
in a datastream. This stream is processed in multiple layers before being fed to the
mass storage servers for offline processing and analysis. An overview of the scheme
and parts involved is shown in Fig. 2.7.

Directly after the sensors, still inside the magnetic field, 114 Front-end Boards (FEB),
equipped with of AriaV FPGAs are used [13]. The data collected from the pixel
sensors is not ordered in time, due to the read-out method. Thus, the FEB’s sort the
pixel data according to their timestamps. For the fiber detector readout clusters of

12 Chapter 2 Mu3e Experiment

Fig. 2.7: Overview of the Mu3e data acquisition chain.
Source: [6]

fiber hits are formed. The FEB’s then collect the data in packages sending them via
a 6Gbit/s optical link to the next layer, the Switching Boards. These four Switching
Boards are used to align and merge data from the different detector parts into single
datastreams and bundle them into timeslices [28].

After the data has been merged, it is sent to the final layer of the DAC, the Fil-
ter Farm, which is used to filter the datastream, removing unimportant data and
forwards the rest to the mass storage servers. The filter farm consists of 12 comput-
ers daisy-chained together. Each computer receives data using a DE5a-Net FPGA
board [6]. The DE5a-Net boards task is to receive the detector data and com-
municate with the software running on their computer using direct memory access
(DMA). The software uses GPUs for online processing of the data, deciding which
data seems important enough to save for mass storage. This filtering process is
the focus of this thesis. It is built on the results of D. vom Bruch [13] and will be
introduced and discussed in the rest of this thesis. Finally, the filtered data is sent
over a 1Gbit/s Ethernet connection to the mass storage servers, where it is stored
for further analysis [6].

2.4.1 Data Rates

The main goal for the filter farm is to reduce the incoming data rate to meet slow
storage speeds and reduce the cost of storage. First we will estimate the amount
of data collected per second for the 1 · 108µ/s rate. Using the detector simulation
available, an average of 1056 ·106 hits/s are estimated, ignoring pixel noise [13]. As

2.4 Data Acquisition 13

an upper limit for this calculation we are using the MuPix7 noise rate of 0.1 Hz/pixel
resulting in ≤ 18Mhz noise rate for the 2844 pixel sensors involved. Each hit coming
from the pixel sensors is encoded as a 32 bit word using 8b/10b encoding [41],
resulting in 40bit per hit. These words include the hit address on the sensor, a time
stamp and amplitude information. Adding the pixel sensor information adds 12bit,
but the extra data needed is balanced by bundling hits into timeslices. Together this
results in a data rate of 43Gbit/s for the pixel data.

The fiber detectors are read out with a relatively low threshold, resulting in a high
dark count rate of approximately 70% of particle hits [13]. This rate is reduced by
building clusters of on average 3 coinciding signal hits, which are stored in 28bit
words, including the number of hits, side of the fiber, photomultiplier channels and
a coarse timestamp. For each of the hits a precise timing information is saved using
7 bits resulting in approximately 50bits per cluster. Again using 8b/10b encoding
this results in a data rate of 26.3Gbit/s for the fiber detectors.

The final part consists of the tile detectors in the recurl stations, where the lowest
number of hits will be detected, resulting in a lower data rate [6]. Consisting of
much more scintillating material than the fibers, a higher threshold is used for the
tile detectors. This results in a lower dark count rate and an average of 180Mhz of
hits for all tile detectors [13]. The time stamp, tile number and time over threshold
are stored in 64 bit words, resulting in an estimated data rate of 11.6Gbit/s for the
tile detectors.

The total data rate for all detectors is therefore expected to be around 80.9Gbit/s.
Thus, the filter farm needs to reduce the rate by a factor of 100.

14 Chapter 2 Mu3e Experiment

3Online Event Selection

In this chapter the algorithm used for the Online Event Selection is introduced. It is
used in the detectors Filter Farm, see Section 2.4, to reduce the collected data by a
factor of at least 100 in real-time.

The concept is based on the thesis of D. vom Bruch [13] and divided into three
steps:

1. Selection Cuts: A simple filter cutting away most infeasible triplet combina-
tions for the track reconstruction.

2. Track Reconstruction: A triplet based reconstruction and classification of the
estimated particle tracks.

3. Vertex Reconstruction: A simplified reconstruction of possible event vertices.
For this, all combinations of two positrons and one electron tracks are in-
vestigated, searching for a possible singular vertex, which fulfills the signal
characteristics defined in Section 2.2.

−100 −50 0 50 100
−100

−50

0

50

100

x

y

−200 −100 0 100 200
z

Fig. 3.1: Depictions of a simulated frame. Top: 3D render of the target and simulated
tracks [16]. Bottom: Detected hits in the detector layers, projected onto the
transverse (bottom-left) and longitudinal (bottom-right) plane. The y-position
for the longitudinal plane are projected onto their layer.

15

To accommodate for the time resolution the detected hits are bundled into times-
lices, called a frame. Each frame is a snapshot of hits detected in a timeframe of
64ns1. Due to the stringent performance requirements of real-time filtering the
problem size is reduced by only using the four central pixel layers for the online
selection. An example frame can be seen in Fig. 3.1. Reducing the amount of detec-
tor layers used for reconstruction reduces problem size and momentum resolution.
Since the online selection process is only used to reduce the datarate as much as
possible and a full offline reconstruction is done at a later stage, this reduction is
acceptable and shown to be good enough [13].

Tests of the algorithm are performed and evaluated on Monte Carlo data collected
from a Geant4 [2] simulation of the full Mu3e detector.

3.1 Mathematical Notation

We define the coordinate system using the magnetic fields’ direction. Its axis is
set along the longitudinal axis of the detector, designed to be as homogenous as
possible. Along this axis the z-axis of the cartesian coordinate system is defined. The
transverse plane perpendicular to the magnetic field defines the x- and y-axes.

We will use the following notation in this chapter:

• x ∈ R3 denotes a vector, with x = |x|.
• hi is the position of a hit in the i-th layer.

• xt is the transverse projection of the vector x, so only the x and y coordinates
are used.

• hij = hi − hj .

• hi,z is the z-coordinate of the vector hi.

• ĥ denotes a unit vector.

• êz is the unit vector in the direction of the z-axis.

3.2 Helical Tracks

Mu3e only directly observes charged particles inside a solenoidal magnetic field [6].
The motion of these particles is described using a helix. In this section the par-
ticle track, its parametrization and its relation to physical parameters will be pre-
sented.

1This number is based on 3σ uncertainty of the pixel detectors estimated time resolution and may
change for the final MuPix design used in the detector.

16 Chapter 3 Online Event Selection

A charged particle moving through a magnetic field, in a vacuum devoid of any
electrical field is determined by the Lorentz Force [19]:

F = dp
dt

= m
d2x
dt2 = qv × B, (3.1)

where

• B = Bêz is the magnetic field with field strength B,

• q the particles signed charge,

• v ∈ R3 the particle’s velocity,

• m is the particles mass,

• x the position of the particle,

• and natural units with ℏh = c = 1 are used.

Therefore, the Lorentz Force only acts perpendicular to the magnetic field and to
the particles x- and y-movement, while the z-direction is unaffected. Assuming a
constant magnetic field, no other forces acting on the particle and no energy loss
the absolute momentum p of the particle, with p = mγv, is conserved [23].

We can rewrite Eq. (3.1) using only geometric quantities, by replacing the time
t dependence with the path length s(t), which is the distance traveled along the
particles’ trajectory. This is done using the relation ds

dt = v [20]:

dx(s)
dt

= dx
dt

ds

dt
= dx

ds
v (3.2)

d2x
dt2 = d

dt

dx
ds

v = d2x
ds2 v2 (3.3)

Inserting these two equations into Eq. (3.1) results in

d2x
ds2 = qB

mv2 (dx
dt

× êz) = qB

mv
(dx

ds
× ê) (3.4)

⇒ d2x
ds2 = qB

p
(p̂ × êz). (3.5)

The normalized momentum vector p̂ is the tangent, pointing in the direction the
particle moves. This transformation is favorable, since the detector has a better
spatial than temporal resolution [23].

3.2 Helical Tracks 17

x

y

z

λ

ϕ

p̂

Fig. 3.2: Schematic of parameters used for describing a particles’ helical track (blue). The
parameters are shown for the helix when passing through the coordinate systems
origin. p̂ describes the tangent, λ the angle between the tangent and the xy-plane
and ϕ the angle of to the x-axis.

The solution to the three differential equations in Eq. (3.5) is a helix, which can be
described by the equation

x(s) = h0 + p

qB

sin Φ

− cos Φ
Φ tan λ

 = h0 + 1
κ

− sin Φ
cos Φ

−Φ tan λ

 , (3.6)

using 6 parameters [20]. These parameters, as shown in Fig. 3.2, are correlated
and defined by [20]

Φ(s) = s
R cos λ, (3.7)

λ = arcsin dz

ds
∈ (−π

2 , π
2), (3.8)

R = − p

qB
, (3.9)

and the initial hit position h0.

We can now split the helical motion into two planes, the transverse plane defined
by the x- and y-axes and the z, s-plane. The helix projected onto the x, y plane is a
circle with curvature

κt = κ cos λ. (3.10)

In the z, s plane the helix is a linear function, described by

z(s) = h0,z + sin λ = Φ(s)
κ

sin λ. (3.11)

18 Chapter 3 Online Event Selection

Φ01

Φ12

ht,2

λ12

−100 −50 0 50 100
−100

−50

0

50

100

x [mm]

y
[m

m
]

−200 −150 −100 −50 0 50 100 150 200
−100

−50

0

50

100

z [mm]

y
[m

m
]

Fig. 3.3: Sketch of Selection Cuts and the geometric quantities used. The red crosses are
hits from a triplet combination of the first three detector layers.

Source: Based on [13]

3.3 Selection Cuts

The track reconstruction uses a triplet of hits from the first three layer as seed for its
first step. There are n0 · n1 · n2 combinations possible, where ni (with i ∈ {0, 1, 2}),
is the number of detected hits in layer i. Since particles and noise may generate
more than one hit, only Ntrue ≤ min(n0, n1, n2) true tracks are available in the
frame. Performing a full track reconstruction on all these combinations, knowing
only a fraction is real, is computationally inefficient. As a consequence we introduce
Selection Cuts, a filter consisting of four relatively simple calculations for removing
over 95% of all combinations, while keeping over 99% of triplet combinations from
true tracks. We improve upon the algorithm introduced by D. vom Bruch [13], by
analyzing and modifying the filters used, improving the cut away combinations by
over 1.5%, while decreasing the computational cost.

3.3 Selection Cuts 19

The basis for these filter steps is set by the observation that created particles always
have low momenta. Consequently, we can study simple geometric quantities and
their behaviour on true tracks. The quantities used for all filter steps are shown in
Fig. 3.3.

We start by observing the angle between hits in neighbouring layers [13]

cos Φij = ht,i · ht,j

ht,iht,j
, i ∈ 0, 1, j = i + 1. (3.12)

This angle is used as a rough indicator for the path length traversed between hits,
similar to Eq. (3.7). It is important to note that this is only a rough estimate, because
Eq. (3.7) is based on the circle center of the transverse track, while Eq. (3.12) is
based on the origin of the coordinate system.

On simulated data (Fig. 3.4 a) and c)) we can still see a clear drop-off for true track
combinations, while the angles are more evenly distributed for all triplet combina-
tions. Thus, we can choose the cuts pictured by the dashed black line as threshold
for the angles, cutting away over 60% of possible combinations over both angles.
We have to be careful, when choosing the cut values. Each false track cut saves us
expensive computations in the next steps of the Online Event Selection. But cutting
away true combinations may cut away true tracks belonging to a signal event.

Eq. (3.12) can be simplified even further. While the detector layers are no perfect
cylinders, they attempt to resemble one. As consequence we can save the com-
putation of the ht,i’s by replacing them with the mean radii r̄t,i of all points, pre-
calculated on simulation data. Using these removes the need for the square roots
involved in calculating ht,i, a multiplication, as well as one division.

Φ̄ij = r̄t,i · r̄t,j · cos Φ̂ij︸ ︷︷ ︸
=const.

= ht,i · ht,j . (3.13)

Using these simplifications the tail ends of the distributions lose their clear cut, but
drop off more slowly (Fig. 3.4 b) and d)), allowing for the use of a minimum and
maximum value for Φ̂01. This reduction in computation leads to similarly good
results, with ∼ 40.7% of all tracks cut away and ∼ 99.7% true combinations kept in
the simulation for cos Φ̂01 compared to ∼ 40.5% cut away from all and 99.9% true
track combinations kept by Eq. (3.12). To conclude Eq. (3.13) is chosen instead of
Eq. (3.12).

20 Chapter 3 Online Event Selection

0.7

0.5 0.6 0.7 0.8 0.9 1

10−2

100

102

cos Φ0

%
of

co
m

bi
na

ti
on

s

(a)

0.7 1.1

0.6 0.8 1

10−2

100

102

cos Φ̂0

(b)

0.7

0.5 0.6 0.7 0.8 0.9 1

10−2

100

102

cos Φ1

%
of

co
m

bi
na

ti
on

s

(c)

1.10.7

0.5 0.6 0.7 0.8 0.9 1

10−2

100

102

cos Φ̂1

(d)

1.0

0 0.5 1 1.5 2

10−2

100

102

∆λ

%
of

co
m

bi
na

ti
on

s

(e)

0.8

0 0.5 1 1.5 2

10−2

100

102

∆λ̂

(f)

30 200

50 100 150 200 250

10−2

100

102

rt,c

%
of

co
m

bi
na

ti
on

s

(g)

True combinations
All combinations

Fig. 3.4: Histograms for the values specified on the x-axis, showing the percentage of com-
binations for each bin. The dashed black line represents the value this quantity is
cut at. On the left side the original cuts [13] are shown and used, while on the
right side the improved versions introduced in this section are used.

3.3 Selection Cuts 21

As third filter we use the slope λ between neighbouring layers along the z-direction

tan λij = zj − zi

ht,j − ht,i
, i ∈ {0, 1}, j = i + 1. (3.14)

Similar to Eq. (3.12) these are only rough estimations for the track helix parameters,
in this case the dip angle λ. For the filter we are not interested in tan λij , but in the
difference

∆λ = tan λ12 − tan λ01.[13] (3.15)

The distributions for true and all track combinations can be seen in Fig. 3.4 e), with
clear differences in their shape. This allows to cut away ∼ 82.75% of combinations,
while keeping 99.65% of true combinations.

We can observe for Eq. (3.15) a similar behaviour to Eq. (3.12) regarding the ht,i.
Using the same constant radii rt,i we can simplify Eq. (3.15) to

∆λ̄ = (r̄t,2 − r̄t,1) · ∆λ̂︸ ︷︷ ︸
=const.

= z2 − z1 − (z1 − z0) r̄t,2 − r̄t,1
r̄t,1 − r̄t,0︸ ︷︷ ︸

=const.

= z2 − z1 − (z1 − z0)∆r̂ratio. (3.16)

Results for this simplification and the chosen cut are shown in Fig. 3.4 f).

As one final filter step we use the radius rt,c of the circle defined by the three hits
in the transverse plane [13]. This circle is clearly defined and will also be needed
as basis for the track reconstruction shown in the next section. The radius rt,c is
defined by

rt,c = d01d12d20
2[(h0 − h1) × (h2 − h1)]z

, (3.17)

with dij = |hi − hj | [10]. The distribution and chosen threshold values of rt,c are
shown in Fig. 3.4 g). Using rt,c as filter is computationally more expensive, while
also having less impact, cutting only away 19% of all combinations. Since rt,c is
needed for the track reconstruction, we can offset the computational cost by stor-
ing it for chosen hit triplets, to be reused in the track reconstruction. Therefore, rt,c

is chosen as last filter, cutting away ∼ 1% more percent from all possible combina-
tions.

22 Chapter 3 Online Event Selection

cos Φ01 cos Φ12 z01 ∆λ Rt

0

50

100 100 99.79 99.79 99.79 99.7

59.2

39.61

21.38
8.61 6.5co

m
bi

na
ti

on
s

ke
pt

[%
]

(a)

∆λ̂ cos Φ̂01 cos Φ̂12 Rt

0

50

100 99.65 99.4 98.64 98.53

17.25 10.91 6.45 4.8

(b)

True combinations
All combinations

Fig. 3.5: Comparison between new cuts chosen (b) and cuts from D. vom Bruch’s work [13]
(a) performed on simulation data. The graphs show how many combinations are
kept (y-axis) after each step (x-axis). The final results of both methods are similar.
We cut away 1.7% more combinations using our method (b), while only cutting
away ∼ 1.2% of additional true combinations. All while needing less and cheaper
computations.

∆λ̂
z01

0

20

40

60

80

100 99.88 99.88

17.2 17.08co
m

bi
na

ti
on

s
ke

pt
[%

]

(a)

z01 ∆λ̂

0

20

40

60

80

100 100 99.88

51.35

17.08

(b)

True combinations
All combinations

Fig. 3.6: Simulation showing correlations between consecutive hits. Although Eq. (3.18)
cuts away almost 50% from all combinations (b), performing this cut after
Eq. (3.16) (a) yields only an extra of 0.12% combinations removed.

3.3 Selection Cuts 23

Applying these filters after each other in the order shown in Fig. 3.5 b) results in
∼ 4% of all combinations left while keeping ∼ 99% of true combinations. These
filter remove over 1.5% extra combinations compared to the filters and cuts previ-
ously suggested by D. vom Bruch [13]. The previous version does not use the mean
radii r̄t,i and adds one more filter

z10 = z1 − z0. (3.18)

As seen in Fig. 3.6 b), applying Eq. (3.18) first can remove almost 50% of combina-
tions, with Eq. (3.16) applied afterwards reduces it to 17.08% kept. But changing
the order shows that Eq. (3.16) alone already reduces the combinations to 17.2%,
making Eq. (3.18) as filter almost obsolete, removing only 0.12% additional combi-
nations. So we decided to skip this step. These observations also show the impor-
tance of the order that the cuts are applied in.

We have chosen Eq. (3.16) as first filter, removing the largest amount of combina-
tions, quickly reducing the problem size to a fifth using only 4 subtractions and
one multiplication. As second and third step Eq. (3.13) is used for both angles.
Since both have the same computational cost, we are using the angle between the
first and second layer first, having a greater impact. As last filter the transverse
radius rt,c of the circle solution is used, being the computationally most expensive
operation, it is used only on a small fraction of the initial problem.

3.4 Track Reconstruction

Starting from the previously selected triplets full, particle tracks need to be recon-
structed. For the reconstruction the Triplet Fit algorithm [26, 10] is used, which is
designed for MS dominated environments, like the Mu3e experiment. The Triplet
Fit is based on the assumption that in each detector layer the particle gets scattered,
deviating from its previous path, following the curve of a new helix. As such be-
tween each pair of detector layers a new helical track is assumed, with the same
curvature, but with a slight kink in its direction. Therefore, combinations of hits in
three consecutive layers are used, where a kink in the central hit is assumed, and
the two helices are reconstructed, as shown in Section 3.4.1. This algorithm ne-
glects the error in hit position, introduced by the size of the pixel sensors pixel. To
refine the reconstructed tracks multiple consecutive hit triplets are used and com-
bined, reducing the overall reconstruction error, described in Section 3.4.2. For the
online reconstruction only the four inner pixel layers are used, while the full offline
reconstruction uses all available pixel layers.

24 Chapter 3 Online Event Selection

h0

h1

h2

d01
d12

c01
c12

s12s01

rt,01

rt,12
ϕ01

ϕ12

ϕ01

ϕ12
ΦMS

x

y
h0

h1

h2
ΘMS

z01
λ01

λ12
z12

z

s

Fig. 3.7: Sketch of a reconstructed track going through three hits h0, h1, h2 with a kink
from MS in the central hit. Geometric quantities involved in the Triplet Fit are
shown.

Source: Based on [10]

Multiple Scattering is also considered by other, more commonly used algorithms
like the Kalman-Filter [4, 3, 33, 21] and Broken-Lines-Fit [23, 12]. The Kalman-
Filter uses an iterative approach for reconstruction, making it a bad fit for the
performance goals for the online reconstruction. On the other hand the Broken-
Lines-Fit requires a reference track as starting point and then refines the track using
a compute heavy matrix inversion [12]. For the reference track a rough track recon-
struction needs to be done, e.g. using the Triplet Fit algorithm, therefore resulting
in extra work. A detailed comparison of the Triplet-Fit and the Broken-Lines-Fit is
performed by M. Kiehn [23].

3.4.1 Single Triplet Fit

The hit triplet used consists of measured pixel detector hits interpreted as space
points, assumed to have negligible spatial uncertainties. When passing through the
central layer the particle gets scattered resulting in a kink in its trajectory. Assum-
ing no momentum loss and thus a constant curvature κ, this trajectory change is
described by a sudden change in the track angles ϕ and λ, called ΦMS and ΘMS

respectively. An example trajectory including the variables used in this section is
shown in Fig. 3.7.

The distribution of the scattering angles ΦMS and ΘMS is assumed to be Gaussian
with a width which can be approximated using the Highland formula [22, 27, 13]

Θ̄MS = Φ̄MS = 0, (3.19)

σ2
MS = 13.6MeV

|q|
βcp

√
x

X0

[
1 + 0.038 ln x

X0

]
, (3.20)

σ2
Θ = σ2

MS, (3.21)

σ2
Φ = σ2

MS
sin2 λ

, (3.22)

3.4 Track Reconstruction 25

where q is the particles’ charge, β the relativistic velocity, c the speed of light and
x

X0
the traversed material in units of radiation length. Using the correlation κ ∝

1
p , we define our objective as finding the minimal scattering angles for a constant
curvature κ using the method of least-squares [10]

χ2(κ) = ΦMS(κ)2

σ2
Φ

+ ΘMS(κ)2

σ2
Θ

. (3.23)

We can assume dσMS
dκ = 0, since only weak MS occurs [10]. Using this approximation

the minimum of Eq. (3.23) can be found by solving its normal equation

dχ2

dκ
= dΦMS(κ)

dκ

ΦMS(κ)
σ2

Φ
+ dΘMS(κ)

dκ

ΘMS(κ)
σ2

Θ

= sin2 λ

σ2
MS

· dΦMS(κ)
dκ

ΦMS(κ) + 1
σ2

MS

· dΘMS(κ)
dκ

ΘMS(κ) != 0. (3.24)

Alternatively to κ the 3D radius R = 1
κ could be used as argument for Eq. (3.23).

While the idea is the same, the derived final equations differ. We chose κ for better
numerical stability and less complex computations for the final formulas.

The scattering angle ΦMS is defined as [23]

ΦMS(κ) = ϕ12 − ϕ01 − Φ01(κ) + Φ12(κ)
2

, (3.25)

using the angles ϕi and the transverse bending angles Φi(κ) for i ∈ {01, 12}. This
notation for the index i is used for the rest of the section.

To derive a formula for the propagation angles Φi(κ) we use the relations

r2 = r2
t,i + z2

i

Φ2
i

(3.26)

and rt,i = di

2
· 1

sin ϕi
2

. (3.27)

Inserting Eq. (3.27) into Eq. (3.26) results in the transcendental equation for Φi(κ) [23]

sin2 Φi

2
= d2

i

4r2 + z2
i

r2
sin2 Φi

2
Φ2

i

= d2
i κ2

4
+ z2

i κ2 sin2 Φi
2

Φ2
i

. (3.28)

26 Chapter 3 Online Event Selection

This equation has no algebraic solution and thus care has to be taken which solution
is chosen [10]. Analogous the longitudinal scattering angle ΘMS is defined by

ΘMS(κ) = λ12(κ) − λ01(κ), (3.29)

using the relation between λi and Φi [23]

Φi(κ) = zi

R sin λi(κ)
= ziκ

sin λi(κ)
. (3.30)

The non-linearity of Eq. (3.28) and Eq. (3.30) results in a non-linear objective func-
tion Eq. (3.23). Solving this directly would require complex numerical computa-
tions. So instead we linearize the problem around a suitable solution using a first
order Taylor expansion [10]. Based on Eq. (3.19) the scattering angles are generally
low, and therefore we can use the solution ΦMS = 0 as suitable starting point. This
solution describes a circle in the transverse plane through all three triplet points
with radius rt,c. For this solution rt,01 = rt,12 = rt,c applies, which is already used
and calculated by Eq. (3.17) during the Selection Cuts. It is important to note that
this solution is in general not the physically correct solution, since this solution
would result in different three-dimensional radii for the two helices, and thus it
would violate the assumed momentum conservation [23].

Using the circle solution as base, the Taylor expansion for the angles Φi and λi is
defined as

Φi(κ) = Φi,c + dΦi

dκ

∣∣∣
κi,c

(κ − κi,c), (3.31)

and λi(κ) = λi,c + dλi

dκ

∣∣∣
κi,c

(κ − κi,c). (3.32)

The variables denoted by a c in their index are derived from the circle solution.
Φi,c can be calculated using trigonometry by

sin Φi,c

2
= di

2rt,c

⇔ Φi,c = 2 arcsin di

2rt,c
. (3.33)

While this equation has multiple solutions, we are only interested in the first revo-
lution of the helix. Therefore, we assume that Φi,c

2 ∈ (−π, π). Using Eq. (3.33) and
insert it into Eq. (3.28) gives us a relation for the three-dimensional radii ri,c

r2
i,c = r2

t,c + z2
i

Φ2
i,c

= 1
κ2

i,c

(3.34)

3.4 Track Reconstruction 27

Similarly, we can derive the bend angles λi,c for the circle solution from Eq. (3.30)

λi,c = arcsin zi

Φi,cri,c
. (3.35)

The derivatives are defined by [25]

dΦi

dκ

∣∣∣
κi,c

= Φi,c

2κi,c
· αi (3.36)

and
dλi

dκ

∣∣∣
κi,c

= −sin λi,c

κi,c
· βi (3.37)

using the coefficients

αi = 1
1 − δi

, (3.38)

βi = δi

1 − δi
, (3.39)

and δi = cos2(λi,c) ·
(
1 −

Φi,c

2

tan Φi,c

2

)
. (3.40)

With these linearized expressions we can now derive solutions for ΦMS and ΘMS as
a function of the track curvature correction ∆κ = (κ − κc):

ΦMS(κ) = ϕ12 − ϕ01 −
Φ01,c + (κ − κ01,c)dΦ01,c

dκ

2
−

Φ12,c + (κ − κ12,c)dΦ12,c

dκ

2

= ΦMS,c +
(κ − κ01,c)dΦ01,c

dκ

2
+

(κ − κ12,c)dΦ12,c

dκ

2
, (3.41)

ΘMS(κ) = λ12,c + (κ − κ12,c)
dλ12
dκ

− λ01,c − (κ − κ01,c)
dλ01
dκ

= ΘMS,c + (κ − κ01,c)
dλ01
dκ

− (κ − κ12,c)
dλ12
dκ

, (3.42)

with their derivatives

dΦMS

dκ
= 1

2
·
(dΦ01,c

dκ
+ dΦ12,c

dκ

)
, (3.43)

and
dΘMS

dκ
=
(dλ01

dκ
− dλ12

dκ

)
. (3.44)

These can now be used to solve the normal equation Eq. (3.24) for κ, resulting
in [25]

κ =
sin2 λ

(
ΦMS,c + κ01,c

dΦ01,c

dκ + κ12,c
dΦ12,c

dκ

)
+ ΘMS,c + κ01,c

dλ01
dκ − κ12,c

dλ12
dκ

sin2 λ ·
(dΦ01,c

dκ + dΦ12,c

dκ

)2 +
(dλ01

dκ − dλ12
dκ

)2 · 1
σ2

MS

=
sin2 λ

(
ΦMS,c + κ01,c

dΦ01,c

dκ + κ12,c
dΦ12,c

dκ

)
+ ΘMS,c + κ01,c

dλ01
dκ − κ12,c

dλ12
dκ

σ2
κ

· 1
σ2

MS

.

(3.45)

28 Chapter 3 Online Event Selection

Fig. 3.8: Sketch on how triplets are grouped. Each black dot represents a hit and the brown
ellipsis represents a triplet group.

Source: [35]

Using the results of these calculations, χ2 from Eq. (3.23) can be calculated and
used as a measure to describe the quality of the fit, where closer to 0 is better.

3.4.2 Triplets Fit

Incorporating more than three hits in the algorithm for a full track fit requires to
accommodate for multiple triplets in the objective function. Each consecutive triplet
uses the last two hits of the previous triplet as first two and adds a hit from the next
layer as third hit. This schema is pictured in Fig. 3.8. The goal is to find one global
curvature for all triplet combinations minimising the MS angles for each triplet.
This results in the new, global objective function [13]

χ2
global(κ) =

ntriplets∑
t

χ2
t (κ). (3.46)

The scattering angles ΦMS,t and ΘMS,t for each triplet are independent of the other
triplets. Consequently, each χ2

t is minimised individually, and the global curvature
is defined as the weighted average [13]

κ̄ =

∑ntriplets
t

κt

σ2
κ,t∑ntriplets

t
1

σ2
κ,t

. (3.47)

Adding more hits, and thus triplets increases the momentum resolution [10]. For
the Online Event Selection only the first four layers are used, thus two triplets need
to be fit. First the helix for the combinations chosen by the Selection Cuts is fit.
Using this preliminary helix the hit position in the fourth layer is estimated. The

3.4 Track Reconstruction 29

estimated point is used for finding the closest fourth layer hit, which is then used
to build the second triplet and perform a fit. Finally, only tracks with a χ2 error of
smaller than 32 are kept, resulting in 94% of true tracks being kept.

For the tracks kept, the track parameters are calculated, and the tracks are classified
as electrons and positrons, depending on the sign of their global curvature κ, as
described in Section 3.2.

3.5 Vertex Fit

Having possible tracks for a frame reconstructed, we now want to check if the
frame looks like a signal event has happened. Keeping the computational costs
low, we define our goal to not have an exact reconstruction, but rather having a
rough estimate of a possible spatial event vertex. Each track triplet consisting of
two positron tracks and one electron track is analyzed and checked for a possible
event signature, which is defined in Section 2.2. The concept behind the algorithm
is to first reduce the problem complexity by finding a possible event vertex in the
transverse plane and only if such a vertex was found to project it back into the
third dimension. Back in three dimensions the possible vertex is checked for signal
compatibility. If a compatible vertex is found the track will be kept for storage and
offline analysis [13].

Before a possible event vertex is searched for, we start by calculating the total energy
of all particles in the triplet using their curvature κ. The total energy for all three
particles using the relativistic kinetic energy Ekin = (γ − 1)m and natural units is
defined as

Etot =
3∑

i=0
Ei =

3∑
i=0

(
√

p2
i + m2

e − me). (3.48)

If the total energy of all particles, including some margin of error, differs too much
from the muons rest energy Eq. (2.2) is violated. Thus, the triplet is no signal
triplet and no further processing needs to be done. Otherwise, the tracks are now
processed and checked for a possible vertex.

30 Chapter 3 Online Event Selection

r0 r1

c0 c1

i0

i1

dα

Fig. 3.9: Sketch of two circles intersecting, with the variables needed for calculating.

3.5.1 Finding Possible Event Vertices

Next the problem complexity is reduced by searching for a vertex in two dimensions,
namely the transverse plane. The transverse projection of a helix is a circle, as
described in Section 3.2. A circle is defined by its center

c = ht,0 +
(

sin ϕ

cos ϕ

)
· rt, (3.49)

and its radius
rt = 1

κt
, (3.50)

using the same parameters as in the previous sections.

Next all circle-circle intersections are calculated, by first calculating each intersec-
tion for each pair of circles, as seen in Fig. 3.9. Two different circles may intersect
in one single degenerate point, two distinct points or not at all in R2 [40]. This
happens, if the following two equations hold

|c1 − c0| = d ≤ |r1 − r0| , (3.51)

d ≥ r1 + r0. (3.52)

When the circles do intersect, the points of intersection have to be calculated. The
degenerate case with only one intersection point happens only if the distance is
d = r1 + r0. For both intersection points, the triangles △c0i0c1 and △c0i1c1 are
symmetric, meaning the opening angle α is the same for both triangles. Using the
cosine rule for triangles the angle can be calculated with

α = arccos
((r0 + r1 + d)2

2r0d
− 1

)
. (3.53)

3.5 Vertex Fit 31

σ 2
Pixel

layer 0
σ 2

MS s 2

layer 0

Fig. 3.10: Comparison of pixel error (left) and MS error (right) at some point after passing
through a pixel layer. The pixel error remains constant, while the MS error
increases per path length traveled.

One more angle is needed, the slope of d

β = arctan(dx

dy
). (3.54)

Using β, α and c0 we can calculate the intersection points using

i0/1 = c0 + r0 · cos(β ± α). (3.55)

We are only interested in intersections close to the target, represented by a disk with
a radius of 19mm. Therefore, all intersections are thrown away that are farther
away than 6mm, respecting uncertainties. All intersections left are then used for
further analysis, wherre each triplet combination consisting of one intersection per
track pair are used.

The event vertex is specified by a specific point, while the intersection points, in gen-
eral, describes a triangle. We define the two-dimensional event vertex as weighted
mean µt of the intersection points pi, i ∈ {0, 1, 2} weighted by their uncertain-
ties σ2

i [13]

µt =

∑3
i=0

pi

σ2
i∑3

i=0
1

σ2
i

. (3.56)

32 Chapter 3 Online Event Selection

c0

c1

c2

rt,i

µt

d
pt,ca,2

pt,ca,1

pt,ca,0

x

y

Fig. 3.11: The track transverse points for a vertex are estimated by calculating the
weighted mean of three circle-circle intersections µt. Then the points of clos-
est approach pt,ca,i (black) for each circle are found by extending the distance
vector di to the circles hull.

Source: Based on [13]

Since the first layer is wrapped closely around the target, the intersection points
may be relatively close to the detector layer, where the pixel error dominates over
the MS induced error, as shown in Fig. 3.10. Therefore, the uncertainties for each
point are defined by both, the pixels spatial resolution σ2

Pixel and the tracks σ2
MS

error [13]
σ2

i = σ2
MS · s2

i + σPixel, (3.57)

with si as the path length along the circle from the measured detector hit in layer 0.

Next we want to find the point corresponding to the event vertex. This point is
defined as the point of closest approach pca,i to the mean position on each track,
calculated as shown in Fig. 3.11

pt,ca,i = di

di
· rt,i (3.58)

with d = µ̄t − c. (3.59)

This circle point is now projected back onto the 3D helix track. To achieve this the
angle ∆Φ traveled from the initial hit hi,t to pt,ca,i is calculated and used to find the
corresponding z-position on the helix

zi = hi,z − ∆Φ sin λ01
κ

. (3.60)

3.5 Vertex Fit 33

Again the error is calculated, following Eq. (3.57). Using all three z-positions the
mean µz is calculated and used as z-coordinate for our estimated event vertex. The
possible signal vertex position µ for this triplet combination is defined using µz and
µt.

3.5.2 Signal Estimation

Using all points calculated in the previous section, we now calculate the distance
from each closest helix point to the vertex position µ and calculate its error [13]

χ2 =
3∑

i=0

µi

σ2
i

. (3.61)

Among all vertices found from all track triplets we are using only the one with
the smallest χ2 error. If the smallest error is bigger than a threshold of 800, it is
discarded as well. Otherwise, we test the proximity to the target surface for the
chosen vertex. The surfaces radius is approximated as linear slope along the beam
line mirrored at the origin

rtarget(z) = 50mm − 19mm

50mm
· |z| , (3.62)

where the targets half-length is 50mm and its maximal radius 19mm. Thus, the
distance of the point to the targets surface is defined as

dµ = µt − rtarget(µz). (3.63)

Event vertices farther away than 20mm are discarded. Otherwise, the total mo-
mentum of all tracks at the points of closest approach is estimated. If the vectorial
momentum is too high it violates momentum conservation as defined in Section 2.2
and the frame is discarded. In all other cases the frame is kept.

34 Chapter 3 Online Event Selection

4Implementation and Testing

In this chapter we will present the implementation of the Online Event Selection
algorithm. The algorithm is implemented on GPUs using the CUDA Programming
Model (CUDA) [29]. While our implementation is based on D. vom Bruch’s work [13],
her version implemented only the track and vertex reconstruction steps. We are
adding our improved version of the Selection Cuts and improve performance and
accuracy for the other two steps.

The Online Event Selection is going to run on 12 computers. With a timeframe size
of 64ns, one computer has to evaluate over 1.302 · 106 frames per second. We will
show in this section that our implementation satisfies these requirements for phase
I on a 1080Ti.

We start this chapter by introducing CUDA basics, followed by implementation de-
tails. Finally we present and discuss our test results.

4.1 The CUDA Programming Model

CUDA is an API, provided by NVIDIA, used to create applications, running on
NVIDIA GPUs. GPUs were initially designed for massively parallel tasks needed
in graphics processing, such as pixel coloring for high resolutions or simultaneous
transformations for thousands of models, needed to render 3D scenes. With CUDA
we can utilize this hardware for general purpose computing [30].

We will first introduce the basic concept behind the CUDA programming model. The
main building block are functions executed on the GPU, called kernels. Each kernel
is executed by a set amount of threads and is called by a host, which is usually the
CPU. These threads are executed on streaming multiprocessors (SM), which execute
the same instructions for 32 threads at once. This grouping is called a warp. When
encountering branching paths in the program, threads inside a warp follow different
instructions. Each branch has to be executed separately. This thread divergence
slows down computation, since the SM can only utilize a part of its computational
power at once [34, 30].

35

Fig. 4.1: Overview of the cuda threading and memory hierarchy.
Source: [30]

CUDA threads are organized in a hierarchy. Multiple threads are grouped into
equally shaped blocks, where each thread has a unique identifier inside its block.
These blocks are then grouped together in a grid, where each block also has its
unique identifier. When a kernel is launched by the host, the grid and block di-
mensions are specified. The number of threads and blocks also is generally data
and task-dependent and should exceed the number of processors available on the
GPU. This leads to high occupancy and when a thread waits for an expensive op-
eration, such as memory access to complete, other threads can be executed during
that time.

CUDA threads have access to data from multiple memory spaces, as outlined in
Fig. 4.1. Each thread has its own private register memory, which is rather small but
fast. Additionally, all threads inside a block share a memory space, shared memory,
similar in speed to registers. Moreover, all threads from all blocks share one global
memory space. This memory is the largest, but rather slow. It profits highly from
coalesced memory access, where each thread in a warp reads a consecutive mem-
ory address and therefore the whole read operation can be grouped into a single
transaction. One more available memory type is constant memory, also shared by
all threads. Constant memory can only be written to by the host, but is rather fast,
when all threads inside a warp access the same location.

Launching a CUDA kernel blocks the host and forces all CUDA calls to be sequen-
tially executed. But often memory transfer is slow and can be split into multiple
chunks, resulting in time wasted, while waiting, when the GPU could have started
with computations. For situations like these streams exist. Streams allow for tasks

36 Chapter 4 Implementation and Testing

hit0 hit1 · · ·
layer0

· · · hit0 hit1 · · ·
layer4

frameslayer0· · ·layers3· · ·layer0· · ·layers3

frame0framen

cluster

Fig. 4.2: Memory layout for the Online Event Selection. Each cluster of frames consists of
two arrays, one filled with hits and the other with pointers to layer start positions.
The hits are grouped into layers, while the pointers are grouped into frames.

to be performed concurrently. Using this technique data can be split up into mul-
tiple chunks and when one chunk has finished transferring, one stream can start
working, while the next chunk is getting transferred.

4.2 Global Memory layout

The global memory layout for the algorithm is set by the communication with the
FPGA inside the farm PCs. As data arrives on the FPGA, it is bundled into chunks
of multiple frames. These chunks then are transferred to the CPUs main memory
using direct memory access. Ideally no further processing is done by the CPU and
the data is directly transferred to the GPU.

Therefore, the FPGA gathers the frames in chunks, which are already aligned for
the GPUs coalesced memory access pattern. Due to frames varying in size, the
chunk size is not directly set by the number of frames. Having to provide all hit
information, with their layer and frame associations, all in one chunk, results in a
specific memory layout built by the FPGA.

Chunks are build from the start and end at the same time. The last 4 bytes are re-
served for the final number of frames inside the chunk. On arrival a frames hit data
is added to an array at the beginning of the chunk, sorted by their corresponding
layers. When a new layer is started its address in the array is added to a reversed
array at the end of the chunk, where all start positions for all layers of all frames
are stored. If the next frame does not fit into the chunk anymore, the number of
frames stored is stored in the last 4 bytes, the chunk is sent to CPU main memory
and a new chunk is started. This memory schema is shown in Fig. 4.2.

4.2 Global Memory layout 37

4.3 Parallelization of the Algorithm

In this section we introduce how the algorithm outlined in Chapter 3 is parallelised.
Taking a look at the dependencies between the different steps, a few observations
can be made:

• Each frames computation is independent of other frames.

• Each step is directly dependent on the results of the previous step.

• Each hit triplet/track/track triplet is independent of one another.

We use these observations as guideline for the parallelisation of the algorithm. First
we divide the biggest chunks, the frames, among the CUDA blocks, choosing a cyclic
distribution, even though some variance in the frames’ complexity is given. Tests
with a dynamic distribution, where each block takes the next unprocessed frame,
were performed, and no performance difference was measured.

The outline of the main kernel is shown in Listing 1, with details for each step
following in the next sections.

Listing 1 Code outline for the main kernel used for the Online Event Selection.
1 __global__ void main_kernel(Frames *frames_global) {
2 __shared Frame frame;
3 while (frames_global.get_next(frame)) {
4 selection_cuts(frame);
5 __syncthreads();
6 track_reconstruction(frame);
7 __syncthreads();
8 vertex_fit(frame);
9 __syncthreads();

10 frame.save_to_global(frames_global);
11 }
12 }

4.3.1 Loading a Frame

During processing of the frame the hit data needs to be accessed frequently. There-
fore, we load the frame into shared memory, increasing access performance. Due to
the high variance in hits per frame and layer and the resulting exponential increase
in complexity, we skip a frame and mark it for storage directly, if there are to many
hits across all layers.

38 Chapter 4 Implementation and Testing

Respecting coalesced memory access each thread loads the data from a consecutive
memory address. CUDA allows reading from memory in 4, 8 and 16 byte chunks
with one operation, while a hit, consisting of three floats, has a size of 12 bytes.
We compared the performance of explicit 4, 8 and 16 byte loads, to loading hit by
hit, where the compiler decides which operation is used. No measurable difference
in performance was noticed, since the actual data loaded for a frame is relatively
small. Thus, the hit by hit version was chosen.

4.3.2 Selection Cuts

Listing 2 Selection Cuts Outline
1 __device__ bool selection_cuts(Frame &frame) {
2 const size_t max_combs =
3 frame.layer_hits[0] *
4 frame.layer_hits[1] *
5 frame.layer_hits[2];
6 /// Cyclic iteration over all combinations
7 for (size_t comb_idx = threadIdx.x;
8 i < max_combs;
9 i += blockDim.x) {

10 /// Calculate hit indices
11 const size_t i0 = comb_idx /
12 (frame.layer_hits[1] * frame.layer_hits[2]);
13 const size_t i1 = (comb_idx /
14 frame.layer_hits[2]) % frame.layer_hits[1];
15 const size_t i2 = comb_idx
16 % frame.layer_hits[2];
17

18 const hit h0 = frame.layer[0][i0];
19 const hit h1 = frame.layer[1][i1];
20 const hit h2 = frame.layer[2][i2];
21

22 if (test_phi0(h0, h1))
23 if (test_phi1(h1, h2))
24 if (test_delta_lambda(h0, h1, h2))
25 if (test_R_t(h0, h1, h2))
26 frame.add_combination(i0, i1, i2);
27 }
28 return frame.keep;
29 }

During Selection Cuts we need to iterate over all possible triplet combinations and
check for each combination if they meet the cut criteria defined in Section 3.3.
Problems arise at the possible branching point after each check, where thread di-
vergence may arise. We could counteract this by performing each cut over a com-
bination chunk first, before continuing to the next cut. By doing so we introduce

4.3 Parallelization of the Algorithm 39

the need for synchronization between each chunk and possibly each cut, costing
performance.

The alternative way, which we chose, is performing all cuts on a triplet combination
using a cyclic distribution among all threads, as seen in Listing 2. Using Fig. 3.5
from Section 3.3 as reference, we sorted the filters this way, so only a fraction of
each combination is kept after each cut. Therefore, the probability of a thread in
a warp diverging, by keeping the combination, is kept low. Additionally, with the
selection cuts being kept short and low on computations, the duration for a diverged
thread is kept low.

A combination passing all cuts is kept and stored in shared memory for processing
in the next step. If more combinations than a set maximum are found, the frame
is seen as to complex for online reconstruction, marked for storage and all further
processing for the frame is skipped.

4.3.3 Track Reconstruction

Listing 3 Track Reconstruction Outline
1 __device__ bool track_reconstruction(Frame &frame) {
2 // Cyclic iteration over all combinations
3 for (size_t comb_idx = threadIdx.x; comb_idx < frame.num_combs;
4 comb_idx += blockDim.x) {
5 // Retrieve hit indices calculated by Selection Cuts
6 const auto i0 = frame.combinations[comb_idx][0],
7 i1 = frame.combinations[comb_idx][1],
8 i2 = frame.combinations[comb_idx][2];
9 const auto &hit0 = frame.layer[0][i0],

10 &hit1 = frame.layer[i][i1],
11 &hit2 = frame.layer[2][i2];
12

13 Track track = fit_first_triplet(hit0, hit1, hit2);
14

15 const auto hit3_estimated = track.estimate_layer3_hit();
16 const auto hit3 = frame.closest_layer3_hit(hit3_estimated);
17

18 track.fit_fourth_hit(hit3);
19 if (track.chi2 > TRACK_CHI2_MAX)
20 continue;
21

22 frame.add_track(track);
23 }
24 return frame.keep;
25 }

40 Chapter 4 Implementation and Testing

Each track can be reconstructed independently, with the reconstruction itself being
rather expensive. The reconstruction itself does not provide many opportunities for
parallelisation, but has a constant runtime with only a very low amount of possible
branches. These branches are used for edge cases to increase numerical stability.
Consequently, each thread performs a full reconstruction for a triplet combination,
where the triplets are distributed cyclic across all threads. An outline of the steps
used is shown in Listing 3.

After the reconstruction, as described in Section 3.4, is performed, a track is only
kept if the χ2 error is low enough. If kept, the track parameters needed for the
vertex reconstruction are calculated and stored for further processing. Similar to
the previous step, if too many tracks are found, the complexity for the vertex recon-
struction is deemed to high and therefore the frame is marked for storage.

4.3.4 Vertex Reconstruction

We split the vertex reconstruction into two steps, shown in Listing 4. The first part is
described by lines 7 to 20, where we first iterate over all triplet combinations. Since
all combinations only have to be checked once, independent of their order, we di-
vide this step into two loops. One loop over all positron-electron pairs and one loop
over all additional positrons. We parallelise over the first loop in a cyclic distribu-
tion. The second loop decreases in size for each increase of idx_pos0, introducing
possible thread divergence. To reduce the amount of divergence, we first iterate
over all positron indices. This leads to delayed increase of idx_pos0, resulting in
similar amount of iterations for the second loop for threads in a warp.

If to many track triplets were found, we keep the frame and return, otherwise
possible event vertices are reconstructed in the second step. This step is outlined
in lines 27 to 49 of Listing 4 and follows the steps explained in Section 3.5. Here
each thread takes one track triplet and performs a full vertex reconstruction, leaving
early if another thread has found a possible vertex.

First all circle-circle intersections are calculated, then a vertex position is estimated.
If the error is small enough, the distance to the target is evaluated using Eq. (3.63).
Is the vertex close enough the momentum at the points of closest approach is tested
for signal compatibility, with some margin of error. A track triplet passing all these
tests is seen as a possible event vertex, and therefore the frame is selected, and any
further computations for this frame are stopped at their next branching points.

4.3 Parallelization of the Algorithm 41

Listing 4 Vertex Reconstruction Outline
1 __device__ void vertex_reconstruction(Frame &frame) {
2 const size_t num_combs = frame.num_el_tracks * frame.num_pos_tracks;
3 Track tracks[3];
4 size_t idx_pos0, idx_pos1, idx_el;
5

6 // Gather triplets not violating energy conservation
7 while (frame.get_next_track_indices(idx_pos0, idx_el) && !track.keep) {
8 tracks[0] = frame.get_el_track(idx_el);
9 tracks[1] = frame.get_pos_track(idx_pos0);

10 for (size_t idx_pos1 = idx_pos0 + 1;
11 idx_pos1 < frame.num_pos_tracks && !frame.keep; idx_pos1++) {
12 tracks[2] = frame.get_pos_track(idx_pos1);
13 if (test_total_energy(tracks) || frame.keep)
14 continue;
15

16 // Automatically adds triplet to list and marks frame for storage
17 // if to many triplets were found.
18 frame.add_track_triplet(idx_el, idx_pos0, idx_pos1);
19 }
20 }
21 __syncthreads();
22

23 if (frame.keep)
24 return;
25

26 // Full vertex reconstruction starting here
27 while (frame.get_next_track_triplet(idx_pos0, idx_pos1, idx_el) &&
28 !frame.keep) {
29 Intersection intersections[3][2];
30 intersections[0] = get_intersections(tracks[0], tracks[1]);
31 intersections[1] = get_intersections[tracks[1], tracks[2]);
32 intersections[2] = get_intersections[tracks[2], tracks[0]);
33

34 Vertex vertex_estimate = get_vertex_estimate(intersections);
35

36 if (vertex_estimate.chi2 > CHI2_MAX || frame.keep)
37 continue;
38

39 if (vertex_estimate.calc_target_dist() > TARGET_DIST_MAX
40 || frame.keep)
41 continue;
42

43 if (vertex_estimate.calc_total_momentum(tracks)
44 > MOMENTUM_MAX || frame.keep)
45 continue;
46

47 frame.keep = true;
48 return;
49 }
50 }

42 Chapter 4 Implementation and Testing

4.4 Online Monitoring

During runtime of the Mu3e detector it is important to be able to check if everything
is working correctly or if differences to simulations or test runs arise. Therefore,
monitoring systems need to be created to notice and react to issues occurring. One
example system is the online alignment for the Mu3e detector [37], which monitors
the detector positions, making it possible to react to small changes in the alignments
between sensors.

Monitoring for the Online Event Selection is implemented by creating histograms of
important data at multiple points of the algorithm. These histograms can be used
for tracking different detector data, based on the reconstructed tracks or compare
the spectrograms with other physics theories, searching for new physics [13]. Addi-
tionally, differences to the simulation or test runs can be detected, allowing to adjust
parameters, while the detector is running. These histograms are copied back from
the GPU in regular intervals and send to the Maximum Integrated Data Acquisition
System (MIDAS) at PSI, used for displaying and storing monitoring data [6].

Each block builds its own histograms in shared memory. This limits the histograms
size, since shared memory is limited and the algorithm needs quite a lot for buffer-
ing triplets and tracks between the steps. But it also avoids issues of global memory,
where access is slow in general, and slowed down even further by multiple threads
possibly accessing the same location. After a block is finished with its assigned
frames, it adds its values to its counterpart in global memory. This allows for coa-
lesced memory access, improving the global memory access times.

An example histogram gathered during simulation is shown in Fig. 4.3, showing a
good checkpoint for monitoring. We propose to monitor following data:

• The momentum of reconstructed particles, used as energy spectrometer of
particles present in the detector [13].

• The number of kept frames ordered by reason.

• Vertex distance to target.

• Momentum and energy distributions for event vertices and their particles.

4.5 Benchmarks

We will evaluate the performance of our implementation in this section and com-
pare it to the reference implementation by D. vom Bruch [13]. It is shown that our

4.4 Online Monitoring 43

0 20 40 60 80 100

0

1

2

3

4

5

track radius

%
of

tr
ac

ks

Fig. 4.3: Example histogram for the radius r of reconstructed tracks.

implementation is able to perform the Online Event Selection on a NVIDIA Geforce
GTX 1080Ti meeting the performance requirements set.

4.5.1 Test Setup

In previous work by D. vom Bruch [13] it was stated that 12 NVIDIA Geforce GTX
1080Ti have sufficient performance for the Online Event Selection with 50ns time-
frames. Therefore, we are using the 1080Ti as base for our measurements in the
first test machine. Its hardware specifications are:

• CPU: Intel(R) Core(TM) i7-5930K

• GPU: NVIDIA Geforce GTX 1080Ti

• RAM: 16GB

Since D. vom Bruch’s [13] new GPU generations released, the newest being the
RTX 3000-series. Due to the ongoing worldwide chip shortage we could not get a
hold on one of those, thus the newest GPU we are using as comparison is a NVIDIA
Geforce RTX 2080Ti, in our second test setup:

• CPU: AMD Ryzen Threadripper 2970WX

• GPU: NVIDIA Geforce RTX 2080Ti

• RAM: 128GB

The graphics card being the most relevant part for our testings, both setups are
named after their respective Graphic cards in use.

44 Chapter 4 Implementation and Testing

Test data is obtained using the Mu3e simulation framework [6]. This framework is
based on Geant4 [2]. While phase I of the Mu3e project has a planned muon rate
of 1 · 108µ/s, the algorithms’ performance for higher muon rates is studied as well.
This data can then be used as base for planning phase II of the project, with higher
muon rates. Thus, data is simulated for different muon rates between 1 · 108 and
1 · 109µ/s.

4.5.2 Accuracy

approx. % kept
signal tracks 97.45
true tracks 94.56
signal frames 94.42

Tab. 4.1: Measured accuracy for different parts of the algorithm.

Before testing the computational performance of our algorithm we take a look at its
accuracy. For these tests a simulation with one signal event per frame for a muon
rate of 1 · 108µ/s is used, and the results are summarized in Table 4.1. First we
measure the amount of tracks we are able to reconstruct. The track reconstruction
achieves to reconstruct more than 97% of signal tracks and over 94% of true simu-
lated particle tracks. But the total number of tracks reconstructed is actually about
4 times as high as the amount of true simulated tracks, so the amount of false tracks
is quite high.

We are able to correctly identify more than 94% of all frames using the GPU im-
plementation. Applying the same track and vertex reconstruction on hits produced
by simulated hits, yields over 98% of correctly identified frames. Therefore, the
difference can be linked to errors in track reconstruction, failing to reconstruct the
correct signal tracks. We can reduce this difference partially by adjusting the cut
values for the vertex reconstruction. But this would also lead to more frames kept
wrongfully, decreasing the benefit gained by this algorithm, making this less feasible
than trying to increase the reconstruction accuracy.

4.5.3 Parameter Tuning

It is important to find the right parameters to keep the accuracy of the algorithm
high, while keeping the computational cost low. For example the parameters in
Section 3.3 are chosen using simulation data for their high impact on the data
cut away. In this subsection we analyze the performance and accuracy impact for
different cut values for different steps. This analysis is performed on data for a

4.5 Benchmarks 45

muon rate of 1 · 108µ using the 1080Ti setup, but the performance and accuracy
impact is device independent.

We start by testing the impact of maximum number of triplets and tracks allowed,
results are shown in Fig. 4.4. Both results show the expected results, where higher
caps result in less kept frames and higher computational costs. Changes in the
cap for maximum tracks have higher performance impact than for selection cuts,
showing the extensive computational cost for the vertex reconstruction. To reach
our goal of reducing the datarate by a factor of > 100, values have to be chosen
that stay below 1%, even when vertices are found and some fluctuation in the
processed data is detected. Therefore, 512 maximum triplets and 20 maximum
tracks are chosen, keeping the number of frames kept between them at 0.68% in
our simulation.

12
8

25
6

51
2

10
24

0

1

2

3

max selection cut triplets

%
of

fr
am

es
ke

pt

Max Selection Cuts Triplets

1

1.2

1.4

1.6

·106

fr
am

es
pe

r
se

co
nd

12 16 20 24 28 32
0

1

2

max tracks

%
of

fr
am

es
ke

pt
Max Tracks

1.6

1.8

2
·106

fr
am

es
pe

r
se

co
nd

% of frames kept
frames per second

Fig. 4.4: Parameter measurements for the maximum cuts of Selection Cut Triplets (left)
and number of tracks (right). Each plot shows the percentage of frames kept, and
the Event Selections performance, with this cap in place.

4.5.4 Thread, Block and Stream Count

In this subsection tests are performed to determine the best number of threads per
block, number of blocks and streams for a muon rate of 1 ·108µ/s. Goal is to find the
best workload balance for the GPU. First we determine the number of threads per
block, the test results are shown in Fig. 4.5 a). The amount of threads need to be
a good trade-off for the varying amount of parallelism in each step. Selection cuts
still have exponential many parallel tasks, while the track reconsruction starts with
the reduced workload. The vertex reconstruction again has exponential branches,
but only in the number of tracks selected. The results for the 1080Ti setup show a
clear peak for 128 threads, which is chosen for this setup. In contrast, the 2080Ti
does not show a peak, therefore the highest number of threads 256 is chosen.

46 Chapter 4 Implementation and Testing

16 32 64 12
8

25
6

0.5

1

1.5

2

2.5 ·106

threads

fr
am

es
pe

r
se

co
nd

(a)

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

1.5

2

·106

blocks

(b)

1 2 4 8 16 32 64

1.5

2

2.5
·106

streams

fr
am

es
pe

r
se

co
nd

(c)

2080Ti
1080Ti

Fig. 4.5: Benchmarks for different number of threads (a), blocks (b) and streams(c). While
different amount of threads have a high impact, the other have almost no impact.

The test results for number of blocks and number of streams in Fig. 4.5 b) and c)
are not as clear. Both show no drastic increase in performance, for any of the tested
values. The time the data needs to be transferred is rather small compared to the
computation time, therefore the streams are not having a great impact. We are
choosing 4 streams for the next benchmarks. For the final integration the minimum
number of streams still has to be determined, since this depends on the final chunk
size the FPGA transfers. As for block size, we are choosing 16384 blocks, resulting
in 4096 blocks per stream.

4.5.5 Muon Rates

After optimizing the parameters we test the performance of our implementation on
different muon rates. While the goal of this thesis is to write an implementation for
phase I of the Mu3e experiment, with a muon rate of 1 ·108µ/s, studying the impact
of higher muon rates is important as preparation for phase II. The results of these
tests are shown in Fig. 4.6.

It is easily noticeable that higher muon rates, therefore higher number of hits and re-
sulting combinatorics per frame, decrease performance drastically. A double muon

4.5 Benchmarks 47

1E
+08

2E
+08

5E
+08

7E
+08

1E
+09

0

1

2

·106

muon rates

fr
am

es
pe

r
se

co
nd

(a)

2080Ti
1080Ti

1E
+08

2E
+08

5E
+08

7E
+08

1E
+09

0

20

40

0.23 0.34
3.43

3.81

2.64

2 · 10−2 5 · 10−2
0.96

1.31

0.77

0.18 0.34 9.91
23.64

47.62

muon rates

%
of

fr
am

es
ke

pt

(b)

reason to keep:
hit triplet

tracks
vertex found

Fig. 4.6: Measurements for different muon rates. Left a) shows performance measure-
ments for both systems on different muon rates, where the performance drops
proportional to the muon rate. A different measurement is shown in b). Here
the frames kept and the reasons why they are kept is shown. Higher muon rates
introduce more frames kept, where the dominating reason is to many hit triplets
produced during Selection Cuts.

rate roughly halves the frames per seconds evaluated. But it is also clearly visible
that a 1080Ti performs fast enough to meet the requirements for phase I. It is able
to evaluate 1.4 · 106 frames per second, while the 2080Ti trumps this performance
with 2.45 · 106. The 2080Ti even has enough spare performance to allow for muon
rates of up to 2 · 108µ/s to be executed on 12 computers.

Besides a higher requirement in computing power, the algorithm needs to be adapted
and cuts chosen differently for higher muon rates. Increasing muon rates keep more
and more frames. For our target muon rate 1 · 108µ/s only 0.25% of frames are kept
in the simulation, reaching our goal of reducing the data rate by a factor of over
100.

One reason for more frames being kept are the higher amount of hits, resulting in
to many triplets and tracks for each frame. As seen in Fig. 4.6 b) the main reasons
frames are kept is to many hit triplets passing the Selection Cuts. The other reasons
are negligible in comparison. The caps used have been optimized for a muon rate
of 1 · 108µ/s, and therefore have to be adjusted for higher rates as well.

Increasing the caps alone is not enough for 1·109µ/s, since their maximum is defined
by the amount of shared memory available. At this rate to many hits in one frame
may exist, allowing for to many possible triplet combinations. Selection Cuts alone
is not enough to filter the number of triplet combinations to a low enough level to
fit into shared memory. Therefore, an adaption of the algorithm would have to be
developed, where selection cuts and track reconstruction is bundled together and
split into chunks. During computation of these chunks shared memory could be
reused, keeping general memory usage low and allow for possibly higher amounts

48 Chapter 4 Implementation and Testing

1E
+08

2E
+08

5E
+08

7E
+08

1E
+09

0.5

1

1.5

2

2.23
1.99

1.14

0.84

0.4

muon rate

sp
ee

du
p

Fig. 4.7: Performance comparison of our implementation with D. vom Bruch’s [13] version
displayed as speedup. Our implementation has a speedup of over 2 for lower
muon rates, but loses this advantage for higher rates.

of tracks to be saved. As we have seen in Section 4.5.3 the current caps allow
for better performance, which is needed to meet the performance requirements set.
The adaption described above has higher performance requirements, and does not
fit into the requirements for phase I of the Mu3e experiment and is therefore not
tested in this thesis.

Finally, we are using this simulation setup to compare the performance of our im-
plementation with the implementation by D. vom Bruch [13]. It is important to
note, that our implementation includes the whole Online Event Selection algorithm,
while D. vom Bruch’s work only includes the track reconstruction and vertex fit. This
implementation works on previously generated triplet combinations, cut by the old
Selection Cut algorithm. All frames are skipped automatically, where more than
1024 hit triplets are possible. These combinations are calculated using n0 · n1 · n2,
where ni is number of hits in the i-th layer.

Benchmarks are created using the 1080Ti setup and are shown in Fig. 4.7. For
the target muon rate of 1 · 108µ/s we are achieving a speedup of 2.23 with our
implementation. The speedup diminishes for increasing muon rates, due to frames
being skipped for to many possible triplet combinations in D. vom Bruch’s version.
In contrast our implementation always performs the Selection Cuts and only stops
with the frame if during that step to many triplet combinations are found. This
extra computation slows the whole process down for higher rates, where the result
is ultimately the same for a growing number of frames, as seen in Fig. 4.7 b).

4.5 Benchmarks 49

5Summary and Outlook

In search for physics beyond the Standard Model the Mu3e project searches for the
heavily suppressed µ+ → e+e−e+. Detecting the decay would be a critical step for
new physics. Not observing this decay during phase I of the experiment would lead
to a new upper limit for the branching ratio to 2 · 10−15. For achieving this goal
a high muon rate and a detector with good momentum and vertex resolution is
required, introducing high amounts of data to be collected, including a high amount
of background. This thesis focused on filtering this data, reducing the actual data
rate collected by a factor of over 100% in realtime.

We have introduced an algorithm consisting of three steps for the filter process,
called Online Event Selection. This algorithm was previously introduced by D. vom
Bruch [13] and improved in this work. The algorithm uses detected hits from the
detectors four inner layers as input, bundled into timeframes. It reconstructs pos-
sible particle tracks from these hits using combinations of three hits in the first
three layers. As first step these hit combinations are filtered using Selection Cuts,
where unlikely combinations are filtered out using simple calculations. We have
introduced new improvements in this step, by reducing the amount of steps needed
and their computational complexity. These improvements lead to only 5% of hit
combinations being kept for the track reconstruction.

After filtering the hit combinations they are used as base for track reconstruction.
The track reconstruction used is based on the offline track reconstruction for the
Mu3e detector using a novel triplet fit for reconstructing the tracks [10]. It is based
on the assumption of Multiple Scattering being the only source of uncertainty, bend-
ing particle tracks when passing through detector material. These kinks introduce
the need for reconstruction of two helices with same curvature and meeting in the
central hit. Multiple Scattering and linearization are used to derive an analytical
solution for these two helices.

With the reconstructed track as basis we are searching for possible spatial event
vertices in this frame. If such an vertex is detected, the frame is kept, otherwise
it is discarded. The vertex reconstruction uses triplets of two positron tracks and
one electron track. These tracks are tested for signal compatibility, by calculating
their combined energy. Passing this test the track triplets are projected into two

51

dimensions, finding their intersections. If intersections between all tracks are found,
a vertex estimate is estimated as weighted mean of these intersections. Then the
closest points on the tracks to this vertex are calculated, projected back into three
dimensions and checked for proximity to the target. If this proximity is given for all
three points on their tracks, the total momentum is calculated and tested for signal
compatibility. Passing this test leads to the assumption, that a signal event could
have happened in this frame, and the frame is kept for storage.

After introducing the algorithm we introduced our implementation on GPUs us-
ing CUDA, including a memory layout, online monitoring and the parallelisation
schema. This implementation was then tested and shown to reach the goal of re-
ducing the data rate by a factor of 100 for the targeted muon rate of 1 · 108µ/s. We
achieve an accuracy of > 97% for signal track reconstruction and are able to keep
more than 94% of all signal tracks. Finally, we compared our implementation with
the previous work by D. vom Bruch [13], which only implemented the track and
vertex reconstruction on GPUs. Still we achieved a speedup of more than 2 for our
targeted muon rate. These results show that a NVIDIA Geforce GTX 1080Ti is a
good lower bound for computational power needed for the Mu3e detector.

5.1 Outlook

The vertex reconstruction algorithm provides good results, but is bound by the
track reconstruction efficiency. This can be improved by including more layers into
the reconstruction algorithm, increasing computational requirements. But as the
test results have shown newer graphics cards, like the NVIDIA Geforce RTX 2080
Ti have spare performance, which could be utilized for track reconstruction using
more layers.

The algorithm introduced only uses fixed frames as basis for reconstruction, not
respecting a particle passing between multiple layers over neighbouring frames.
Therefore, the algorithm should be improved in the future by considering these
exceptions as well. One way to achieve this is to always reconstruct two frames
together, possibly reducing the general frame window below 64ns. This introduces
a lot of extra computational complexity. New and faster GPU generations could
introduce the performance needed for this step.

Another direction to increase performance could be evaluated, by using direct mem-
ory access from FPGAs to GPUs. This is not possible with the gaming graphic cards
used, but the ongoing chip shortage shortens the gap in price between gaming and
professional graphic cards, making this a feasible option to explore.

52 Chapter 5 Summary and Outlook

Bibliography

[1]G Aad, T Abajyan, B Abbott, et al. „Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC“. In: Physics Letters
B 716 (1 2012), pp. 1–29 (cit. on p. 1).

[2]S. Agostinelli, J. Allison, K. Amako, et al. „Geant4a simulation toolkit“. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De-
tectors and Associated Equipment 506 (3 July 2003) (cit. on pp. 16, 45).

[3]Xiaocong Ai, Corentin Allaire, Noemi Calace, et al. A Common Tracking Software Project.
2021 (cit. on p. 25).

[4]Xiaocong Ai, Georgiana Mania, Heather M. Gray, Michael Kuhn, and Nicholas Styles.
„A GPU-based Kalman Filter for Track Fitting“. In: Computing and Software for Big
Science (2021) (cit. on p. 25).

[5]Kazuyoshi Akiba, Marina Artuso, Ryan Badman, et al. „Charged particle tracking with
the Timepix ASIC“. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 661.1 (Jan. 2012),
pp. 31–49 (cit. on p. 11).

[6]K. Arndt, H. Augustin, P. Baesso, et al. „Technical design of the phase I Mu3e experi-
ment“. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 1014 (Oct. 2021), p. 165679 (cit. on
pp. 2, 3, 5–9, 12–14, 16, 43, 45).

[7]Heiko Augustin, Niklaus Berger, Sebastian Dittmeier, et al. „The MuPix system-on-chip
for the Mu3e experiment“. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 845 (Feb.
2017), pp. 194–198 (cit. on p. 11).

[8]J. Baudot, G. Bertolone, A. Brogna, et al. „First test results Of MIMOSA-26, a fast
CMOS sensor with integrated zero suppression and digitized output“. In: IEEE, Oct.
2009, pp. 1169–1173 (cit. on p. 11).

[9]U. Bellgardt, G. Otter, R. Eichler, et al. „Search for the decay µ+ → e+e+e−“. In:
Nuclear Physics B 299 (1 Mar. 1988), pp. 1–6 (cit. on pp. 2, 5).

[10]Niklaus Berger, Moritz Kiehn, Alexandr Kozlinskiy, and Andre Schöning. „A New Three-
Dimensional Track Fit with Multiple Scattering“. In: Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment (2016) (cit. on pp. 22, 24–27, 29, 51).

53

[11]W. Bertl, S. Egli, R. Eichler, et al. „Search for the decay µ+ → e+e+e−“. In: Nuclear
Physics B 260 (1 Oct. 1985), pp. 1–31 (cit. on p. 7).

[12]V. Blobel. „A new fast track-fit algorithm based on broken lines“. In: Statistical Problems
in Particle Physics, Astrophysics and Cosmology - Proceedings of PHYSTAT 2005 (February
2006), pp. 68–71 (cit. on p. 25).

[13]D. vom Bruch. „Pixel Sensor Evaluation and Online Event Selection for the Mu3e Ex-
periment“. PhD thesis. Heidelberg University, 2017 (cit. on pp. 3, 9, 12–16, 19–25, 29,
30, 32–35, 43, 44, 49, 51, 52).

[14]C. Cavicchioli, P.L. Chalmet, P. Giubilato, et al. „Design and characterization of novel
monolithic pixel sensors for the ALICE ITS upgrade“. In: Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 765 (Nov. 2014), pp. 177–182 (cit. on p. 11).

[15]Huangshan CHEN, Wei Shen, Konrad Briggl, et al. „Characterization Measurement Re-
sults of MuTRiG - A Silicon Photomultiplier Readout ASIC with High Timing Precision
and High Event Rate Capability“. In: Proceedings of Topical Workshop on Electronics for
Particle Physics PoS (Mar. 2018), p. 008 (cit. on p. 12).

[16]Mu3e Collaboration. Mu3e internal Wiki (cit. on pp. 5, 6, 10, 11, 15).

[17]R. R. Crittenden, W. D. Walker, and J. Ballam. „Radiative Decay Modes of the Muon“.
In: Physical Review 121 (6 Mar. 1961), pp. 1823–1832 (cit. on p. 7).

[18]W. Demtröder. Experimentalphysik 4 - Kern-, Teilchen- und Astrophysik (cit. on pp. 1,
2).

[19]Wolfgang Demtröder. Experimentalphysik 2: Elektrizität und Optik. Springer, 2004 (cit.
on pp. 10, 17).

[20]R. Frühwirth and R. K. Bock. Data Analysis Techniques for High-Energy Physics. Cam-
bridge University Press (cit. on pp. 17, 18).

[21]Andreas Herten. „GPU-based Online Track Reconstruction for PANDA and Application
to the Analysis of D → Kππ“. In: (2015), 255 S. (Cit. on pp. 3, 25).

[22]Virgil L. Highland. „Some practical remarks on multiple scattering“. In: Nuclear Instru-
ments and Methods 129 (2 1975), pp. 497–499 (cit. on pp. 9, 25).

[23]M. Kiehn. „Pixel Sensor Evaluation and Track Fitting for the Mu3e Experiment“. PhD
thesis. Heidelberg University, 2016 (cit. on pp. 17, 25–27).

[24]M. Köppel. „Data Flow in the Mu3e Filter Farm“. MA thesis. Mainz University, 2019
(cit. on p. 12).

[25]Alexandr Kozlinskiy. Personal Notes. 2022 (cit. on p. 28).

[26]Alexandr Kozlinskiy. „Track reconstruction for the Mu3e experiment based on a novel
Multiple Scattering fit“. In: EPJ Web of Conferences 150 (2017), pp. 1–10 (cit. on p. 24).

[27]Gerald R. Lynch and Orin I. Dahl. „Approximations to multiple Coulomb scattering“.
In: Nuclear Inst. and Methods in Physics Research, B 58 (1 1991), pp. 6–10 (cit. on
p. 25).

[28]M. Müller. „A Control System for the Mu3e Data Acquisition“. MA thesis. Mainz Uni-
versity, 2019 (cit. on p. 13).

54 Bibliography

[29]NVIDIA. CUDA Toolkit. URL: https://developer.nvidia.com/cuda-toolkit (cit. on
p. 35).

[30]NVidia and University of Illinois. NVidia Teaching Kit (License: Creative Commons BY-
NC-SA) (cit. on pp. 35, 36).

[31]David Rohr. „Usage of GPUs in ALICE Online and Offline processing during LHC Run
3“. In: EPJ Web of Conferences 251 (2021), p. 04026 (cit. on p. 3).

[32]David Rohr, Sergey Gorbunov, and Volker Lindenstruth. „GPU-accelerated track recon-
struction in the ALICE High Level Trigger“. In: Journal of Physics: Conference Series 898
(3 2017) (cit. on p. 3).

[33]David Rohr, Sergey Gorbunov, Schmidt Ole Marten, and Ruben Shahoyan. „GPU-Based
Online Track Reconstruction for the ALICE TPC in Run 3 With Continuous Read-Out“.
In: EPJ Web of Conferences 214 (2019), p. 01050 (cit. on p. 25).

[34]Bertil Schmidt, Jorge Gonzalez-Dominguez, Christian Hundt, and Moritz Schlarb. Par-
allel Programming: Concepts and Practice. 1st. Morgan Kaufmann Publishers Inc., 2017
(cit. on p. 35).

[35]A. Schöning. A Three-Dimensional Helix Fit with Multiple Scattering using Hit Triplets.
June 2014. Internal Notes (cit. on p. 29).

[36]Mike Seidel et al. „Production of a 1.3 MW Proton Beam at PSI“. In: Conf. Proc. C
100523 (2010). Ed. by Akira Noda, Christine Petit-Jean-Genaz, Volker R W Schaa,
Toshiyuki Shirai, and Akihiro Shirakawa, TUYRA03 (cit. on p. 6).

[37]G. Stanic. „A Camera Alignment System for the Mu3e Experiment“. MA thesis. Mainz
University, 2021 (cit. on pp. 11, 43).

[38]M. Tanabashi, K. Hagiwara, K. Hikasa, et al. „Review of Particle Physics“. In: Physical
Review D 98 (3 Aug. 2018), p. 030001 (cit. on p. 8).

[39]The Nobel Prize in Physics 2015 - Press Release. URL: https://www.nobelprize.org/
prizes/physics/2015/press-release/ (cit. on p. 1).

[40]Eric W. Weisstein. Circle-Circle Intersection. URL: https://mathworld.wolfram.com/
Circle-CircleIntersection.html (cit. on p. 31).

[41]A. X. Widmer and P. A. Franaszek. „A DC-Balanced, Partitioned-Block, 8B/10B Trans-
mission Code“. In: IBM Journal of Research and Development 27 (5 Sept. 1983), pp. 440–
451 (cit. on p. 14).

[42]Wikipedia, Standard-Model. URL: https://en.wikipedia.org/wiki/File:Standard_
Model_of_Elementary_Particles.svg (cit. on p. 1).

Bibliography 55

https://developer.nvidia.com/cuda-toolkit
https://www.nobelprize.org/prizes/physics/2015/press-release/
https://www.nobelprize.org/prizes/physics/2015/press-release/
https://mathworld.wolfram.com/Circle-CircleIntersection.html
https://mathworld.wolfram.com/Circle-CircleIntersection.html
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

List of Figures

1.1 Elementary particles of the Standard Model. 1

2.1 The compact muon beamline used for the Mu3e experiment as a CAD-
Model. The incoming proton beam (red) is aimed at target E, where
muons are created and bundled into a muon beam (green), which is
then aimed at the Mu3e experiment. 5

2.2 Schematics of the signal and background topologies. Electron tracks
are in blue, positrons in red. The signal a) has a clear point of origin
for all tracks and no extra particles, In contrast internal conversion b)
produces two extra particles, absorbing some of the electron/positron
momentum. For the combinatorial background c) no clear point of
origin exists for the three tracks. 6

2.3 A particle passing through a material gets scattered along the way, e.g.
through Coulomb Scattering by nuclei. This sum of these phenomena
is called Multiple Scattering. This picture shows the offset and kink
angle that can be used to describe this. 8

2.4 Mu3e detector schematic cut along the longitudinal axis of the barrels,
consisting of pixel, scintillating fibers and scintillating tile layers. The
muon beam hits the target in the center where electrons (blue) and
positrons (red) are created. These move on helical tracks through the
multiple layers of the detector. 10

2.5 Schematic of four pixels. For the front right pixel the on-chip electron-
ics and a cross-section showing the electric field is shown. 11

2.6 A particle passing through scintillating material excites electrons. The
photon created during de-excitation can be guided by reflection to one
of the fibers ends. 12

2.7 Overview of the Mu3e data acquisition chain. 13

3.1 Depictions of a simulated frame. Top: 3D render of the target and
simulated tracks [16]. Bottom: Detected hits in the detector layers,
projected onto the transverse (bottom-left) and longitudinal (bottom-
right) plane. The y-position for the longitudinal plane are projected
onto their layer. 15

57

3.2 Schematic of parameters used for describing a particles’ helical track
(blue). The parameters are shown for the helix when passing through
the coordinate systems origin. p̂ describes the tangent, λ the angle
between the tangent and the xy-plane and ϕ the angle of to the x-axis. 18

3.3 Sketch of Selection Cuts and the geometric quantities used. The red
crosses are hits from a triplet combination of the first three detector
layers. 19

3.4 Histograms for the values specified on the x-axis, showing the percent-
age of combinations for each bin. The dashed black line represents
the value this quantity is cut at. On the left side the original cuts [13]
are shown and used, while on the right side the improved versions
introduced in this section are used. 21

3.5 Comparison between new cuts chosen (b) and cuts from D. vom Bruch’s
work [13] (a) performed on simulation data. The graphs show how
many combinations are kept (y-axis) after each step (x-axis). The final
results of both methods are similar. We cut away 1.7% more com-
binations using our method (b), while only cutting away ∼ 1.2% of
additional true combinations. All while needing less and cheaper com-
putations. 23

3.6 Simulation showing correlations between consecutive hits. Although
Eq. (3.18) cuts away almost 50% from all combinations (b), perform-
ing this cut after Eq. (3.16) (a) yields only an extra of 0.12% combina-
tions removed. 23

3.7 Sketch of a reconstructed track going through three hits h0, h1, h2 with
a kink from MS in the central hit. Geometric quantities involved in the
Triplet Fit are shown. 25

3.8 Sketch on how triplets are grouped. Each black dot represents a hit
and the brown ellipsis represents a triplet group. 29

3.9 Sketch of two circles intersecting, with the variables needed for calcu-
lating. 31

3.10 Comparison of pixel error (left) and MS error (right) at some point
after passing through a pixel layer. The pixel error remains constant,
while the MS error increases per path length traveled. 32

3.11 The track transverse points for a vertex are estimated by calculating the
weighted mean of three circle-circle intersections µt. Then the points
of closest approach pt,ca,i (black) for each circle are found by extending
the distance vector di to the circles hull. 33

4.1 Overview of the cuda threading and memory hierarchy. 36

58 List of Figures

4.2 Memory layout for the Online Event Selection. Each cluster of frames
consists of two arrays, one filled with hits and the other with pointers
to layer start positions. The hits are grouped into layers, while the
pointers are grouped into frames. 37

4.3 Example histogram for the radius r of reconstructed tracks. 44
4.4 Parameter measurements for the maximum cuts of Selection Cut Triplets

(left) and number of tracks (right). Each plot shows the percentage of
frames kept, and the Event Selections performance, with this cap in
place. 46

4.5 Benchmarks for different number of threads (a), blocks (b) and streams(c).
While different amount of threads have a high impact, the other have
almost no impact. 47

4.6 Measurements for different muon rates. Left a) shows performance
measurements for both systems on different muon rates, where the
performance drops proportional to the muon rate. A different mea-
surement is shown in b). Here the frames kept and the reasons why
they are kept is shown. Higher muon rates introduce more frames kept,
where the dominating reason is to many hit triplets produced during
Selection Cuts. 48

4.7 Performance comparison of our implementation with D. vom Bruch’s [13]
version displayed as speedup. Our implementation has a speedup of
over 2 for lower muon rates, but loses this advantage for higher rates. . 49

List of Figures 59

List of Tables

2.1 List of the most frequent muon decay modes allowed by the standard
model building the main sources of background particles in the exper-
iment. The branching ratio describes the fraction of particles decaying
in this decay mode. 7

4.1 Measured accuracy for different parts of the algorithm. 45

61

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

Declaration

I hereby declare that I have written the present thesis independently and without
use of other than the indicated means. I also declare that to the best of my knowl-
edge all passages taken from published and unpublished sources have been refer-
enced. The paper has not been submitted for evaluation to any other examining
authority nor has it been published in any form whatsoever.

Mainz, February 09, 2022

Fritz Valentin Henkys

	Titlepage
	Abstract
	1 Introduction
	1.1 Lepton Flavour Violation
	1.2 Online Data Processing

	2 Mu3e Experiment
	2.1 Experimental Setup
	2.2 Signal and Background Processes
	2.2.1 Signal Event
	2.2.2 Background Processes

	2.3 The Mu3e Detector
	2.3.1 Concept
	2.3.2 The MuPix Pixel Detector
	2.3.3 Scintillating fibers
	2.3.4 Scintillating Tiles

	2.4 Data Acquisition
	2.4.1 Data Rates

	3 Online Event Selection
	3.1 Mathematical Notation
	3.2 Helical Tracks
	3.3 Selection Cuts
	3.4 Track Reconstruction
	3.4.1 Single Triplet Fit
	3.4.2 Triplets Fit

	3.5 Vertex Fit
	3.5.1 Finding Possible Event Vertices
	3.5.2 Signal Estimation

	4 Implementation and Testing
	4.1 The CUDA Programming Model
	4.2 Global Memory layout
	4.3 Parallelization of the Algorithm
	4.3.1 Loading a Frame
	4.3.2 Selection Cuts
	4.3.3 Track Reconstruction
	4.3.4 Vertex Reconstruction

	4.4 Online Monitoring
	4.5 Benchmarks
	4.5.1 Test Setup
	4.5.2 Accuracy
	4.5.3 Parameter Tuning
	4.5.4 Thread, Block and Stream Count
	4.5.5 Muon Rates

	5 Summary and Outlook
	5.1 Outlook

	Bibliography
	Colophon
	Declaration

