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Abstract

The Mu3e Experiment searches for the charged lepton-flavour violating decay
µ+ → e+e−e+. The main detector is a multi-layer pixel tracker consisting of
High-Voltage Monolithic Active Pixel Sensors (HV-MAPS). Due to vibrations,
thermal fluctuations, and limited assembling accuracy, misalignment of the de-
tector is a major precision bottleneck. An online alignment procedure based on
particle tracks is foreseen to be integrated, to address this problem. In order to
be suitable for online alignment, candidate particles should have a constant rate
and a high momentum. With a detectable rate of about 10 Hz and momenta of
a few GeV/c, cosmic muons meet these requirements. However, selecting cos-
mic muons from the decay particles produced at a beam rate of 108 Hz imposes
great demands on data processing. To tackle this challenge, the utilization of
hardware-based Pattern Recognition using associative memory chips has been
proposed to filter potential cosmic muon tracks. This would reduce the heavy
combinatorial effort and the data throughput to the reconstruction.

Within this thesis, the Cosmic Trigger simulation was developed, which al-
lows for a feasibility study of this aforementioned approach. Furthermore, the
optimisation of the concrete pattern design was a main objective. Based on in-
sights gained from the simulation, recommendations towards a future implemen-
tation in hardware could be derived. In the scope of the study, it was possible to
reach trigger selectivities such that only every 28th frame must be reconstructed
while detecting cosmic muons with an efficiency of 50 %.

Zusammenfassung

Das Mu3e-Experiment sucht nach dem leptonzahlverletzenden Zerfall von Anti-
Myonen µ+ → e+e−e+. Die Hauptkomponente des Detektors bildet ein Pixel-
tracker, bestehend aus bis zu vier Lagen von hochspannungsbetriebenen mo-
nolitischen aktiven Pixelsensoren (HV-MAPS). Externe Einflüsse, wie Tempe-
raturschwankungen, Vibrationen oder begrenzte Fertigungsgenauigkeit, können
für Verformung und Fehlausrichtung sorgen, was die Messgenauigkeit des gesam-
ten Systems beeinträchtigen kann. Um diesem Problem entgegenzutreten, ist ei-
ne geometrische Echtzeitkorrektur (Alignment) mithilfe von Teilchenspurdaten
im Detektor vorgesehen. Geeignete Teilchen für Alignment haben eine konstan-
te Rate und weisen einen hohen Impuls auf. Diese Anforderungen werden von
kosmischen Myonen erfüllt, die mit ca. 10 Hz und mehreren GeV/c im Detek-
tor eintreffen. Die Herausforderung besteht darin, die raren Myonen aus den
bei einer Rate von 108 Hz produzierten Zerfallsteilchen herauszufiltern. Einen
möglichen Lösungsansatz bietet die hardwarebasierte Mustererkennung (Pattern
Recognition) mithilfe von assoziierten Speicherchips. Dadurch kann sowohl der
Datendurchsatz als auch der kombinatorische Aufwand bei der Rekonstruktion
deutlich reduziert werden.

Die vorliegende Arbeit bestand im Wesentlichen aus der Entwicklung einer
Simulationssoftware, die eine Machbarkeitsstudie des Cosmic-Trigger -Konzepts
ermöglicht. Desweiteren sollte das verwendete Musterdesign optimiert werden.
Basierend auf den Erkenntnissen aus der Simulation konnten Empfehlungen hin-
sichtlich einer zukünftigen Realisierung gegeben werden. Bei einer Signaleffizienz
von 50 % der kosmischen Myonen, war es möglich die Frame-Rate um einen Fak-
tor von 28 zu reduzieren.
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Introduction

The field of experimental particle physics aims to answer some of the very
fundamental questions of the universe by studying physical processes at the
smallest spatial and largest energy scales possible. Since the precision of the
detectors limits the observation of new discoveries, these are constantly im-
proved. Mechanical misalignment is a major bottleneck for such high precision
measurements. In order to achieve high measurement accuracy, detector align-
ment and calibration procedures are required.

One major alignment approach is the utilisation of external particles and
their corresponding tracks through the detector from which systematic spatial
deviations of individual sensor tiles can be calculated. Cosmic ray muons offer
ideal alignment data due to their constant rate, high momentum and little
scattering. Therefore, they are envisaged to be used for an online alignment
of the Mu3e experiment.

Detecting cosmic muons with a rate in the order of 10 Hz, while the decays
originated at the beam produce a event rate in the order of 108 Hz is a non-
trivial task. It could be accomplished by reconstructing the complete data,
which on the other hand leads to an enormous computational effort. Indeed,
most particle physics experiments deal with event rates so high, that the pro-
duced data exceeds the handling capabilities of the associated data processing
system if every event was supposed to be stored. Nevertheless, trigger systems
offer a solution to this challenge and are a key component in most particle
physics experiments. They are capable to make fast decisions which events to
keep, while only a fraction of the total events can be stored.

At Mu3e, a trigger could be capable of narrowing down the rate of frames
that potentially contain a cosmic muon track. In a second step, these frames
are fully reconstructed. The selectivity of the trigger would reduce the total
required data throughput to the reconstruction and thereby the hardware
requirements.
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The concrete trigger approach studied in this thesis is based on hardware
pattern recognition using custom Associative Memory (AM) chips. Patterns
of cosmic muon tracks are pre-computed using a Monte Carlo simulation data
and subsequently loaded to the AMs. Reduced granularity hit information
from the detector is used to quickly lookup if any pre-computed cosmic muon
patterns can be found in the detector data within one frame of 50 ns. If this
is the case, the frame is reconstructed.

This Thesis is dedicated to a detailed feasibility study of the presented
approach, i.e. the Cosmic Trigger. Within its scope, a simulation framework
that allows for the study of a pattern recognition on the Mu3e pixel detector
was developed. The thesis takes the first step towards an evaluation and
performance estimation of the Cosmic Trigger concept.

The Thesis is structured into three main parts. The Introduction (I)
presents the physics theory and motivation for the Mu3e Experiment as well
as some basics relevant for the further study (Chapter 1), and gives an in-
troduction to the Mu3e experiment (Chapter 2). The Methodology part (II)
focusses on pattern recognition in general, as well as in regard of the Mu3e
experiment (Chapter 3). Furthermore, an introduction to the developed simu-
lation software is given and important figures of merit are defined (Chapter 4).
The final part, Results (III), walks through the evaluation process and shows
the concrete simulation outcomes (Chapter 5). From these, a conclusion is
drawn and practical recommendations for a future implementation are given
(Chapter 6).
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Chapter 1

Physics Motivation and Theory

This Chapter provides a short summary of the underlying physics of the Mu3e experiment and
introduces to some physical effects of relevance for the Cosmic Trigger.

1.1 The Standard Model

The Standard Model (SM) of particle physics is supported by various experimental findings.
So far, and especially since the discovery of the Higgs boson in 2012, which made the SM a
self-complete theory, it describes the vast majority of observations in particle physics with a
sublime accuracy. Nevertheless, the SM fails at offering a grand unifying theory. Fundamental
short-comings are, for example, the missing description of the gravitational force and that it
does not provide an explanation of neutrino masses or dark matter. The Mu3e experiment is
one of the experimental approaches that search for physics beyond the Standard Model in order
to find some missing but yet observable phenomena.

The SM describes the fundamental particles as well as their interactions. It incorporates
two basic classes of particles: there are twelve matter particles, the fermions as well as particles
that mediate interactions, the so-called bosons. These are depicted in Figure 1.1.

Fermions are particles with an elementary spin-1/2. They can be subdivided into quarks
and leptons, both occurring in three generations respectively. There are charged leptons, the
electrons (e), the muons (µ) and the tauons (τ). These experience the electroweak and the
electromagnetic force. For each of them exists a corresponding neutrino, the electron-neutrino,
the muon-neutrino and the tauon-neutrino, which only experience the electroweak force. Quarks
experience the electromagnetic and the electroweak force and do carry a color charge, which
implies that they experience the strong force as well. They are the building blocks of composite
particles, such as the nuclear particles, the protons and the neutrons.

Vector bosons (or gauge bosons) are particles with spin-1. They are mediators of the different
interactions or forces between particles. The gluons are the associated mediators of the strong
force. There exist eight gluons that carry different color charge configurations. The electrically
charged W± and the neutral Z boson mediate the electroweak force as the photon does for the
electromagnetic force. There also exists one scalar boson within the SM, the Higgs-Boson. It
has no spin and is neither electric nor colour charge.

1.2 Charged Lepton Flavour Violation

The Mu3e experiment searches for the charged lepton flavor violating (CLFV) decay µ → eee
which is strongly suppressed in the SM with branching ratio B(µ→ eee)� 10−50 [2]. According
to the SM, the lepton flavour is conserved at tree level. The lepton number L` is defined by the
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CHAPTER 1. PHYSICS MOTIVATION AND THEORY

Figure 1.1: The Standard Model of particle physics [1].

difference of number of leptons n` and number of anti-leptons n̄` as such:

L` = n` − n̄`, (1.1)

whereby the index ` stands for the lepton flavor (e, µ or τ). L` is conserved within each family.
However, within the SM, lepton flavour violation exists via neutrino mixing, which is strongly
suppressed. The leading order Feynman-Diagram of this process is shown in Figure 1.2. The
strong suppression is due to the branching ratio of the decay being proportional to the inverted
fourth power of the mass of the W boson m−4

W , which is mW ≈ 80GeV/c2. Also the neutrino
mass difference of the neutrino mixing influences the branching ratio, which reduces it even
further.

Figure 1.2: Feynman digramm of µ→ eee via neutrino-mixing (indicated by cross) [2]

In its final phase, Mu3e is supposed to be capable to search for the process µ → eee with
a sensitivity of 10−16. If the decay could be observed underneath this sensitivity threshold,
this would indicate the presence of other decay channels besides the ones allowed within the
SM and would therefore give valid evidence on physics beyond the SM. One theoretical concept
that allows for a decay with significantly higher branching ratio are SUper-SYmmetric particles
(SUSY) as shown in Figure 1.3 (left). Additionally, lepton flavour violation on tree level could
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CHAPTER 1. PHYSICS MOTIVATION AND THEORY

be imaginable (Figure 1.3 (right)) which could point the existence of new, heavy mediating
particles [2].

Figure 1.3: Feynman diagram of µ → eee via super-symmetric particles (left) and a potential
decay on tree level (right) [2].

1.3 Muon Decays and Background

The primary decay mode of muons at Mu3e is the Michel decay µ → eνν̄. The Michel decay
has a branching ratio of ∼ 100 % [3]. The resulting electron (positron) can emit another photon,
leading to radiative muon decay which is described by µ → eνν̄γ. Rarely, another e+e−-
pair is produced. According to [4], the branching ratio of this process is B(µ → eνν̄ee) =
(3.4± 0.4) · 10−5.

From the perspective of the Cosmic Trigger that aims on collecting only cosmic muons,
Michel decay events are the main source of background.

1.4 Particle Interaction with Matter

When particles traverse material, they can deposit some of their energy via ionisation. This is of
great use in particle detectors, as this deposited energy can be measured and the particle thereby
detected. At Mu3e the particles of interest are mostly electrons and also cosmic-ray muons (in
case of the cosmic trigger). Both of them carry electric charge and are ionising particles. In
general, the energy loss and scattering of a particle traversing a material is the summation of
different contribution terms of different processes. It depends of the scattering characteristics of
the particle as well as the material. The mass of the electron is a lot smaller than the mass of the
muon (mµ/me ∼ 200), therefore different processes dominate the scattering of these respectively.

Muons and heavy charged particles

Charged particles with a mass above m� me are called heavy charged particles. This category
includes muons, taus as well as protons or ions. Their scattering is dominated by inelastic
collisions with electrons of the material, which lead to excitement or ionisation of the materials
atoms. The energy loss E per travelled distance x can be described by the Bethe-Bloch Formula
[5]. It consists of two main constituents, the first is derived from the energy transfer according
to the Bohr model while the second (in brackets) adds a relativistic correction term:
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CHAPTER 1. PHYSICS MOTIVATION AND THEORY

− dE

dx
=

4πnz2

mec2β2
·
(

e2

4πε0

)2

+

[
ln

2mec
2β2

I · (1− β2)
− β2

]
. (1.2)

c: speed of light

ε0: vacuum permittivity

me: electron rest mass

e: electron charge

n: electron number density

I: mean excitation potential

β = v
c

v: speed of particle

z: charge of particle

Figure 1.4: Mean energy loss for different particle energies and materials[6].

The energy loss depends on the energy of the incoming particle. The dependency is shown
in Figure 1.4. The graph first decreases with increasing momentum of the particle. After the
minimum at about βγ ≈ 2...3 it increases logarithmically. The minimum corresponds to the
energy of so called minimum-ionising particles. Particles with this momentum deposit the least
energy in the material and therefore experience the least scattering. The increase for even higher
momenta is due to relativistic effects on the electromagnetic fields.

Electrons and Positrons

Electrons posses only a fraction of the muon rest mass. For them, in addition to ionisation, the
scattering process is dominated by Bremsstrahlung which means the deceleration of an electron
by the electromagnetic field of another charged particle in the material it is currently traversing.
For the contribution of ionisation the Bethe-Bloch formula must be modified. The ionisation
of electrons therefore is described by the Berger-Seltzer-Formula. Its curvature looks similar to
the one of the Bethe-Bloch formula; hence, there is an electron energy with minimal ionisation
as well.
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CHAPTER 1. PHYSICS MOTIVATION AND THEORY

The contribution of the Bremsstrahlung is proportional to the particle energy and can be
defined in relation to the radiation length X0 according to [7] by

−dE
dx

∣∣∣∣
rad

=
1

X0
· E. (1.3)

X0 is the distance after which an electron has lost ≈ 37 % of its energy and is proportional to
the one over the second power of the electron mass X0 ∼ m−2

e .

Multiple Coulomb Scattering

When a charged particle traverses a medium, it is usually scattered multiple times by small
scattering angles. The scattering is caused by Coulomb interactions of the particle with the
nuclei. Multiple Coulomb scattering is a complex process because it consists of many single
statistical events. A description is given by Molière’s Theory. Furthermore it includes more
parameters than single-scattering because in addition to the scatter-angle there is also an offset
that can be added to the trajectory after traversing the medium. Figure 1.5 shows an overview
of the process and the parameters that are used to describe it. The RMS width of the resulting
Gaussian scattering distribution is approximately given by

θRMS =
13.6 MeV

βcp
z

√
x

X0

[
1 + 0.038 ln

xz2

X0β2

]
, (1.4)

where p denotes the momentum, βc and z the velocity and charge number of the particle. x/X0

is the thickness of the medium in number of radiation lengths [6].

As shown in Equation 1.4, the multiple Coulomb scattering angle increases for less heavy
and low momentum particles with small radiation lengths. Subsequently, multiple Coulomb
scattering is predominantly present when electrons traverse “thick” media.

Figure 1.5: Schematic of multiple Coulomb scattering in one plane. [6]

1.5 Cosmic Ray Muons

Cosmic ray muons are produced when cosmic ray such as protons, alpha particles or heavier
nuclei collide with particles in the earths atmosphere and subsequently decay. About 90 % of
cosmic ray consists of protons, mostly originated at the sun and the milky way. If they collide
with atmosphere molecules, they can decay into several secondary particles, e.g. pions or kaons.
Some possible decay chains for protons are sketched in Figure 1.6.
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Figure 1.6: Primary cosmic particle collides with a molecule of atmosphere. [8]

Pions and kaons are not stable and therefore decay further into muons and muon-neutrinos
by weak interaction as shown in the process 1.5 and 1.6.

π− → µ− + ν̄µ π+ → µ+ + νµ (1.5)

K− → µ− + ν̄µ K+ → µ+ + νµ (1.6)

These processes of muon production happen in the upper layers of the atmosphere at about
10 − 15 km altitude. On their way to earths surface at sea level, they loose about 2 GeV [9] of
energy. Muons have a very short lifetime of τµ = (2.1969811±0.0000022)×10−6µs [10]. Despite
that and because of relativistic effects of their high velocity, which leads to time dilation and
length contraction from the earths perspective, they reach the ground. Their energy distribution
at sea level lies in the GeV regime and has its maximum at ≈ 1 GeV (see Figure 1.7).

Figure 1.7: Muon momentum distribution at 0 deg zenith angle at 600 m altitude [9].

Figure 1.7 clearly shows that the rates decrease exponentially for higher momenta. In ad-
dition, structures like concrete or magnets lead to energy loss, because muons scatter when
traversing them. In the detector of Mu3e mostly cosmic muons with energies at the lower end of
the GeV spectrum are expected to be detected. According to Figure 1.4, their energy is close to
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CHAPTER 1. PHYSICS MOTIVATION AND THEORY

minimum-ionising particles, which makes them less prone to scattering in general and therefore
suitable for alignment. Assuming a zenith angle of 0◦, the approximate rate of cosmic muons at
sea level with an energy E < 0.5 GeV is given by [9]

Iµ,0◦ = 70
muons

m2 s sr
. (1.7)

It decreases for steeper angles because the effective travelling distance increases and with it the
probability of scattering.
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Chapter 2

The Mu3e Experiment

2.1 Experimental Situation of Mu3e

The Mu3e experiment is planned to be installed at the Paul-Scherrer-Insitut (PSI) in Switzer-
land because it offers the worlds strongest anti-muon-beam, which will even be improved futher.
In order to reach the final sensitivity of 10−16 for the observation of the CLFV decay µ+ →
e+e−e+, the beam has to provide a muon rate of 2 · 109 Hz. The experiment was proposed in
2013 and is being under development since then.

2.1.1 The Search for Charged Lepton Flavour Violation

Charged lepton flavor violation has been studied for several decades. It is one promising can-
didate to find evidence on physics beyond the SM when searching for the branching ratios of
decays like µ → eee. Different experiments have studied CLFV in detail and have also set
different limits for certain decays as depicted in Figure 2.1. The two major ones are described
in short.

SINDRUM Experiment

The SINDRUM experiment was operating from 1983-1986 at PSI and searched for the decay
µ→ eee. Limited by the muon beam intensity and operation time, it was able to set a branching
ratio limit of B(µ→ eee) < 10−12 with a confidence level of 90 % [11].

MEG Experiment

The MEG experiment was also running at PSI during the years of 2008-2013. It observed the
radiative LVF decay of a muon into an electron and photon without the production of neutrinos
µ → eγ. Taking into account the complete data collected over the years, MEG was able to set
the limit of B(µ+ → e+γ) < 4.2 · 10−13 with a confidence level of 90 % [12].

2.1.2 Mu3e Road Map

From the very beginning, Mu3e was planned to be realised within two different phases, which
mainly differ in the muon beam rate and some adaptions on the detector.

Phase I is subdivided into part A and B. Phase IA includes the overall development of all the
Hardware (HW) components, such as the pixel sensors, the magnet and the simulation software,
including testing of a prototype detector. The first data is then supposed to be collected with a
minimal working detector from a muon beam with a rate of 2 · 107 Hz in phase IA. In phase IB
the detector is planned to be upgraded and equipped with additional recurl stations. The rate
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Figure 2.1: History of LFV decay experiments and their obtained results.[13]

is increased to 1 · 108 Hz, which would yield a sensitivity of 2 · 10−15 at 90 % CL. As of 2020 the
detector development is ongoing and the first actual measurements will start soon.

Phase II imposes new challenges to the different parts of the experiment. First, it depends
on the new high intensity muon beam line that is currently under construction at PSI. Also,
pixel sensor timing resolution as well as read-out and data acquisition requirements impose new
challenges. However, with its planned sensitivity of 10−16 in Phase II, the Mu3e experiment
would able to exceed the known limit for µ→ eee (SINDRUM ) by about 4 orders of magnitude.
Assuming that LFV dipole couplings are the dominant channel of this decay, the limit determined
at MEG for B(µ→ eγ) < 10−13 corresponds to B(µ→ eee) < 10−15.

2.2 Detector Concept

A particle physics experiment usually puts very specific demands on the detector concept. At
Mu3e, it is of high importance to be able to filter background events such as the µ→ eeeνν.
Therefore, a high momentum resolution of below 1.0 MeV/c [14] is essential. This is dominated
mainly by two factors, the first of which is the spatial hit information resolution (which cor-
responds to the pixel size on pixel detectors). Secondly, the momentum of the resulting decay
particles is limited by half the muon energy, which means pe . 53 MeV/c. At these magnitudes
of momentum, electrons are highly susceptible to multiple Coulomb scattering. In order to
reduce multiple Coulomb scattering, the detector must be constructed with as little material
budget as possible. Another very important requirement is a precise time resolution of O(1ns)
[2]. For higher beam rates, the timing of the hits is an important parameter to separate the
particles according to their origin decay events. [15]

2.2.1 Geometry and Components

The Mu3e detector includes three main detecting components, the main component, a silicon
pixel tracking detector and tile and scintillating fibre (SciFi) detectors for more precise timing
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information. The detector is build cylindrically around the target and is subdivided into three
“stations”. The central station surrounds the target and two recurl stations are placed upstream
and downstream along the beam line. The overall length of the active area of the detector is
about 1.2 m, with a diameter of about 18 cm. A schematic view is presented in Figure 2.2. The
complete detector setup including the double cone target is placed in a homogeneous magnetic
field produced by a solenoid magnet of B = 1 T.

Figure 2.2: Schematic view of the experiment cut along the beam axis (top) and transverse the
beam axis (central station) (bottom) in the phase I configuration [14].

Tracking Detector

The silicon pixel tracker is the main part of the detector. It consists of up to four layers of
pixel sensors and provides accurate pixel hit information for ionising particles. From the hit
information in each layer, particle tracks are reconstructed and their momenta are calculated.
When a charged particle passes through the magnetic field, it can be described by a helical
trajectory due to the Lorentz force. The momentum can then be obtained from the radius Rt
transverse the B-field, the particle charge q and the strength of the magnetic field B via the
formula:

pt = Rt · q ·B. (2.1)

For single-charged particles in the case of Mu3e with B = 1 T with units this simplifies to

pt [GeV] = 0.3 ·Rt [m] · 1 [T]. (2.2)

The tracking detector consists of about 3000 High-Voltage Active Monolithic Pixel Sensors
(HV-MAPS ), called MuPix, each covering an active area of about 20 × 20 mm. Each MuPix
chip has 256 × 250 pixels with a pixel pitch of 80 × 80µm. The most recent prototype version
is MuPix10 which is currently under investigation.
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The pixel tracker has 2 outer layers covering all three stations (see Figure 2.2). In the
central station the inner tracker is placed, consisting of two additional layers of pixel sensors,
surrounding the target closely. In order to build the cylindrical structure, the individual MuPix
sensors are glued to ladders (linear arrays of sensor chips), which are then mounted to a support
structure located in between, and at the end of the stations. At the bottom end each MuPix
chip has another 3 mm of read-out electronics. Because of this and to eliminate blind spots, the
ladders are mounted with a few millimeters of overlap. Table 2.1 gives an overview of the layer
dimensions. Figure 2.2 (bottom) presents a cut through the x,y-plane).

layer (from innermost to outermost) 1 2 3 4

number of ladders 8 10 24 28
number of MuPix sensors per ladder 6 6 17 18
instrumented length [mm] 124.7 124.7 351.9 372.6
minimum radius [mm] 23.3 29.8 73.9 86.3

Table 2.1: Pixel layer geometry for central station. Adapted from [14].

Because multiple Coulomb scattering has a high influence on the decay particle’s trajectory,
the sensor chips are thinned to about 50µm. Including the ladders this corresponds to a radiation
length of about x/X0 = 0.115 % per layer.

2.2.2 Read-out, Data Acquisition and Online Reconstruction

Once the data is collected by the pixel, the tile and the fibre detectors it has to be processed
further. Especially when reaching the upper end of desired muon beam rates, it is impossible
to store the complete data collected by the detector. At a stopping rate of 108 Hz, a data
throughput of about 60 GBit/s is expected [14]. However, all of this data needs to be filtered
and a decision on what to keep and what to discard has to be made. This is done by the Mu3e
data acquisition (DAQ) system.

The DAQ has three levels: the front-end, the switching boards and the GPU filter farm.
The different sensors collect hit positions and timing information and send this data to their
corresponding front-end FPGA. One front-end FPGA gathers the hit information of multiple
sensors. All the information that arrives from them is brought into chronological order and
sorted into frames of 50 ns. The sorted data is forwarded to the switching boards which merge
the data of the different detector types, i.e. the pixels, the fibres, and the tiles. In a subsequent
step, the data is analysed and filtered by the GPU filter farm. Several GPUs process individual
time slices of the detector data and combine all hits to track candidates. Afterwards, a track
fitting is performed and according to their quality, tracks are either accepted or rejected. The
filter farm then stored frames with reconstructed tracks of interest, whereas other are dicarded.
The complete DAQ chain is shown in Figure 2.3.

2.3 Alignment

As aforementioned, the Mu3e detector is a high precision and complex instrument. For the
pixel detector, 2844 sensor chips are glued to ladders which are then mounted in a sophisticated
and detailed mechanical process. The accuracy of this process is limited to a certain mechanical
precision. On sensor-level, it is at the same magnitude as the pixel resolution of 80µm. Globally,
higher misalignment deviations of several hundred µm or in the worst case even at O(1mm) are
expected [15].
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Figure 2.3: Overall Mu3e read-out scheme. [14]

In addition to the building accuracy and resulting constant misalignment, there is also non-
constant effects. Everything inside the detector is build with the least material budget possible
in order to reduce multiple Coulomb scattering. The ladders for example have a thickness
of about 100 mm but freely span over distances of up to 400µm in the recurl stations. This
architecture makes the detector very fragile to any kind of environmental influence. First to be
mentioned, the detector is located in a magnetic field. When switching it on, magnetic parts of
the support structure can move slightly, which leads to misalignment of the detector. Even if this
happens only in the area of O(µm), it is enough to introduce invalidity into any pre-measured
or pre-calculated corrections for construction inaccuracy and misalignment.

More misalignment can be caused by thermal influence of the experiments environment.
The pixel sensors are cooled via a gaseous helium cooling atmosphere. This means that gas is
circulating through the detector and can subsequently introduce movement and misalignment
of sensors or of the ladders they are placed on.

In order to achieve the momentum resolution required for Mu3e, the detector has to provide
sufficient spatial resolution and its data have to be systematically valid. Therefore, a precise
detector alignment is a key ingredient for reliable tracking. “Alignment” in this case means to
gather correction data and then to calculate a correcting transformation of the smallest sub-
detector components in software. As the misalignment changes significantly over time, an online
alignment could be performed so that correction can be directly taken into account for the track
reconstruction on the GPU filter farm. Approaches to alignment and potential future concepts
for alignment for Mu3e are discussed in the following sections.

2.3.1 Alignment Approaches at Mu3e

Two main approaches are envisaged at Mu3e. The first is a position monitoring system which
relies on camera data taken from cameras inside the detector cage, focussing the three detector
stations. Using these high resolution cameras (of presumably 2K or 4K) it is possible to measure
the positions of the separate stations with respect to each other [2].

The second approach of alignment is based on actual detector data from measured particles,
which has already been studied [15]. Using actual detector data allows for fine alignment on
pixel resolution accuracy. The algorithm developed within this study uses reconstructed tracks
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from the experiment and fits them using General-Broken Lines (GBL) fit, which increases the
track precision. Then systematic deviations of individual sensor chips, so-called residuals are
determined. These residuals are used to calculate pixel sensor specific alignment transforms,
from which the sensor hit coordinates can be corrected to their actual aligned coordinates.

The track-based alignment works for trajectories originated at the stopping target, but also
external particles could be used, yet might even allow for better accuracy. A good example for
particles that offer this potential are cosmic muons.

2.3.2 Alignment using Cosmic Ray Muons

Cosmic ray muons (in the following referred to as cosmic muons) are produced when cosmic ray
collides with molecules in the atmosphere, as described in Section 1.5. They approach earth’s
surface with momenta of a few GeV/c. Because of their high energy, they are very resistible to
multiple Coulomb scattering. Also, their radius is very large in the magnetic field. According to
Equation 2.2, a muon with 1 GeV/c describes a radius of Rt = 3.3 m. Inside the detector that
has a diameter of ddetector ≈ 18 cm. Therefore, a cosmic muon track in the detector can almost
be described as a straight line.

Another important advantage of cosmic muons over the decay particles from the target is,
that they are originated in the atmosphere, which means that they arrive from above the detector
while being evenly distributed over the complete detector area (projected in horizontal plane).
A cosmic muon therefore hits every layer it traverses twice, the first time when entering the
detector and the second time when leaving the detector again. While decay particles from the
target mostly cause hits the central detector region, cosmics are found in the recurl stations at
the same rate as in the central. Additionally, one cosmic muon can cause hits on central and
recurl stations when approaching in a steep angle. Despite this happening seldomly, such a track
offers the opportunity to align the stations relative to each other, which could only be done by
an optical system (with less precision) otherwise.

With the advantages described above (including negligible multiple Coulomb scattering and
straight line tracks), cosmic muons are ideal particles for (online) alignment.

Figure 2.4: A cosmic traversing the central detector and a elliptical correction transform [15].

There is one notable difficulty when aligning with cosmic muons. As described in Section 1.5,
their rate at sea level is about Iµ,0◦ = 70 muons m−2 s−1 sr−1. The total surface area of the Mu3e
pixel detector projected on the horizontal plane is approximatelyAdet ≈ 0.18 m× 1.2 m ≈ 0.22 m2.
Taking into account further loss because of the experimental setup, the magnet, the ceiling, et
cetera, a cosmic muon rate of about O(10 Hz) is expected to be measurable. Compared to
the rate of decay particles from the target, which is about O(107 − 108 Hz), this is highly sup-
pressed. Yet still, the track quality of cosmics for alignment compensates for the very low rate.
This situation imposes two main challenges:
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• For improved alignment an increased number of detected cosmic muons is favored.

• Each having a length of 50 ns, one second is split into 2 · 107 frames. Only every ∼ 106th
frame contains a cosmic muon.

Subsequently, a trigger or tagger system is required that recognises the frames that contain
a cosmic muon. To tackle the above mentioned challenges, this system demands a high signal
(or cosmic) efficiency to maximise the cosmic detection rate. Furthermore a sufficient rejection
rate is crucial, so that the number of frames that are reconstructed is minimised. How these
two requirements could be met by the Cosmic Trigger, a pattern recognition system, is to be
studied within this thesis.

2.3.3 Cosmic Trigger Hardware Concept

In principle, different ways exist to find the frames where cosmics traversed the detector. One
would be to just use the existing DAQ as described in 2.2.2. In the GPU filter farm one could
not only reconstruct tracks according to the expected decay characteristics, but also try to find
cosmic muons by performing the full combinatorial possibilities. This would mean that the
track fitter block must be extended by several GPUs. Also, it has not been studied yet what
the combinatorial effort would be to perform a full online reconstruction for cosmic muons. It
might well be that it significantly exceeds the effort that is required for event reconstruction.
Therefore, it is possible that a cosmic filter farm could require more PCs than the event filter
farm does, in order to cope with the data rate from the detector. As shown in Figure 2.3, 12
GPU PCs are envisaged for Mu3e phase I. A full cosmic reconstruction filter farm could more
than double this number. Assuming a cost of 7k-8k euros per filter farm PC (including main
board, GPU and connectivity), the total cost of a cosmic filter farm could easily exceed 100k
euros.

Another option is to use a dedicated trigger for cosmics. This system could be designed,
such that it analyses the frames without computing the full combinatorial possibilities of every
hit in each frame. By pre-filtering the detector data and thereby reducing the rate of frames
that need to be reconstructed, this could significantly reduce the required GPU computation.
Pattern Recognition (PR) is a method to do so, which is the reason why it was proposed be
used to trigger cosmic muons in the Mu3e experiment. However, this approach requires different
hardware components to be implemented. Eventually, a simple cost calculation will decide, if a
PR system can sufficiently reduce the reconstruction data rate so that the savings in filter farm
PCs outplay the cost for the PR hardware components.

Returning to 2.3, the read-out and data acquisition chain of Mu3e a separate trigger could
be integrated next to the filter farm. It would then obtain the full pixel sensor data and could
forward a reduced amount of data to a separate cosmic track fitting GPU block. This GPU
block would do the fitting, recognise the frames containing an actual cosmic muon and forward
them to the data collection server. The biggest challenge would be for this cosmic track fitting
GPU block to also compute online alignment correction data, and to send this to the event track
fitter block, so that it could be used in real time for beam event track reconstruction. Figure
2.5 shows, how the Mu3e read-out and DAQ system could be extended by a pattern recognition
cosmic trigger relying on data from the pixel sensors.

2.4 The Mu3e Simulation Package

A simulation software was implemented to model the complete experiment, to study and optimise
the detector design, to estimate the performance and to develop the online reconstruction code,
which will later be run on the DAQ. The Mu3e simulation is based on Geant4 [16], a Monte Carlo
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Figure 2.5: Conceptual Mu3e read-out scheme with cosmic trigger. The planned DAQ is depicted
in grey scale and the proposed expansion in color. Potentially, more than one GPU could be
required. Adapted from [14].

software framework developed at CERN for simulating particles traversing matter. The Mu3e
software stack includes a detailed detector simulation and implements several different muon
decay types. Also it delivers an accurate multiple Coulomb scattering simulation, which is of
particular importance for Mu3e. Since 2020, also a cosmic muon generator is implemented,
which is described in Section 2.4.4.

2.4.1 Motivation

In order to study pattern recognition, a key prerequisite are the patterns themselves as de-
scribed in detail in Chapter 3. Those can be obtained from actual cosmic muon tracks. The
Mu3e simulation implements a “cosmic mode”, which uses a Monte Carlo (MC) algorithm to
simulate cosmics muons traversing the detector. The detector data is then reconstructed using
the reconstruction software. For the Cosmic Trigger study, a data set containing approximately
4 · 107 cosmic muon tracks was produced.

Furthermore, Mu3e simulation played a key role for the evaluation of the Cosmic Trigger
Concept. It was used to create frames only containing hits of beam data decays, which in case
of the Cosmic Trigger is referred to as background. This is due to the fact that the beam decays
are the dominant source of background hits that must be suppressed compared to the hits of
the cosmic muons, for which the Cosmic Trigger searches.

2.4.2 Reconstruction

In addition to its relevance for the simulation, the Mu3e Reconstruction Software is the algorithm
that will later be implemented on the GPU filter farm. It will efficiently fit and evaluate track
candidates in order to reconstruct all event particle tracks present in a simulation frame (and
also tracks that extend over frame borders). In order to achieve this functionality online, fast
and efficient methods have to be implemented.
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Reconstruction of Beam Events

The first step of the processing of hit data is a very fast three-dimensional Multiple Scattering
Fit [17]. Hits in the inner layers 1, 2, and 3 are combined to triplets and the χ2 of each track
is determined. If it is sufficiently low, the outermost layer 4 is searched for a hit that would
extend the track with a triplet using the hits in layer 2 and 3. If this condition is met, a short
track is found, defined by four hits. From here on, some more decisions are made, using e.g.
graph partitioning algorithms and neural networks. After successfully reconstructing a frame, a
decision is made on whether it is stored or discarded.

The stored frames are reconstructed again offline, using a more complex, the General Broken
Lines fit. The GBL delivers the highest accuracy and allows for precise particle momentum and
calculation and for energy loss determination.

Reconstruction of Cosmic Muons

To reconstruct and match the hits of cosmic muons, the reconstruction algorithm has to be
modified. Cosmic muons come from the atmosphere (upper half of detector) and normally cause
two hits on each layer they traverse. Thus, the algorithm first fits a triplet to three hits in the
outer detector layer (h0, h1, and h2 in Figure 2.6), then looks for a fourth hit (h3) in the missing
outer layer and then adds hits from inner layers – if present [18].

Figure 2.6: Reconstruction of cosmic muon hits. [18]

2.4.3 Coordinate Frame an Nomenclature

In the Simulation, the detector is placed in a cartesian reference coordinate system. The z -axis
is oriented along the beam line, x - and y-axis horizontally and vertically respectively. This is
shown in Figure 2.8 and 2.9. A 3D render of the whole detector with a cut at the target is shown
in Figure 2.7. Note that the annotations concerning the super pixel binning will be introduced
later, as they are important for the pattern design.
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Figure 2.7: Three-dimensional render of the Mu3e detector [14].

Figure 2.8: Schematic cut along the beam line, showing the y,z -plane.

Figure 2.9: Schematic cut transverse the beam line, showing the x,y-plane.
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2.4.4 Monte Carlo Cosmic Simulation

The cosmic muon simulation is based on the physical parametrisation described by [19], which
was developed for the cosmic generator at the CMS. The Monte Carlo Simulation produces
cosmics with a flat distribution of hits in the reference plane y = 0 in the area z ∈ [− 1 m, 1 m]
and x ∈ [− 20 cm, 20 cm] (the coordinate system used in the simulation is described in Section
2.4.3). The cosmics are then moved 1 m back in the opposite direction of their momentum and
are subsequently released.

Figures of Merit of Cosmic Simulation

The following plots show the distribution of track parameters of reconstructed cosmic tracks
from the simulation. The parameters are described in Section 2.4.3.

Figure 2.10: Track parameter distributions of reconstructed cosmic muons.
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Chapter 3

Pattern Recognition

In its essence, the term Pattern Recognition (PR) describes methods to find certain “structures”
and regularities in data. An obvious application is in image analysis, when searching specific
structures in an image. There are also less obvious use cases, for example in statistical data
analysis. A modern technique that is connected to pattern recognition is machine learning,
which in contrast to traditional pattern recognition, deduces features of the patterns on itself.
The pattern recognition approach used for the Cosmic Trigger is rather conservative, as the
format of the patterns will be designed manually in form of Super Pixels (regional clusters of
pixels). The specific method of pattern recognition used for the Cosmic Trigger, uses specialised
hardware, so called Associative Memory (AM) chips. These provide fast look up techniques for
patterns stored in the memory and thereby enable high speed and low latency.

How pattern recognition will be used and studied at the Cosmic Trigger is described in
the following sections. Additionally, the proposed hardware will be introduced briefly. In the
following course of this thesis, the term pattern recognition will be used exclusively to refer to a
hardware-focused approach using AMs if not denoted otherwise.

3.1 Applications of Pattern Recognition in High Energy Physics

In most experiments within particle physics, huge amounts of data arise at the detector and it
is unfeasible to store all of it. Hardware pattern recognition can help to reduce the data rate
in real time. Not only is pattern recognition capable of reducing the rate, but in particular of
reducing the combinatorial effort for the track reconstruction (see Section 2.4.2). This is due to
the detector hits being sorted into bunches in which they potentially belong to the same particle
track. A reconstruction algorithm then only has to try all combinations within these bunches,
instead of computing combinations of all the hits in the detector. As combinatorial tasks usually
scale exponentially with the number of hits, this is a great save in computation effort.

The general approach of pattern recognition is used at several particle physics experiments
at all sorts of detectors. The approach using hardware AMs, is rather special though. The
first experiment that successfully implemented an PR trigger system based on AMs was CDF
at Fermilab [20]. The first version of the Silicon Vertex Trigger was realised in the early 2000s
and was later upgraded for higher luminosities which also included the development of new
hardware. The most elaborate PR subsystem of the trigger at CDF featured a Monte Carlo
generated pattern database containing 512K patterns. Eventually the system delivered the
expected performance [21].

In the beginning of the 2010s the ATLAS experiment at CERN [22] also started to develop a
AM pattern recognition system, the Fast TracKer (FTK) which was intended to become a key
part of the Trigger and Data Acquisition System (TDAQ) for runs in 2020-2022. Its objective
was to find and determine the momentum pT of all tracks above 1 GeV [23] and to analyse
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the data from the ID inner tracker which consists of silicon pixel sensors, similar to Mu3e.
Generally, the concept at FTK is very similar to the one discussed for the Cosmic Trigger.

The high-luminosity upgrade at LHC (HL-LHC) which is planned for beyond 2026 will be a
big leap for the ATLAS experiment with an estimated event pileup of 200 collisions per bunch
crossing [24]. This imposes another level of demands on triggering and data filtering. Thus, an
elaborate AM pattern recognition system is planned to be realised, the so-called Hardware Track
Trigger (HTT). In addition to reducing the band width from 3.2 Tb/s to 1 Tb/s, the system is
also used to pre-fit the found particle patterns [24]. The Cosmic Trigger could make use of the
hardware developed for HTT. It is described in section 3.3.2.

Concerning Mu3e there has been a study on using AM pattern recognition for efficient beam
event reconstruction as well, which was carried out by Dohun Kim in 2018 [25]. The thesis ex-
amined how patterns could be designed on the Mu3e detector and if pre-fitting via such patterns
would give a significant time and computation advantage, especially with phase II in mind. It
was possible to reduce the combinatorial effort by a factor of 10. However, an implementation
of pattern recognition for event reconstruction could not clearly be recommended, because of
the cost-benefit ratio.

3.2 Pattern Recognition on a Pixel Detector

In order to perform pattern recognition, patterns need to be defined and specified. In the case of
a pixel detector, a potential approach would be to just use pixels as pattern building blocks and
pixel hit combinations, i.e. the tracks of particles themselves, as patterns. Problematically this
fine-grained approach does not really reduce the combinatorial effort, as the whole combinatorics
would just be calculated in advance. The calculation effort, as well as the required memory in the
pattern recognition AMs would be gigantic. Also, the patterns are supposed to be determined
by physical characteristics of particle trajectories and therefore must have a little bit of tolerance
against multiple Coulomb scattering (MS) effects. Pixel patterns would not, because usually
the pixel size is smaller than the effects of MS which is of magnitudes in the order of O(100µs).
Therefore, a more coarse grained pattern design is required.

3.2.1 Concept of Super Pixels

By regionally grouping pixel to pixel clusters, so-called Super Pixels can be defined. This does
not only reduce the amount of patterns needed (depending on the super pixel size), but is also
more robust against multiple Coulomb scattering. A grid of of super pixels is defined to span
over each layer of the detector. Every hit on a pixel can be associated to a super pixel by its
(x,y,z) coordinates.

Super Pixel Mapping

One main subject to evaluate is the configuration of the super pixel mapping. It defines how
the mapping is distributed over the detector, i.e. which pixels belong to each super pixel. This
includes the size and form factor of the super pixels. The most basic parameters that define a
mapping are the number of super pixel bins along the z -axis (beam direction) and the number of
bins in the x,y-plane of the cylindrical pixel detector, the φ- or w -direction (see Section 2.4.3 for
a sketch). Starting from these, more abstract parameters can also be studied, such as the super
pixel count (SPC) which describes the granularity of a mapping and the super pixel ratio (SPR)
which is defined as the number of w -bins divided by the number of z -bins.

SPC = Nwbins ·Nzbins and SPR =
Nwbins

Nzbins
(3.1)
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Figure 3.1: Schematic cut through the Mu3e detector. Red lines indicate super pixel boundaries.
The hits of the cosmic muon traversing the detector result in a specific pattern of super pixels
(thick red lines).

Where the number of bins N always refers to one layer of one detector stations. Subsequently,
in order to obtain the total SPC, one must calculate

SPCtotal = (N layer
recurl down +N layer

center +N layer
recurl up) · SPC = (2 + 4 + 2) · SPC. (3.2)

In this thesis a uniform mapping is chosen and the φ-coordinate of a hit is used to separate
the w -bins. This means that all super pixels have the same length in z -direction and cover the
same angle in φ-direction, thus being radially symmetric. However, modifications of this could
be studied in the future.

3.2.2 Particle Roads and Super Pixel Templates

When a charged particle traverses the detector, it produces hits on the pixel sensors according
to its trajectory. The individual pixel hits correspond to a super pixel respectively. The super
pixels that were hit by a particle define a road, a coarse resolution track, through the detector.
These roads, i.e. combinations of super pixels, are the patterns used for pattern recognition.

Usually, each road is accessible to more than one exact pixel hit combination (except when
using single pixels as super pixels) (see Figure 3.2). A road therefore implicitly defines a small
interval of momentum ~p, and trajectory offset ~x0 that a particle taking this road can have. It is
notable, that in terms of physics, a super pixel road defines a small subset of the 6 dimensional
phase space (3 momentum and 3 spacial coordinates) a particle can be described in. The finer
the super pixels are, the less potential particle tracks are allowed on each road, thus the smaller
this subspace becomes.

What is tried at the Cosmic Trigger is to find a set of roads that describes a sufficiently high
amount of possible cosmic muon tracks. These can then be used to search the detector data for
their occurrence. At the same time it is intended to minimise the number and granularity of
these roads, so that the chances of random combinations of non-cosmic hits populating one of
the roads is reduced. Basically this means that the subset of phase space which can potentially
be occupied by cosmic mouns is aimed to be described by cosmic roads, while keeping the total
size of the described subset as small as possible.

In order to perform a feasibility simulation study, one must move from the rather abstract
term of super pixel roads to a more technical implementation of it. At the Cosmic Trigger, super
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Figure 3.2: Three cosmic muon tracks. Two taking the same super pixel road (blue) and another
one taking a different one (orange). The super pixel hits they all have in common are indicated
in red, the individual ones in their corresponding color.

pixel roads are explicitly described as Super Pixel Templates. A super pixel template represents
a pattern of multiple super pixel hits. According to the detector geometry of Mu3e, a template
consists of 4 super pixels at the Cosmic Trigger. Within the study, the inner tracker layers
were ignored and only hits in the outer layers were used for the creation of cosmic templates.
In software, they are described with certain constrains. Cosmic muons approach from above
the detector and have very large radia in the B-field. They traverse the detector in an almost
straight line, leaving two hits on each layer they cross. Therefore a cosmic template is described
by four super pixel hits ordered by layer following the chronological order of hits. The first
super pixel that was hit is in upper layer 4, the second in upper layer 3, then lower layer 3 and
4 respectively.

3.3 Implementation in Hardware

3.3.1 Associative Memory

An Associative Memory (AM) (or Content-Addressable Memory) is a special category of com-
puter memory, in contrast to a Random Access Memory (RAM) for example. Conventional
computer memories, such as RAMs, work by receiving an address of a memory cell and returning
the data stored at this address. An associative memory is content-addressable. The functional-
ity of it shows similarities to a human brain, where data is stored by association, rather than
by memory location. Content-addressable means that instead of receiving a memory address, it
receives data and searches its entire memory for the cell it belongs to. The content itself serves
as address and consists of a few “data words” that follows some format constrains. Usually,
data words of a few bits in size are used for indexing a specific cell in the AM. Due to the search
process being hard-wired, the architecture of an AM is more complex than of a RAM. One can
imagine a AM functioning like this: When a call is put on it, a hardware circuitry switches on
each data word that is present in the call. If a memory cell exists, whose word connections are
all “fired” by the call, the corresponding memory cell is activated and returned. In this way the
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Figure 3.3: Architecture of an associative memory (AMchip06) developed for the PRM boards
[27]. Each line represents one pattern, i.e. a cell in the memory. The circuitry hard-wires
each super pixel hit input with the patterns it is part of. As soon as all super pixel hits of
a pattern fire, then the whole pattern “fires”. This diagram shows an implementation with
patterns consisting of 8 hits each.

entire memory is searched in one single call which makes it highly superior to a RAM, when it
comes to searching [26]. A circuitry scheme of an AM developed for the ATLAS experiment is
depicted in Figure 3.3.

AMs are often used in network devices that quickly have to look up ports and addresses of
other computers in the network. In almost no time, entries in routing tables can be found. In
computer networks, this task has to be accomplished by every switch or router in between client
and server, so reducing the computational effort of this specific task can distinctly improve the
latency.

3.3.2 Pattern Recognition Mezzanine Board

The Pattern Recognition Mezzanine (PRM) board is developed for the ATLAS [22] trigger
system for the HL-LHC upgrade forseen beyond 2026. It combines the core functionalities
and components needed for pattern recognition hardware trigger systems. The board includes
associative memory ASICs and a modern Field Programmable Gate Array (FPGA) [28]. The
former provide the associative memory for the pattern database while the latter can handle the
computations such as associating pixel hits to super pixels or performing basic fits [28].

The latest concept of the PRM board includes a recent Intel FPGA and four AM blocks,
each containing five AMchip09 ASICs. This yields enough memory space for about 7.5 million
8-hit patterns per PRM board which can be expanded to about 15 million 4-hit patterns [29].
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Chapter 4

Cosmic Trigger Simulation

A main part of this work is the implementation of a software that allows to study the feasibility
of the Cosmic Trigger concept by using Monte Carlo simulation data. Therefore, a software
equivalent of an Associative Memory, which is the key ingredient for hardware-based pattern
recognition, has to be designed. Also, the patterns themselves and their basic building blocks,
the so-called super pixels must be defined. To cope with these tasks, two software core modules
were implemented. Firstly, the Pattern Engine handles the super pixel assignment. Secondly,
the Template Bank simulates an associative memory and builds up a template database. Around
these modules, a small analysis framework was developed, mainly consisting of two chain pro-
cesses. How this software evolved, how it was designed and how the emerging challenges were
solved, is shortly presented in this Chapter. It first gives an overview of the overall concept and
thereafter introduces the software core modules along with their functionalities.

4.1 Module Overview and Analysis Chains

The developed analysis software consists of two main analysis chains as well as two core modules,
as depicted in Figure 4.1. Both analysis chains produce different figures of merit, which help
to evaluate the performance of the cosmic trigger. The core modules simulate the associative
memory and pattern creation.

Figure 4.1: Schematic software component diagram of the two data analysis chains (black and
white) and the core modules (gray) that simulate the pattern recognition hardware.
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Nomenclature

SID refers to Super Pixel ID and represents a unique identifier for any super pixel on the
detector.
TID means Template ID, which is the unique identifier of a cosmic road, i.e. the super pixels
that correspond to the hits of cosmic traversing the detector.
CosmicTDB database file, containing the cosmic templates.

4.2 Building up a Template Database

The building chain (Figure 4.1 top row) uses Monte Carlo hit data of simulated cosmic muons
on the Mu3e detector as input. The results of multiple runs of the simulation are slimmed in
size and combined into one CosmicData file. Because a large amount (O(107)) of cosmic tracks
is needed in order to fill the database, this step reduces the data that must be stored long-term.
For the second step, the database training, the CosmicData provides the hit information for
the simulated cosmic muons. These hits are then assigned to their corresponding super pixel
IDs, which is handled by the Pattern Engine. From the super pixel hits of a cosmic, a road (or
template) is defined and added to the database by the Template Bank module.

In order to characterise the database coverage of possible cosmic muon tracks the cosmic
training efficiency is continuously determined while adding templates to the database generated
from MC data. εcosmic

detect is defined as the fraction of templates that were added, but already

present in database (matched templates N templates
matched ) over total amount of generated templates.

The latter can also be described as the sum of matched templates and new templates:

εcosmic
detect =

N templates
matched

N templates
matched +N templates

new

=
N templates

matched

N templates
generated

(4.1)

Remark: Even if the label “training” indicates some machine learning affiliation, it only
refers to profane filling of a database in this case.

In order to visualise the evolution of the training efficiency whilst adding more and more
cosmic templates, this number is calculated for every bucket of 105 generated templates. This
concurrent calculation also allows to stop the training process if a certain efficiency is reached.

4.3 Evaluation the Background Rejection

Once a template database is build, the crucial part of the analysis follows. First and foremost,
this includes the observation of the background rejection capabilities of a certain super pixel
and template configuration. As the term background in this case refers to everything that is
of non-cosmic origin – including actual beam data in particular – Monte Carlo data of the
“normal” experiment signal simulation (decays at the target) is used. For each hit in one of
those “background frames”, the super pixel is assigned. Then, every possible combination of
super pixels is computed and associated to a template. The corresponding TID is sent to the
Template Bank which will either accept or reject the TID, depending on whether or not already
it exists in the database. The full combinatorics of super pixels are done within each 50 ns
frame of the simulation. If none of the computed TIDs in a “background frame” match a cosmic
template in the database, the whole frame is treated as rejected.

The most important figure of merit is the background rejection efficiency and is defined as
the fraction of rejected frames over the tested frames.

εbkg
reject = 1−

N frames
accepted

N frames
tested

=
N frames

rejected

N frames
tested

(4.2)
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The background rejection efficiency implicitly defines the reduction factor of the frame rate
that is passed on to the reconstruction to find potentially existing comic muon tracks. The higher
εbkg
reject, the less frames must be reconstructed. Therefore the frame rate reduction is defined as:

F rate
select =

1

1− εbkg
reject

=
1

false positive rate
=

N frames
tested

N frames
accepted

. (4.3)

Additional scripts

In the course of building and evaluating the database, different monitoring and benchmark plots
are produced, which are mostly written to ROOT files for later review. There are several scripts
that work up such plots. Additionally, some other scripts compare the results of different tem-
plate databases with their different super pixel configurations and produce plots that visualise
their quality.

4.4 Pattern Engine

The Pattern Engine handles the Super Pixel Mapping (SPM) on the detector. After initialising
the mapping, its main functionality is to uniquely translate hits in the (x,y,z)-space into the ID
of their corresponding super pixel. It was designed to be as flexible as possible in initialising
the SPMs which facilitates the analysis of different mappings in the very end. The Pattern
Engine is capable of using very different mappings with different resolutions and form factors.
Furthermore, it is possible to use separate configurations for the three different detector stations.
It was implemented in a way that even non-uniform super pixel mappings are feasible with some
adaptions in the code.

Figure 4.2: Components of the Pattern Engine.

The Pattern Engine module consists of three classes, namely PatternEngineSingle, Patter-
nEngine and SPCalculations. The first two are derived from the latter, which contains some
basic functions for super pixel calculations. Based on the detector architecture of Mu3e, the
PatternEngine class has three PatternEngineSingle members, each handling one of the stations
(center, recurl-upstream and recurl-downstream), as depicted in Figure 4.2. Theoretically, this
could be adapted to other detector architectures. Also, for instance the center station could be
excluded and only the PatternEngineSingle members for the recurl stations could be used.
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4.4.1 Initialisation of Super Pixel Mapping

Characterisation and Building of a Mapping

A Super Pixel Mapping is created during initialisation of the Pattern Engine. Two parameters
are needed for initialisation of a very basic uniform mapping, i.e. the number of super pixels in
z - and in w -direction, where w stands for the generalised direction along x or φ. In the cosmic
trigger, φ was used to define the binning along w -direction because of the radial symmetry of the
pixel layers. However, x -binning could be studied in the future, since a binning planar projection
would suit the cosmic distribution.

A mapping can be seen as a two dimensional grid overlaying each detector area. When
unwinding the cylindrical detector, the binning can be shown on a plane as depicted in Figure
4.3. It can be characterised by the following set of numbers:

• mode

Mode of Pattern Engine initialisation. In this thesis, only the default of 0 is used. This
parameter could be used to switch to x -binning or to non-uniform super pixel bin distri-
butions.

• zBins

Number of bins along z -axis (beam line) of the detector.

• wBins

Number of bins along φ-axis of the detector.

• SPC (Super Pixel Count)
Number of super pixels on one detector layer of one area. The SPC is given by SPC = zBins · wBins.

• SPR (Super Pixel Ratio)
The ratio of wBins to zBins. For example: w -bins = 40 and z -bins = 20⇒ SPR= 2 : 1 = 2
Warning: This is not to be confused with a super pixel aspect ratio. This can only be
defined for each layer individually because the size of w -bins scales with the radius, while
the size of the z -bins does not. For non-uniform mapping, it would not even make sense to
define a layer-specific super pixel aspect ratio as every super pixel could have its individual
one. A super pixel aspect ratio is therefore not used to describe SPMs in this thesis.

Figure 4.3: Different super pixel configurations for an SPC of 256. Three different SPRs of 4,
1, and 0.25 are depicted. The SPMs are w × z = 32 × 8 (stripe-like) (left), w × z = 16 × 16
(center) and w × z = 8× 32 (ring-like) (right). Only the central detector station is shown.
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4.4.2 Hit to Super Pixel Assignment

The Super Pixel ID (SID) is calculated by a member function of the Pattern Engine. It is made
up by the parameters area (encodes the station), layer, spWindex, spZindex of a pixel hit. The
last two are the 2D indices in the super pixel bin grid.

Figure 4.4: Calculation of the corresponding SID of a (x,y,z)-hit (some functions are combined
to simplify the diagram).

A SID is encoded in a C++ short type, which has a length of 16 bits (or 4 hex words). The
first 4 bits encode the area and layer information, which can be defined as zone

zonehit = areahit · 4 + layerhit. (4.4)

Bits 5 to 16 encode a counting index in the two-dimensional super pixel bin grid, called
SP2Dindex. As 12 bits can represent numbers up to 4096, this is the upper limit for the Super
Pixel Resolution.

SP2Dindexhit = spZindexhit · wBinCount + spWindexhit (4.5)

Figure 4.5: SID example in hexadecimal representation.

4.4.3 Monitoring Plots

Besides from SID assignment, an important feature of the Pattern Engine is keeping track of
the super pixel frequencies (or super pixel weights). Each super pixel gets a specific entry in
a counting vector. For each super pixel found from a pixel hit, its corresponding counter is
incremented. The result can be visualised in a two dimensional histogram for each layer. Some
of these are shown in Figure 4.6.

The super pixel weights could also be used to modify and improve the super pixel mapping
in the future, for example, by splitting super pixels into two or four super pixels if they exceed
a specific weight.
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Figure 4.6: Super pixel weights for reconstructed cosmic tracks. The outer layer (4) of all three
detector stations is shown for the super pixel mapping w × z = 128 × 8: the upstream recurl
station (left), the central station (middle) and the downstream recurl station (right). Note, that
more cosmics are reconstructed in the central station, therefore, the heat map does not have the
same scaling for all three stations. The upper accumulation shows where most cosmics enter the
detector and the lower where they leave. It can be observed that toward the station borders the
super pixel weights decrease. This might be caused by the support structure in between, which
allows cosmic muons to leave the detector without causing hits. Therefore these tracks are not
reconstructable.

4.5 Template Bank

The main purpose of the Template Bank is to simulate an associative memory in order to
allow for studying the feasibility in general as well as the required hardware capacity. Of course,
simulating an associative memory basically removes its key advantages, namely the quick lookup
technique. In software, this must be done on a “normal” CPU architecture, which includes
sequentially searching for patterns in some data structure such as a list instead of looking it
up in almost no computation time. However, the task of the Template Bank is by no means
to beat an associative memory in time. The overhead of the computation is acceptable as the
functionality itself is of major interest. How exactly the Template Bank was designed, which
challenges needed to be tackled, and how it works, is described in this Section.

4.5.1 Simulation of an Associative Memory Chip

A detailed description of the associative memory along with its functionalities is provided in
Chapter 3 of this thesis. As aforementioned, a data structure is required to simulate an associa-
tive memory as a database. As commonly known, searching is one of the computational tasks
that can not be improved beyond a complexity of O(n · log(n)) on average. For searching of a
sorted list, the hardness is O(log(n)), whereby n denotes the number of elements in a container
to be searched through. This adds a lot of computational effort on the simulation compared
to the proper implementation in hardware of an associative memory whose complexity is O(1).
A std::map is an associative container implemented in the C++ standard library. It uses a
sorted self-balancing binary tree to ensure that each inquiry (adding and reading entries) has a
logarithmic complexity of O(log(n)). This is quite some overhead, but still this data structure
provides the fastest option to implement an associative memory on a CPU and therefore it is
used in the Cosmic Trigger Study.

Secondly, an associative memory only needs SIDs as data input because the patterns (com-
binations of specific SIDs) would be implicitly activated if a certain combination corresponds
to a valid address to a specific memory cell. An associative memory thereby does not need a
specific order of SIDs as it just looks up each and every pattern on a bunch of data in parallel
by its architecture.
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For the simulation in software, a data format must be defined to characterise patterns in
the template database, i.e. the list of all valid SID combinations that belong to a cosmic muon
track. How this was done at the Cosmic Trigger is described in the following sections.

4.5.2 Template Data Format and Database Handling

As defined in Chapter 3, the elements of the Template Banks database are called Super Pixel
Templates. They represent a road of a cosmic muon track, consisting of multiple Super Pixel IDs.
The larger the super pixels, the more (slightly different) cosmic muon tracks can be represented
by the same super pixel template.

When cosmic muons traverse the detector, they come from the atmosphere and thereby from
above the experiment. Because of their high momentum of multiple GeV/c, their trajectories
have large radia in the magnetic field. This implies that in most cases they hit every detector
layer twice: the first time when they enter (positive y coordinate) and the second time when
they leave (negative y coordinate). Therefore, the Cosmic Trigger uses super pixel templates
that consist of four SIDs from the hits a cosmic caused in the outer tracker. As the inner tracker
is very small and only detects a tiny fraction of cosmic muons compared to the outer tracker, it
is ignored when building the super pixel templates. Also, the inner tracker has a much higher
experiment signal rate, due to its installation close to the target, which leads to more background
when observing cosmic muons.

The Super Pixel Templates can be identified by a unique Template ID or TID for short. The
TIDs are implemented as a custom datatype that encapsulates the underlying data structure,
a short[4] array, and some more functionality such as an ordering relation and the conversion
of TIDs into a hexadecimal string. They are implemented in a way that allows to modify the
Template Bank to deal with TIDs that contain 8 instead of 4 super pixels (or even 6). However,
in the scope of this thesis only TIDs with four hits in the outer layers will be studied. Figure
4.7 shows how the TIDs are build.

Figure 4.7: Different cosmic tracks and how they are represented as Super Pixel Templates.

The actual database is implemented as an associative container datatype. For each TID
entry, the database contains further data. This covers the detailed track parameters, such as
momentum p, radius r, Distance-of-Closest-Approach DCA of the beam line, z0 along with the
angles φ and θ. The track information of each cosmic that corresponds to one TID is appended
when it is added to the database. Within the development of this thesis, this detailed meta data
for each template was calculated and added, but never needed for the later analysis. In a future

37



CHAPTER 4. COSMIC TRIGGER SIMULATION

stage of the study, the data could be used to determine the σp of each template, which could be
used for some pre-fitting or categorisation or to cut on some templates to improve background
discrimination.

For further studies, the Cosmic Template Database can be written to a file. Thereby, different
template databases can be trained independently from the background data evaluation process.
As the training of a database might well take several hours, this is an important functionality.

´

4.5.3 Efficiency Benchmarking and further Figures of Merit

Training efficiency

When filling the Template Bank with cosmic TIDs, it keeps track of the cosmic efficiency defined
in Formula 4.1. The εcosmic

detect is calculated over bunches of filled templates from training events.
In the area between added training event 103 and 105, the step size is determined in a sort of
decimal logarithmic way, such that εcosmic

detect will always be calculated every 103th event between
training events 103 and 104 and every 104th event between training events 104 and 105. Beyond
that, it will be calculated every 106th event.

The values of εcosmic
detect versus the steps of training events are shown in one of the plots produced

by the Template Bank. This plot illustrates how the fraction of recognised cosmic muons changes
when adding more cosmic muon tracks. One example plot is shown in Figure 4.8. One can see
that the graph grows faster in the beginning and subsequently saturates towards εcosmic

detect = 1,
which is the case if “every” generated template already exists in the template database.

Figure 4.8: Combined plot for the training evolution of the cosmic efficiency for two different SP
configurations. The training was terminated at εcosmic

detect = 60 %. This plot is meant to illustrate
the training process.

Template population histograms

A second important figure of merit is the determination of the most used templates and the
template frequency distribution. Figure 4.9 shows a typical distribution, where the x -axis repre-
sents the template frequency of the templates (how often it occurred during training, also called
“weight”) and the y-axis how many templates exist with this frequency.
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Figure 4.9: Template frequency distribution for w -bins = 32 and z -bins = 32 and a stopping
efficiency of 60 %. The total number of templates in the database is about 1.8 · 106.

4.5.4 Geometry-based Template Categorisation

As it is the final goal of the Cosmic Trigger to filter out as many cosmics as possible while
maximising the background rejection, it might be appropriate to think about further cuts and
improvement methods for the cosmic template database. As aforementioned, not every cosmic
track offers the same alignment quality and potential. One important difference between tracks is
the region of the detector they traversed. Therefore, a template categorisation was implemented
in the database. The List below and Figure 4.10 show the five defined regional TID categories:

• Center - Center (CECE)
Cosmic muons that only traverse the central area of the detector. As the central area
is where the target is located, this area has a very high background intensity. Addition-
ally, there are different methods available to align the central detector, which reduces the
importancy of center - center cosmics for alignment purposes.

• Recurl Downstream - Recurl Downstream and Recurl Upstream - Recurl Upstream (RDRD
and RURU)
Cosmic muons that only traverse either the downstream or upstream recurl station. Here,
the background intensity is rather low. Those tracks are of high interest to use them for
alignment.

• Recurl Downstream - Center and Recurl Upstream - Center (RDCE and RUCE)
Cosmic muons that traverse the central area as well as one of the recurl stations. Those
are the tracks of highest interest. Even if their rate is relatively low, they offer data to
align recurl and central stations with respect to each other.

Now, every template can be associated to its specific template category. To make use of this
categorisation, the whole template database can be filtered by different category settings, which
exclude the corresponding TIDs from it. The TIDLoadingFilter can be activated when loading
a template database from a file (during training the complete set of TIDs will be created). The
possible settings are summarised in the following List:
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Figure 4.10: The five different cosmic Template categories. Mixed tracks are shown in orange
and tracks only traversing one station are indicated in blue.

• ALL

Every TID will be loaded. This is the default setting.

• CENTER_ONLY

Only TIDs of the category CECE will be loaded.

• RECURL_ONLY

Only TIDs of the categories RDRD and RURU will be loaded.

• MIXED_ONLY

Only TIDs of the categories RDCE and RUCE will be loaded.

• NO_CENTER

Only TIDs of the categories RDRD, RDCE, RUCE, and RURU will be loaded.

• CUT_ON_FREQ

This filter setting loads TIDs of all categories, but only if their frequency is higher than
1. This is equivalent to excluding all templates that belong to the first bin in Figure 4.9.

Cosmic Detection Efficiency. Usually, εcosmic
detect is determined while building the database.

This number is still of very high interest when using the TIDLoadingFilter ; but, here it must
be determined in a different way, because the post-filter efficiency will be different, than the one
obtained during the training. εcosmic

detect is therefore determined by using a separate cosmic data
set that was not used during training. Each cosmic muon TID in this data set is checked by the
filtered Template Bank and either matched or rejected. The cosmic efficiency is then defined the
same way as before in Equation 4.1. However, when using a filter, it is also of interest to observe
the efficiency relative to the condition of the filter setting. This number is called the Cosmic
Acceptance, which is defined by the fraction of number of accepted TIDs given by N cosmic TID

accepted

over the number of tested TIDs that fulfill the TIDLoadingFilter condition N cosmic TID
tested, allowed:

Acosmic
filter =

N cosmic TID
accepted

N cosmic TID
tested, allowed

. (4.6)

εcosmic
detect and Acosmic

filter can be read out from the Template Bank after checking a sufficient number
of cosmics.
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Part III

Results

The last and final part of this thesis describes the concrete outcomes and
results of the Cosmic Trigger simulation. Its main goal is to provide an im-
plementation recommendation. Summing up what was introduced in the past
chapters, it is almost certain that cosmic muons are required for a precise
alignment for the Mu3e experiment. In order to detect and reconstruct the
muon tracks, two main approaches exist. On the one hand, it is possible to
expand the existing GPU filter farm, which could then perform a triggerless
reconstruction, as it is done for the beam decays. For the second approach,
as studied in this thesis, a separate cosmic trigger can be used to pre-filter
the frames from the detector and thereby reduce the data rate for the cosmic
reconstruction. Eventually, with or without trigger, the cosmic muons must
be reconstructed by a filter farm. When using a trigger, it reduces the rate
of frames to be reconstructed which subsequently reduces the amount of re-
quired filter farm PCs. In practise that implies, that when achieving a frame
rate reduction, i.e. a selectivity of e.g. 10, this could also reduce the required
filter farm PCs for cosmic reconstruction by factor 10 (or a factor of the same
magnitude).

In the very end, a simple cost calculation will determine which solution is
the optimal one. A PRM board as well as one filter farm PC cost about 7k
- 8k euros (using a pessimistic cost estimation based on [30] (PRM) and [31]
(GPU)). If a trigger implementation using PRM boards is capable of reducing
the reconstruction data rate for the filter farm by a sufficient factor, leading to
a reduction of the overall cost, then this concept will be used. As an ambitious,
but specific goal, a frame rate reduction factor of 102 to 103 is set. If and how
this could potentially be reached will be investigated.





Chapter 5

Cosmic Trigger Performance
Evaluation

The effort that went into the development of the Cosmic Trigger study software, as described in
the last Chapters, was meant for one reason, namely to provide a framework to comprehend the
actual quintessence of this thesis: the simulation and feasibility analysis of the Cosmic Trigger
and furthermore to give practical recommendations towards the future implementation. The
following Chapter is dedicated to presenting the conclusions that can be drawn and to derive a
trigger performance from them. The challenge of this chapter is to deduce the dependencies in
a multi-parameter system such as by mainly looking at individual two-parameter correlations.

The evaluation process itself is subdivided into three parts. First, the template databases are
build up by using cosmic muon Monte Carlo data. This part is also called the training phase.
The cosmic detection efficiency εcosmic

detect (cosmic efficiency in short) is analysed using different
super pixel mappings. The main focus in this phase lays on observing the number of templates
that are necessary to achieve certain benchmarks.

The second part focuses on the background rejection capabilities, rather than on cosmic
detection efficiencies. The pattern recognition (PR) system will be analysed in dependency of
different super pixel mappings and template bank configurations.

In the third and last part, some further improvement strategies and cuts that can be used
to enhance the trigger performance will be examined.

5.1 Building up a Template Bank

The first part of the evaluation concerns the effect of different Super Pixel Mappings (SPM) on
the cosmic muon detection rate, i.e. the size and shape of the super pixels. The main parameters
to be studied are the super pixel binning in z -, as well as in w -direction. In this study w defines
the binning along φ. Further relevant parameters for this analysis are theSuper Pixel Ratio
(SPR), i.e. the ratio of w - to z -bins, and the Super Pixel Count (SPC), i.e. the total number of
super pixels on one layer in one station as defined in chapter 3. Therefore a certain maximum
value for the cosmic detection efficiency (εcosmic

detect ) is set and different settings of these parameters
are used for the training of a database. The training is terminated as soon as the maximum
εcosmic
detect is reached.

5.1.1 Training for different Super Pixel Ratios

Figure 5.1 shows the evolution of εcosmic
detect during a training with Monte Carlo cosmic muon data,

using different SPRs with a fixed SPC of 400. The training was stopped at a cosmic efficiency
of ≈ 90 %. The settings used are summarised in Table 5.1. Both extremes, meaning one-fold
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super pixels stripes in z -direction, as well as super pixel rings (one w -bin), are included as well.
Note that the super pixel z -size of 400 mm is the length in software. The actual active sensor
area is slightly shorter, also depending on the layer (see Table 2.1).

Setting w -bins z -bins w -size z -size sp area εcosmic
detect # templates shape

[rad] [mm] [rad·mm]

1 400 1 0.0158 400 2π 90.6 % 5.1 · 105 one-fold stripes
2 100 4 0.0628 100 2π 90.3 % 6.2 · 105 four-fold stripes
3 20 20 0.3141 20 2π 90.0 % 8.1 · 105 rectangles
4 4 100 0.5π 4 2π 90.1 % 1.7 · 106 quarter rings
5 1 400 2π 1 2π 85.8 % 6.7 · 106 full rings

Table 5.1: Super Pixel Mappings used in Figure 5.1.

In principle, those SPMs share the same granularity such that so every super pixel covers
the same area, and one would expect them to perform similarly in terms of number of stored
templates and εcosmic

detect . However, Figure 5.1 clearly shows that they do not. What can be learned
from this plot is that super pixels that have a stripe shape (longer in z -direction than in φ-
direction) are significantly advantageous to those having a ring shape. Stripe super pixels need
less templates to achieve the same εcosmic

detect than ring super pixels. Note that the x -axis in Figure
5.1 has a logarithmic scale. This behaviour continues even for the extreme cases of one-fold
stripes (400 × 1 bins) when looking at higher εcosmic

detect > 75 %. For training efficiencies below
this threshold, the four-fold stripes (100 × 4 bins) perform slightly better. This is going to be
discussed later.

Super Pixel Stripes vs. Super Pixel Rings To find a potential explanation for the phe-
nomenon that stripes perform better than rings, the super pixel geometry has to be studied.
First, the extreme case of one-fold super pixel stripes is considered, where each stripe covers the
full z -length of one station. Two cosmics, whose trajectories only differ in the longitudinal angle
Θ populate the same template as this template configuration is totally independent of Θ. The
full super pixel rings (2π) work similarly for cosmics whose trajectories differ by the azimutal
angle φ. A coordinate frame is given in Figure 2.8 and 2.9 or one can have a look at the angles
in 5.2.

Given these considerations, one could assume that it is the distribution of the angles φcosmic

and Θcosmic of Monte Carlo generated muons that biases the number of templates needed. If
the distribution of Θ is significantly broader than in φ, super pixel stripes would have a higher
“tracks-per-template” ratio and would therefore need less templates. When turning back to
Figure 2.10, one can observe that the angular distribution of MC cosmics actually is broader in
φ than in Θ. Subsequently, if this argument was true, the opposite effect should be observed.
Therefore this argument can not be the explanation.

Another potential explanation is depicted in Figure 5.2, which shows a bias of the super
pixels templates caused by the detector geometry. For super pixel rings (Figure 5.2 (top)), not
every template is accessible to the same “amount” of cosmic muons, because the theta interval
∆Θcosmic ≡ γL that is covered by one template depends on the track angle Θ itself. For rather
flat Θ only the projection of the super pixel z -size in the particles’ direction contributes to the
template. Subsequently, templates that represent steeper tracks in Θ have a higher “tracks-
per-template” ratio than planar templates. The size of the subset of phase space ∆Π that
is represented by a template (see Section 3.2.2) depends on Θ for super pixel rings. On the
other hand, super pixel stripes make use of the radial symmetry of the detector. The “tracks-
per-template” ratio does not depend on φ as shown in Figure 5.2 (bottom). This means that
the fraction of phase space a template describes is constant for different φ. In summary, more
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Figure 5.1: Cosmic efficiency evolution for different super pixel ratios plotted over the number
of Monte Carlo cosmic tracks that were added to the database during training. The curves end
at the desired cosmic efficiency, which in this case is 90 %.

templates are needed for more planar tracks when using super pixel rings. Super pixel stripes
meanwhile describe the tracks of cosmic muons with a higher efficiency. It is assumed that
this effect contributes significantly and is therefore capable to compensate for the φ and Θ
distribution bias of the Monte Carlo simulation.

Limitation of Super Pixel Sizes Assuming SPC = 400 as in Figure 5.1, one could con-
clude that one-fold stripes offer the best performance in the training phase, when looking at
εcosmic
detect > 75 %. There is however a problem with this conclusion, as it might lead to unfeasible

concept propositions. When designing SPMs, it is important to take into account that the de-
tector potentially suffers from misalignment of a magnitude of several hundred micrometers to
a millimeter as described in Section 2.3. The super pixel dimensions should be robust against
misalignment effects, because otherwise the trigger performance could heavily suffer from it.
Therefore a super pixel should not be smaller than a few millimeters in either direction. It is
beyond the scope of this thesis to give a validated lower size limit for the super pixels. Therefore,
a lower size limit for the super pixels of 2 mm in either direction is estimated. In z -direction,
one detector station is about 400 mm long. This leads to a maximum of 400 mm/2 mm = 200
z -bins. In φ (w) direction the actual SP size depends on the layer radius. As four-hit templates
are used, taking into account layer 4 and 3, their average radius of about 75 mm. This leads to
a maximum of 2π · 75 mm/2 mm = 251 w -bins. For practical reasons, a feasibility maximum of
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Figure 5.2: Geometrical effects on the fraction of phase space represented by a template. For
super pixels rings (top) the size of this fraction depends on the azimutal track angle Θ, while
for super pixel stripes (bottom) it is constant for different φ, assuming a fixed SPC. A potential
explanation why ring architectures require more cosmic templates to realise the same εcosmic

detect .

256 w -bins is assumed in the following study. In order to study some correlations it might still
be interesting to expand this margin.

The exact effects of misalignment on feasible super pixel size should however be studied in
the future. It might well be that the limit lies differently, also depending on the final effects
on online misalignment. Previously known and determined misalignment could be taken into
account when defining the pixel-super pixel dependencies.

Conclusion From Figure 5.1 a clear advantage of super pixel stripes compared to super pixel
rings can be concluded for the extreme cases. However, for stripes in the upper SPR region of
SPR = 25 : 1 and SPR = 400 : 1 a clear superior configuration can not be determined, also
because the behaviour of the crossing of curves might look slightly different for other SPCs. In
the following course of this thesis, SPCs larger than 400 will be studied. Subsequently, also
higher ratios are accessible. Within the training phase, the slight deviations between SPRs in
the area at about SPR = 25 will therefore be assumed to be negligible. A simulation result
that supports this assumption is given in the Appendix. Generally, from now on the focus of
the analysis will lie at super pixel stripe implementations.

5.1.2 Training for different Super Pixel Counts

The super pixel count (SPC) implicitly defines the size of super pixels and the granularity of
the mapping. It is straight-forward to predict the impact of a higher super pixel count on
the numbers of templates that are necessary to reach a certain εcosmic

detect : a higher super pixel
count leads to finer super pixels, which decreases the size of the phase space fraction a template
represents. Therefore more templates are needed. How this correlates precisely is studied in this
section. Furthermore, referring to the last section it is assumed that the effect of varying the
SPR geometry is negligible for sufficiently high SPRs (see also in appendix). For this reason,
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the super pixel z -binning is fixed at 4, so that each super pixel has a z -length of 100 mm. With
this configuration, the SPC can be studied as a function of the w -binning, which seems to be
the more relevant of the two binnings.

Database Training Figure 5.3 and Table 5.2 shows the training progress of εcosmic
detect over the

number of training events for four different SPM configurations. The curvature of all four
configurations tends to grow steeply at the beginning and then saturate to a value close to
100 %. The behaviour of εcosmic

detect and template count will be discussed in Section 5.1.3. In this
Section, the focus is on the number of templates that are necessary to realise a certain cosmic
efficiency with using a specific SPM.

Setting w -bins z -bins w -size z -size SP area εcosmic
detect remark

[rad] [mm] [rad·mm]

1 512 4 0.0123 100 1.23 80.0 % w < 2 mm
2 384 4 0.0164 100 1.64 80.2 % w < 2 mm
3 256 4 0.0245 100 2.45 80.4 %
4 128 4 0.0491 100 4.91 80.8 %

Table 5.2: Super Pixel Mappings used in Figure 5.3

Figure 5.3: Training of database for different super pixel count (SPC) configurations using a
stripe mapping with fixed z -size at 100 mm.
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Number of Templates In order to evaluate the feasibility of the Cosmic Trigger and the
associated hardware requirements, the number of required templates must be accurately esti-
mated. Figure 5.4 shows the template count in relation to SPC for the configurations shown in
Table 5.2 for a εcosmic

detect of 60 % and 80 % respectively. It is notable that the two highest SPCs
simulated for εcosmic

detect = 60 % lie beyond the limit of 2 mm set for the minimal super pixel size of
in either direction.

Figure 5.4: Number of templates that are required for different super pixel counts at fixed sp
z -size to reach εcosmic

detect of 60 % and 80 % and their fitted functions.

In order to characterise the correlation, the plot was fitted with a second-order polynomial
using an offset of zero, described by the formula

f(x) = ax+ bx2. (5.1)

Higher-order polynomials were also studied, but the contributions of the higher order terms were
negligible. Table 5.3 lists the parameters used for the fits.

Cosmic efficiency a b

60 % −430± 158 1.389± 0.046
80 % −82± 64 2.369± 0.036

Table 5.3: Fit parameter for Equation 5.1 in Figure 5.4.

It is interesting that a quadratic polynomial suits the data very well. A potential explanation
can again be given by the geometry. Given the small scattering, the cosmic tracks can be
approximately considered as straight lines. With this assumption, the direction of their linear
trajectory has two degrees of freedom and is parameterised by φ and Θ. In the detector, these
parameters are already determined by the first two of the four super pixels the muon hit. Hits
3 and 4 must occur in a closely restricted region on other layers, confined by the super pixels of
hits 1 and 2. The combination possibilities on each layer scale linearly with the SPC. Because
the number of templates mainly scales with the hits in two layers it is quadratically correlated
to the SPC. The upper limit of the increase in templates when increasing the SPC is thereby
given by the second order term and its coefficient because the first order term is negative.

It should emphasised that this observation was made by increasing the SPC by only modify-
ing the w -bins, which are symmetric in their represented partition of phase space. For increasing
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Figure 5.5: Number of templates that are required for different super pixel counts at fixed sp
w -size to reachεcosmic

detect of 60 % and 80 % and fitted second order polynomials.

the SPC by changing the z -bins and keeping the w -bins fixed, it is expected that Ntmpl increases
faster than for fixed z -bins in SPC, because the effects described in Figure 5.2 also play a role
here. Figure 5.5 shows this correlation for a fixed w -binning of 256. Also, a second order poly-
nomial is fitted and one can notice that the coefficients are significantly larger than for the fit for
fixed z -bins, which supports the expectation. A higher order polynomial was not fitted because
of the small number of data points and the missing explanation for higher terms.

Cosmic efficiency a b

60 % −842± 189 1.758± 0.054
80 % −996± 376 3.406± 0.204

Table 5.4: Fit parameter for Equation 5.1 in Figure 5.5

5.1.3 Cosmic Efficiency and Template Count

In the next step, the behaviour of the template count in relation to the cosmic efficiency will be
studied. In the last section the cosmic efficiency was fixed to certain values to allow the studying
of other parameters. Now, these parameters are fixed.

Again, the configurations from Table 5.2 are used and εcosmic
detect vs. the number of templates

is studied. The resulting correlation is shown in Figure 5.6. The following exponential function
was fit to the curves

εcosmic
detect (Ntmpl) = 1− a · exp(−b ·Ntmpl) (5.2)

where Ntmpl denotes the template count. Provided that the fit shows a high accuracy, the inverse
function can be used to estimate the template count that is necessary to reach a desired εcosmicdetect :

Ntmpl(ε
cosmic
detect ) = −1

b
· ln
(

1− εcosmic
detect

a

)
(5.3)

It can be observed that the fit only roughly describe the data, as the points deviate from
the exponential curve. The actual data shows a trend that is steeper in the beginning, but then
approaches the 100 % slower than the basic exponential course of Equation 5.2 does.
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Figure 5.6: Cosmic efficiency vs. template count for the configurations shown in Table 5.2 with
a fixed z -size of 100 mm. Fitted with Equation 5.2.

SP Bins SPC a b

512× 4 2048 0.9208± 0.0021 (0.1650± 0.0006) · 10−6

384× 4 1536 0.9273± 0.0023 (0.3006± 0.0013) · 10−6

256× 4 1024 0.9318± 0.0027 (0.6844± 0.0041) · 10−6

128× 4 512 0.9346± 0.0036 (2.6700± 0.0327) · 10−6

Table 5.5: Fit parameter for Equation 5.2 in Figure 5.6

To provide a potential explanation one must look at the effects that play a role when creating
the templates. In the most simple case, multiple Coulomb scattering is completely ignored. This
would mean that the number of templates has an upper limit. At a certain point, the complete
phase space that is accessible to muons will be described by the templates, thus leading the
template data base to reach 100 % cosmic efficiency. It is assumed that this effect can be quite
accurately described by Equation 5.2. In practice, however, another effect must also be taken
into account, which is caused by Multiple Coulomb Scattering. Heavy MS has a significant
impact on the accessible templates, as it changes the trajectories while passing the detector.
Because it is a statistically distributed process, this suspends the finite template limit. To
accurately model the curves of εcosmic

detect vs. Ntmpl the formula should actually contain two additive
contributions, one describing the correlation without MS, which eventually saturates, and one
modelling the MS dominated part. The latter would prevent the formula to eventually saturate,
as there can always be one more template created by MS. However, for cosmic muons, the MS
dominated contribution is expected to be almost negligible (compared to electrons for example).
The small but noticeable deviation from the exponential fit in Figure 5.2 can yet be the result of
MS, which would explain, why the fit slightly overestimates the data. Also, the higher εcosmic

detect ,
the higher the proportion of templates caused by scattered muons that is added to the database.
As for alignment, scattered muons are not very valuable, it could even be useful to stop at
roughly εcosmic

detect ≈ 90 %.

Behaviour for Cosmic Efficiencies beyond 90 % In Figure 5.2 training efficiencies of up
to 80 % were studied. It is worth to also look at what is happening beyond this limit. Depending
on the SPC, the training process of a database often takes hours. Therefore looking beyond this
limit will only be done for one of the configurations above. Anticipating some conclusion that
will be found in the following section, the configuration from Figure 5.2 with SPC = 1024 is
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chosen. It is trained up to the maximum εcosmic
detect that is achievable with the ≈ 4 · 107 Monte

Carlo generated cosmics that are available. The fitted correlation is shown in Figure 5.7.

Figure 5.7: Cosmic efficiency vs. template count, fitted with Equation 5.2. Fit parameters are
given by a = 0.9016± 0.0047 and b = (0.5909± 0.0041) · 10−6.

The observations from the fits in Figure 5.6 can be confirmed, when looking at Figure 5.7.
Towards high template counts, the increase in εcosmic

detect is reduced, potentially by MS contributions
and the partition of phase space covered by a template being dependent on the azimutal angle
Θ as described in Section 5.1.1.

Conclusion The dependency of the template count on the desired cosmic efficiency can not
be described with very high accuracy by an exponential limited growth. However, as a rough
estimate, this relation delivers meaningful results. When using Equation 5.3 for estimating
hardware capacities, one should keep a sufficiently high safety margin in mind.

5.2 Background Rejection Evaluation

A powerful trigger must be capable of detecting as many of the particles it searches for as
possible. However, if the false-positive rate it too high, almost every frame would be stored
anyway. A sufficient reduction of the data rate is therefore desired. In the second phase of the
study we will have a look at the background discrimination capabilities of a template database,
because this will describe the false-positive hit rate and the probability of triggering frames that
are actually not of interest.

In the end, the background rejection will determine the trigger rate. In order to reach desired
trigger rates that reduce the frame rate by a factor of at least 102 or 103, also referred to as
selectivity, a background rejection efficiency of 99 % or 99.9 % is required respectively.

The background of the cosmic trigger are the hits caused by decays on the target. This
means that the false-positive rate can be evaluated by using simulated frame data from the
beam decay simulation. From the hits in each frame, templates can be created by computing
the full combinatorics as described in Chapter 4. These templates can then be checked against
the template database. The figure that will be studied is the background rejection efficiency
εbkg
reject , which is defined by the number of rejected frames divided by the number of tested frames,

see Equation 4.2. The background rejection also satisfies εbkg
reject = 1− ratefalse positive.
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Remark on Background Data For the beginning, εbkg
reject will be studied using a simulation

run that contains frames with one michel-decay each. One of these frames contains approxi-
mately 15 hits. By using this method, pattern configurations can be evaluated without a lot
of pile-up in a toy study. Later, also beam rates up to 108 Hz, the planned final beam rate for
Mu3e’s phase-I, will be studied. (For reference: one decay in each 50 ns frame corresponds to a
beam rate of 2 · 107 Hz.

5.2.1 Background Rejection for different Super Pixel Ratios

Figure 5.8 shows the background rejection efficiencies for different simulations using the same
super pixel counts but different super pixel ratios. The different simulation settings used to
create the data points are summed up in Table 5.6.

SPR bins w SPC εbkg
reject (60 %) εbkg

reject (80 %)

64 256× 4 1024 98.3 % 97.8 %
16 128× 8 1024 97.2 % 96.2 %
4 64× 16 1024 92.0 % 89.7 %
1 32× 32 1024 86.4 % 83.9 %

0.25 16× 64 1024 85.2 % 83.3 %
0.0625 8× 128 1024 85.5 % 83.7 %

Table 5.6: Simulated configurations used in Figure 5.8 and their background rejection efficiencies.

Figure 5.8: Background rejection for SPC=1024 and different SPRs.

The first conclusion that can be drawn from Figure 5.8 is that SPMs with higher SPRs, such
as 128× 8 or 256× 4 (super pixel stripes) are superior in their background rejection compared
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to SPMs with lower SPRs (rings). Secondly, it can be observed that above values of SPR = 16,
the improvement with higher SPRs becomes less prominent.

The fact that higher SPRs provide a better background rejection is traceable to several
factors. Generally it is due to the false-positive probability being influenced by different factors.
The first is of statistical nature, namely that the number of templates has an impact on the
false-positive rate. The more templates exist in the database, the to more possibilities there are,
to hit one of them by randomly combining hits in one background data frame. These template
matches occur “by chance” because some hits of (mostly different) particles coincidentally trigger
one template. As studied in Section 5.1.1, a stripe SPM requires less templates to reach a certain
εcosmic
detect than a ring SPM. Therefore a high SPR template bank has comparably less templates

which reduces the chance of matching templates by chance. Subsequently, this improves εbkg
reject .

However, one has to take into account that the data presented in Table 5.6 and Figure 5.8
was simulated with background frames that contain only one Michel Decay, which leads to one
ionising particle in the final state producing hits int the detector layers. There are chances that
decay or scattering processes produce more particles, but it can be assumed that the resulting
template matches by combining hit of multiple particles are rather negligible. The dominating
effect can again be explained geometrically and gives a very good argument for using super
pixel stripes. The energies of particles produced at the target is limited to ≈ 53 MeV/c2. In
the B-field, these particles have radia of O(10cm), while cosmic muons have radia of multiple
meters (using Equation 2.2). As the B-field is oriented in z -direction, the particles describe a
curvature in the x,y-plane, along the w -bins. How broad the particle radius distribution for
one template ist, is therefore given by the w -size of super pixels. Looking at super pixel rings,
covering 360◦, a electron (or positron) and a cosmic muon have the same template, as long as
their azimutal angles and spatial offsets correspond. The discrimination power by the particles
momentum is completely lost for super pixel ring templates. On the contrary, a fine w -binning
can almost eliminate false-positive matching caused by a single decay particle. Here, one single
decay particle can almost never use the same super pixel template as a cosmic muon, just because
their momenta are so different.

Conclusion As a form of preliminary conclusion it can be stated that super pixel stripes
offer the best cosmic efficiency per template count ratio as well as background rejection and
are therefore suitable to be used for the Cosmic Trigger. As the finest w -binning feasible 256
was assumed, because for higher numbers the super pixel width would significantly fall below
the limit of 2 mm in layer 3. For one-decay frames, the background rejection goal of 99 % could
almost be reached with a εbkg

reject of 98.3 % at εcosmic
detect = 60 % without using any further cuts. This

result corresponds to a frame selectivity of 0.6 · 102. How this develops for higher beam rates,
other cosmic training efficiencies and SPCs are about to be studied in the following sections.

5.2.2 Background Rejection for different Super Pixel Counts

The next parameter that is subject to investigation is the super pixel count and its effect on
εbkg
reject . Again, the number of z -bins will be fixed and SPC studied by varying the number of

w -bins. Two different z -sizes will be observed, namely 100 mm and 50 mm. The results are
shown in Figure 5.9. Table 5.7 shows the values of the simulation outcomes. The maximum
SPC configurations that are feasible (w ≤ 256) with each z -bins are underlined. For a cosmic
efficiency of εcosmic

detect =60 %, the simulation was performed up to SPC = 4096 in order to get an
idea of the curvature that can be expected for other configurations.

Several findings can be derived from this plot. First, higher SPCs obviously yield a higher
background rejection because of the higher resolution of each individual template. When dou-
bling the SPC, the frame suppression rate also doubles, which is especially true for εbkg

reject < 98 %
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Figure 5.9: Background rejection and template count for a fixed number of z -bins and different
SPCs.

SPC bins WxZ εbkg
reject (60 %) F rate

select εbkg
reject (80 %) F rate

select

w -size 100 mm

512 128× 4 96.27 % 0.3 · 102 95.28 % 0.2 · 102

1024 256× 4 98.28 % 0.6 · 102 97.75 % 0.5 · 102

1536 384× 4 98.92 % 0.9 · 102 98.53 % 0.7 · 102

2048 512× 4 99.19 % 1.3 · 102 98.94 % 0.9 · 102

3072 768× 4 99.51 % 2.0 · 102 -
4096 1024× 4 99.66 % 2.5 · 102 -

w -size 50 mm

512 64× 8 90.86 % 0.1 · 102 88.16 % 0.1 · 102

1024 128× 8 97.20 % 0.4 · 102 96.20 % 0.3 · 102

2048 256× 8 98.79 % 0.8 · 102 98.36 % 0.6 · 102

w -size 33 mm
(only shown in 5.10)

3072 256× 12 99.03 % 1.0 · 102 -

w -size 25 mm
(only shown in 5.10)

4096 256× 16 99.20 % 1.25 · 102 -

Table 5.7: Simulated configurations used in Figure 5.9 and 5.10 their background rejection
efficiencies. The maximum SPC feasible w ≤ 256 for each z -size is marked.
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and the first configuration (z -size 100 mm, εcosmic
detect = 60 %). Nevertheless, it must be said

that for εbkg
reject > 99, 5 % more background events would be needed to simulate this results

with enough statistical evidence. The data in Figure 5.9 was determined with ≈ 105 train-
ing events, which means that for εbkg

reject = 99.66 %, 34 frames were matched. Within the
scope of this thesis, this statistical uncertainty is acceptable. The error can be determined
by σ99.66 % =

√
Nmatched frames ≈ 0.1 %. In order to improve this significantly, the training

events must be increased by an order of magnitude, which was too much computational effort
for the scope of this thesis. In a future study it could be done for some few specific configurations
or by using a cluster.

Generally, increasing the εcosmic
detect means that more templates are required, as discussed earlier.

This leads to lower values of εbkg
reject. It can be deduced from Figure 5.9 that increasing the SPC can

be a means to counteract this effect. It can be clearly seen that εcosmic
detect = 80 % implementations

perform systematically worse, than those at 60 %. When doubling the SPC, the εbkg
reject of the

configuration at 80 % lies above the one with 60 % at the original SPC (for the shown simulation
results).

When talking about doubling the SPC, one should keep in mind that this at least quadruples
the template count. When adding more z -bins it grows even faster than that (see Section 5.1.2).

Fixed w-bins So far, mostly fixed z -bins were used to realise different SPCs. In Figure 5.10
the w -bins are fixed at the finest feasible size, leading to 256 bins. The simulation results that
were used in this plot are marked in Table 5.7 (SPC = 512 not shown). εcosmic

detect = 80 % could
only be reached for SPC ≤ 2048, because the amount of available Monte Carlo data.

Figure 5.10: Background rejection and template count for a fixed number of w -bins and different
SPCs.
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What strikes first, is that SPC = 3072 with 256×12 bins is the first feasible configuration to
reach the 99 % background rejection at εcosmic

detect = 60 %, which corresponds to a frame selectivity

of 102. Roughly extrapolated, the same configuration at 80 % could potentially reach εbkg
reject =

98.6 %, which corresponds to a selectivity of 0.7 · 102. When observing how the frame rate
suppression develops for higher SPCs for fixed w -bins, one can observe in Table 5.7 that they
grow slower than for fixed z -bins. This observation is in accordance with the conclusions drawn
in Section 5.1.2, which stated that the template count increases faster with z -bins than with
w -bins.

5.2.3 Background Rejection vs. Cosmic Efficiency

One further correlation that was only implicitly studied in the previous sections is how the
background rejection efficiency is related to the cosmic efficiency. When increasing εcosmic

detect ,
more templates are required, which increases the false-positive matching chances and therefore
decreased the εbkg

reject . How large this effect actually is, is shown in the Receiver Operating
Characteristic (ROC) curve in Figure 5.11 and Table 5.8 for three different SPC and SPR
configurations that seemed promising in the previous analysis.

The simulation shows that εbkg
reject approximately scales linearly with the cosmic efficiency

in the interval from εcosmic
detect = 40 % to εcosmic

detect = 80 %. While increasing the cosmic efficiency
by a factor of 1.6 (50 % → 80 %), the suppression rate is only reduced by about one third
(0.66 · 102 → 0.44 · 102 for SPC = 1024, other SPC show similar results). This is a key finding,
as it means that it is possible to detect 60 % more cosmic muons, by storing 30 % more frames,
when making the step from 50 % to 80 % cosmic efficiency. However, this behaviour changes for
training efficiencies above 80 %. In particular this can be seen in the SPC = 512 curve, which
decreases faster for higher training efficiencies. Figure 5.11 (top) indicates that the higher the
SPC, the longer the correlation persists linear for higher training efficiencies.

SPC 512 SPC 1024 SPC 2048

εcosmic
detect εbkg

reject F rate
select εbkg

reject F rate
select εbkg

reject F rate
select

50 % 96.68 % 0.30 · 102 98.49 % 0.66 · 102 89.99 % 0.99 · 102

60 % 96.27 % 0.27 · 102 98.28 % 0.58 · 102 98.79 % 0.83 · 102

70 % 95.88 % 0.24 · 102 98.07 % 0.52 · 102 98.61 % 0.72 · 102

80 % 95.28 % 0.21 · 102 97.75 % 0.44 · 102 98.36 % 0.61 · 102

90 % 94.39 % 0.18 · 102 97.35 % 0.38 · 102 - -

Table 5.8: Background rejection efficiencies and corresponding selectivities for configurations
shown in Figure 5.11.

It should be emphasised that these two Figures (5.11) are main results within this analysis as
they show that the cosmic efficiency can be increased up to values of 90 %, while still providing
acceptable frame selectivities. They provide the data that is required to decide for a working
point based on the desired signal efficiency and selectivity and give an overview on performances
that are accessible.

By inspecting Figure 5.11 is clear that even when using low values for the cosmic detection
of εcosmic

detect ≤ 20 %, a frame selectivity of 103 is beyond what is feasible by simply increasing the
SPC. One can observe that for very low training efficiencies, 0.5 · 103 can be reached, but this
would also imply that only every 20th cosmic muon would be detected. For performing online
alignment, detecting at least every second cosmic muon would be desirable. Another fact to
consider is that these simulations still were computed based one one-decay frames. About five
decays per frame will be expected in Mu3e phase I with a beam rate of 108 Hz. Subsequently,
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Figure 5.11: Receiver operating characteristics for background rejection versus cosmic signal
efficiency (top) and frame rate suppression factor (bottom) for three different SPCs. εcosmic

detect was
determined by probing the database with TIDs computed from a separate cosmic muon track
simulation that was not used for training.
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further methods to improve the background rejection must be taken into account in order to
achieve the ambitious goal of a frame selectivity of O(103). This leads to the next Section.

5.3 Improvement Strategies and Cuts

Several methods to modify and to improve the pattern recognition configuration were discussed
in the last Section. Pattern design parameters were studied such as the SPC and the SPR as
well as the effects of the super pixel binning in general. It was observable that a reduction
of the number of templates (also by limiting the cosmic efficiency at a certain point) led to
improvements in the background rejection. In this Section, further methods will be evaluated
that also reduce the number of templates. This will be done by either imposing geometrical
selection rules to the template bank or by cutting off templates by the frequency they are
“fired”.

Template Types In order to classify templates, five categories were introduced, which are
described in detail in Section 4.5.4. Figure 5.12 shows the distribution of these types within a
template bank that was used in the previous analysis with a super pixel mapping of 256× 4 and
εcosmic
detect = 80 %.

Figure 5.12: Distribution of template types for a template bank with εcosmic
detect = 80 %. The

categories stand for the detector stations a template includes, namely Recurl Downstream (RD),
Recurl Upstream (RU ) and Central (CE ). Besides from including one station, templates can
also represent tracks that traverse two different stations, so-called mixed tracks, represented by
RDCE and RUCE.

It can be observed that the templates are equally distributed over the three different detector
stations. Per station, about 30.7 % of the templates are dedicated to tracks that caused all their
hits in this station. Additionally, 8 % of templates represent cosmic muons that traversed the
central and one of the recurl stations, 4 % on either side. The cosmic muon tracks corresponding
to these 8 % of templates can be very useful for alignment, as they offer the opportunity to align
the stations with respect to each other.

Template Bank Filter After introducing template types, these can be used to restrict the
templates in the template bank, for example by excluding one of the categories shown in Figure
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5.12. In order to study the effect of such exclusions, a filter functionality was introduced in the
template bank. It has several settings that are described in Section 4.5.4.

In addition to the exclusion of templates by their type, also the frequency of a template can
be used as a discrimination. It is expected that the template frequency is not equally distributed,
but that there are some templates that collect a large amount of muons, while others are only
triggered rarely. By cutting off the templates that were only populated once during training, it
might be possible to reduce the templates in the template bank significantly while only loosing
a few percent of cosmic detection efficiency.

Figure 5.13 shows the six different filter settings. For these filtered template banks it is not
possible anymore, to refer to the efficiency that was measured during the training. The cosmic
detection efficiency was therefore calculated by using a separate cosmic track Monte Carlo data
set with approximately 5 · 105 cosmic muon tracks. εcosmic

detection is calculated by using the same
equation as for the cosmic efficiency (see Equation 4.1). Furthermore the cosmic acceptance is
defined in Equation 4.6. It is similar to the detection efficiency, but while the efficiency takes
into account every tested muon no matter the type, the acceptance is restricted to the template
types that are allowed by the filter.

Figure 5.13: Efficiency and acceptance for different filter settings.

According to Figure 5.13, the cosmic efficiency for different filter settings is roughly deter-
mined by the percentage of templates that the filter incorporates. For example, the “center
only” filter corresponds to 31 % of templates in the template bank and reduces the cosmic effi-
ciency to about 30 % (which are 38 % of the former 80 %). The filter “recurl only” corresponds
to 62 % of the templates in the template bank and reduced the cosmic efficiency to 48 %, which
is 60 % of the former 80 %. The fact that these post-filter efficiencies do not exactly correspond
to their fraction of templates is caused by a slight bias in the simulation, which leads to more
cosmics being reconstructed in the central area than in the recurl stations.

While the acceptances for the filters by template types approximately stay at ≈ 80 % for
the central and recurl stations it is reduced to about 35 % for mixed templates. This indicates
that during training, the mixed station template categories saturate slower. This is due to the
fact that these tracks occur very rarely. For a future implementation of the Cosmic Trigger,
one must therefore keep in mind that it might be useful to train these templates in a separate
process, so that this category can independently reach the same εcosmic

detect as the other ones.

For the last filter, “cut on freq”, which excludes all templates that were only found once
during training, the acceptance can not be defined. The cosmic efficiency is reduced to about
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70 %. The number of templates that are required is reduced by about 50 %, from ≈ 2.41 · 106 to
≈ 1.21 · 106. Assuming that this behaviour persists similar for mappings with higher SPCs, this
filter can significantly reduce the template number and with it the cost of required hardware.
However, it comes with one downside, namely that most templates in the mixed category have
a frequency of one. When using this filter the percentage of mixed templates in the template
bank is reduced from 8 % to 1.6 %. A possible solution would be to use the frequency cut only
for “recurl only” and “center only” templates, while keeping all templates in the “mixed only”
category.

To motivate the template filtering and to choose the best suitable category, some more
aspects can be taken into account. For example, as discussed in the introduction, the main
source of background for the Cosmic Trigger are particles from the muon decays originated at
the target. Therefore, the station with the highest amount of background hits that can cause
false-positive template matches is the central station. By excluding templates that represent
tracks that only go through the central detector, it is expected to also reduce the background
significantly. Additionally, excluding central-central tracks is not even of great disadvantage,
because the central detector can also be aligned with beam data (see Section 2.3). For the
recurl stations this data might not be sufficient, therefore it is in particular the cosmic muons
with mixed tracks and tracks in the recurl stations, which are important to be detected.

Background Rejection with Template Filter The performance of the different filters can
be evaluated by looking at their respective ROC-curves. First, the two most promising filters,
“no center” and “cut on freq” are compared with the unfiltered configuration for SPC = 1024
(solid line in Figure 5.11). The result is depicted in Figure 5.14.

It should be noted that the values of the cosmic efficiency were simulated with the activated
filter. This is the reason why the data points for “no center” are notably shifted towards the left.
The upper limit of εcosmic

detect for a template bank with this filter lies at about 60− 70 % due to the
exclusion of one third of the detector. As aforementioned, a data set of 105 background frames
was used to calculate these data points. Therefore very high values for the frame selectivity
should be treated with caution because of the little statistical evidence.

The results show that the “no center” filter heavily outperforms the other two settings. It
is capable of increasing the frame selectivity by one magnitude. To reach a cosmic efficiency of
50 % for example, ten times less frames are triggered when using “no center” compared to using
“cut on freq” or no filter at all. Interestingly, “cut on freq” performs slightly worse than the
unfiltered configuration. The reduction of cosmic efficiency by about 10 % (data points shifted
towards left) thus outweighs the gain in background rejection caused by a reduced number of
templates.

Since it appears that excluding the center station brings the desired goal of a frame selectivity
of 103 back within reach, excluding the “no center” filter will be examined more closely. Figure
5.15 shows the same SPMs as Figure 5.11, using “no center” this time.

Figure 5.15 shows that combining the previously found best performing settings for the
parameters, such as high SPC, high SPR and “no center” filter increase the rejection even
beyond the desired limit of 99 % or 99, 9 % . The curvatures indicate an exponential decay (with
exception of some discrepancies for SPC = 1024, most likely caused by statistical fluctuations
in the background simulation data) for all three configurations, steadily improving for higher
SPCs.

Conclusion As aforementioned, from the pool of simulated feasible configurations, an SPM
of 256× 8 offers the best performance, i.e. a selectivity of ≈ 102 at εcosmic

detect = 50 %. By excluding
cosmics that only traverse the central detector it was possible to further improve this to ≈ 1.4·103

at εcosmic
detect = 50 %. The performance of the “no center” filter is summed up in Table 5.9.
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Figure 5.14: ROC curves (top) and frame selectivities (bottom) for SPC = 1024 with no filter
(solid) and two different template bank filters: “no center” (long dashes) and “cut on freq”
(short dashes). The “no center” filter improves the selectivity approximately by one order of
magnitude.

Filter “none” “no center”
SPC εcosmic

detect Acosmic
filter F rate

select Ntmpl εcosmic
detect Acosmic

filter F rate
select Ntmpl

512 50 % 50 % 0.30 · 102 0.25 · 106 –
1024 50 % 50 % 0.66 · 102 0.91 · 106 –
2048 50 % 50 % 0.99 · 102 3.8 · 106 –

512 80 % 80 % 0.21 · 102 0.61 · 106 50 % 80 % 0.21 · 103 0.42 · 106

1024 80 % 80 % 0.44 · 102 2.4 · 106 50 % 80 % 0.85 · 103 1.6 · 106

2048 80 % 80 % 0.61 · 102 12.2 · 106 50 % 80 % 1.4 · 103 8.5 · 106

Table 5.9: Benchmark comparison of a template bank using no filter for εcosmic
detect = 50 % and

εcosmic
detect = 80 %. The latter was also filtered with “no center”.
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Figure 5.15: Receiver operating characteristic curve (top) and frame selectivity (bottom) with
“no center” filter for SPMs used in Figure 5.11.

5.4 Performance at higher Beam Rates

In the previous steps of the analysis, background simulations with frames containing one Michel-
decay were used to examine the behaviour of the cosmic trigger in a “toy study”. It was thereby
possible to identify the impact of different values for SPC and SPR as well as examine the
effect of some systematic cuts and restrictions on the template bank. In the following, the beam
rate of the background simulation is increased towards the rate that the Cosmic Trigger would
encounter in the actual phase-I experiment. Figure 5.16 shows the background rejection for a
stopping rate of up to 108 Hz.

An SPM of 256 × 8 and a cosmic efficiency of 80 % were used, without, and with “no
center” filter. Additionally, a cut was implemented that excludes approximately the 15 % of
frames that contain the most hits. It is expected that these frames have a higher false-positive
match probability. Therefore, it could be a major improvement, to exclude them from the
pattern recognition. Also, these frames are of higher interest in general, thus it is reasonable to
reconstruct them anyway.
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As predicted in the study for single-event decays, the “no center”-filter leads to a significant
performance improvement by about one magnitude. For both configurations, the 15 % cut does
only slightly improve the performance. However, unless the frames excluded by the cut are
reconstructed anyway, increases the overall computational effort of the cosmic filter farm and
should therefore not be used.

Figure 5.16: Background rejection for different stopping rates, using ≈ 105 frames. In the
simulation, the stopping rate can be obtained by fstopping = fbeam/2.466. A stopping rate of
2 · 107 corresponds to one Michel decay per frame, as used previously.

no cut 15 % cut

Filter εcosmic
detect [%] εbkg

reject [%] F rate
select εbkg

reject [%] F rate
select

– 47 85.5 6.9 91.9 12.3
– 78 76.5 4.2 84.5 6.4
“no center” 49 96.5 28 97.3 37

Table 5.10: Background rejection and frame selectivity for the final phase I stopping rate of
108 Hz.
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Chapter 6

Discussion

6.1 Conclusion and Summary

This thesis studied the performance of the Cosmic Trigger, i.e. a pattern recognition cosmic
muon trigger for the Mu3e experiment. A simulation software was implemented in order to
perform the feasibility study. Several aspects were investigated. The first concern belonged to
the super pixel mapping, which described the layout, size and shape of the super pixels. From
the results, it can be concluded that super pixel stripes, with the long side in parallel to the beam
line, are superior to ring-like structures for a cosmic muon PR trigger. Studied were stripes with
dimensions of a few millimeters in φ direction and up to 100 mm in z -direction.

In the first part of the analysis, one-decay beam simulation frames were used to examine
the false-positive trigger rate. It was thereby possible to reach frame selectivities of up to a
magnitude of 103 by using additional geometrical selection constraints. For example, a significant
improvement could be achieved by ignoring all tracks that only traverse the central detector. It
was then studied how the cosmic efficiency for a fixed configuration correlates with the selectivity.
A linear relation was found for cosmic efficiencies between 30 % and 90 %. Therefore, there is
no systematic optimum, but one can choose the performances based on trigger requirements
and hardware availability. In a second step, the stopping rate at the target was increased up
to 108 Hz, which corresponds to final rate planned for phase I of the Mu3e experiment. The
maximum selectivity that could be achieved via simulation was roughly 28 (excluding tracks
that only traverse the central station).

All the results were produced with a software that was developed within the course of this
thesis. It provides a framework to simulate hardware pattern recognition on a cylindrical pixel
tracking detector and could be used for further studies.

As a conclusion, it can be stated that the Cosmic Trigger study produced promising results
towards a future implementation in the Mu3e experiment. Also for even higher beam rates, a
pattern recognition system is capable of achieving remarkable selectivities and thereby reduces
the rate of frames that need to be reconstructed. As a major conclusion of this project, the
results found are used to give a practical recommendation on how the Cosmic Trigger could be
implemented, as it is shortly described in the following.
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Recommendations for Implementation

Before giving recommendations, it must be said that there is no “ideal” configuration that
performs better than all others in every regard. However, depending on certain constrains, it
is possible to propose a solution and also estimate its performance and hardware requirements.
Constrains that may narrow down the realm of suitable options are:

• The desired cosmic detection efficiency εcosmic
detect ,

• The desired number of templates restricted by the amount of available PRM boards,

• The desired frame selectivity F rate
select ,

• Whether or not to use template filters.

So far it has not been studied, how exactly the frame selectivity is related to the amount
of required filter farm PCs. In a simple model, one could assume that a selectivity of 10
also reduces the number of filter farm PCs by a factor of 10. Also assuming that the cosmic
reconstruction would require at least 12 additional filter farm PCs (the same as for the beam
event reconstruction), a selectivity of 12 or higher would be sufficient to shrink down the cosmic
filter farm to one PC. Nevertheless, some points can be raised against this argument. One of
them is that the computational effort of reconstructing cosmics is expected to be significantly
higher than for beam events, lacking the additional constraint that they are originated at the
target. However, the simplified estimation proposed above gives a scale for how to relate the
sensitivity to the of hardware cost.

In the following, two different example implementations are described, one using a template
filter and one that does not. For the cosmic efficiency, a working point of 50 % is fixed, which
implies that an average detection rate of 5 Hz can be expected. For the implementation without
template filter, the working point at εcosmic

detect = 80 % is taken into account aswell.

Implementation using Template Filters

If it is acceptable to exclude cosmics only traversing the central area, the “no center” filter
definitely yields the best performance in selectivity. As simulated, a SPM of 256× 8 super pixel
bins is proposed, meaning that super pixels have a w× z size of 2.13×50 mm2 in the outer layer
(4) and 1.81× 50 mm2 in the second-to-outer layer (3). In order to reach a cosmic efficiency of
50 %, the database must be trained up to 80 % (which also corresponds to a cosmic acceptance of
Acosmic

filter = 80 %) before applying the template filter. Using this configuration at εcosmic
detect = 50 %,

it is possible to reach a selectivity of approximately 28 at a beam rate of 108 Hz. About 8.5 · 106

templates are required with this configuration. Therefore, one PRM board with its memory for
about 15 · 106 patterns is sufficient.

Implementation without Template Filters

If cosmic muons are supposed to be used for the alignment of every detector station, no filter
can be used. In this case, as a starting point, an SPM of 256×8 is chosen. At a cosmic efficiency
of εcosmic

detect ≈ 80 % a selectivity of about 4.2 can be reached, while for εcosmic
detect ≈ 50 % a F rate

select of
about 10 can be obtained.

In order to further improve this result, the SPC could be increased by increasing the number
of z -bins and thereby decreasing their size. As discussed in Section 5.1.2 it can be expected that
doubling the SPC quadruples the number of templates. Using the fit results from Table 5.4 the
resulting number of templates is given in Table 6.1.

Subsequently, it can be stated that without a template filter, it is possible to reach a selec-
tivity of ≥ 10 with a cosmic efficiency of 50 %. For a cosmic efficiency of 80 %, the selectivity
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cosmic efficiency 50 % cosmic efficiency 80 %
w × z bins F rate

select Ntmpl # boards F rate
select Ntmpl # boards

256× 8 6.9 3.8 · 106 1 4.2 12.2 · 106 1
256× 16 8.6∗ < 26 · 106∗∗ 2 5.3∗ 53 · 106 4
256× 32 10.8∗ < 111 · 106∗∗ 6-8 6.6∗ 220 · 106 14-16

Table 6.1: Specifications for 256 × 8 bins and estimation for increased z -binning by doubling
(z = 16) and quadrupling (z = 32). (*) Extrapolation with a factor of 1.25 per SPC doubling,
see Table 5.7. (**) Using εcosmic

detect = 60 % fit from Figure 5.5 as an upper limit.

is reduced to & 5. However, compared to the previous implementation using the “no center”
filter, this comes at a higher cost because more PRM boards are required. On the other hand,
a filterless implementation can yield the highest cosmic detection rates.

If the minimisation of the template count has the highest priority, it is also possible to use
the “cut on frequency” filter, which excludes all templates that were only triggered once during
training. This filter reduces the εcosmic

detect by about 10 % while reducing the number of templates
to its half. It is recommended to only use this filter for cosmic muons that traversed exactly
one of the stations. Mixed tracks (tracks that go through the central and a recurl station) are
important for alignment, therefore they should not be excluded. Also, these tracks only account
for ≈ 8 % of the total templates, so using a cut would not yield a huge improvement in template
count anyway.
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6.2 Outlook and Questions for Future Studies

The research that was done within this thesis was a first step towards the development of an
efficient cosmic muon reconstruction system. The result of this work provided the first answers
on if and how a pattern recognition trigger would perform, yet there are questions left open,
waiting to be answered in future studies. The following list gives a short summary of the
questions that evolved:

• Super Pixel Size Limit
The Mu3e pixel detector suffers from misalignment of up to several O(100µm). In order
for the pattern recognition system to be able to detect cosmic muons without being sig-
nificantly affected by misaligment the super pixels can not be designed infinitely small.
Within this thesis, a lower limit of 2 × 2 mm2 was assumed, but the actual limit might
differ.

• Non-uniform Super Pixel Mapping
The Cosmic Trigger Simulation only used a uniform super pixel binning. However, refering
to Section 5.1.1 it could be useful to switch to a non-uniform mapping, especially in z -
direction. This might be capable of balancing the phase space effects.

• Hardware Requirements for Cosmic Muon Reconstruction
At this point, the computational effort, needed to reconstruct cosmic muon tracks is not
exactly known. A further investigation could give an estimation on the required number
of filter farm PCs and also of the required frame selectivity.

• Cosmic Trigger Hardware Concept
In terms of a hardware concept, several aspects have to be examined. Next to data flow
and readout integration, the super pixel assignment should later be realised by pixel chips
and pixel IDs, not by (x,y,z)-coordinates. Solving this problem in an efficient way, probably
is a non-trivial task.

• Hit Selection based on Timing
In particular for higher beam rates (also with Mu3e phase II in mind), it can be useful to
introduce further discrimination variables. One candidate could be the timing information
of hits with an expected accuracy of < 10 ns. The timestamp of hits could be taken into
account when sending the patterns to the AM chips, meanwhile presorting the frame into
smaller bunches.

• Cosmic Muon Event Rate
How many cosmic muon tracks that can used for alignment are actually measurable in
the detector? In this thesis, a rate of O(10 Hz) was assumed, but the actual rate is not
yet known, as concrete effects of scattering in the magnet, the ceiling et cetera were not
precisely taken into account in this estimation.
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möchte.
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Appendix A

Software Remarks

A.1 Comments on Settings and Versions

The software developed for the Cosmic Trigger can be found on Bitbucket (https://bitbucket.
org/kneureither/cosmictrigger/src/master/). For the development of this software, ROOT
[32] in version 6.20/04 was used. The cosmic Monte Carlo data was simulated using the Mu3e
software package on branch v4.4_dev.

A.1.1 Selected Simulation Settings for Cosmics Muons

• Mu3eSim was used in the “cosmic mode”. A beam rate of 0 generates one cosmic per
simulation frame.

• Mu3eTriRec was used with the output from Mu3eSim in order to create tracks from
detector hits.

• Hits can be obtained from the TTree segs in the TriRec output ROOT File.

The following snippet shows some important paramters from the digi.json file. Everything
else was left at default.

"frameLength" : 50.0,

"rate" : // values from 0 up to 1e8

"mode" : 30,

...

"tracker" : {

"efficiency" : 1.0,

"noiseRate" {

"inner" : 0.0,

"outer" : 0.0

}

}

A.1.2 Selected Simulation Settings for Background

• Usually, 105 frames were simulated in Mu3eSim

• MC hit position truth information was included.

• Either the Michel decay mode or the normal mode were used.
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digi.json snippet for Michel-Decays:

"frameLength" : 50.0,

"rate" : 0,

"overlapMode" : "m",

"mode" : 2,

...

"tracker" : {

"efficiency" : 1.0,

"noiseRate" {

"inner" : 0.0,

"outer" : 0.0

}

...

},

"write" : {

"truth" : 2,

...

}

digi.json snippet for full simulation (“normal mode”):

"frameLength" : 50.0,

"rate" : 1e8 ,

"overlapMode" : "s",

"mode" : 0,

...

"tracker" : {

"efficiency" : 1.0,

"noiseRate" {

"inner" : 0.0,

"outer" : 0.0

}

...

},

"write" : {

"truth" : 2,

...

}

A.2 Pattern Engine

A.2.1 SPM Initialisation

The Pattern Engine can either be initialised with the same binning at all areas or with different
binnings for center area and recurl areas. The constructor takes 3 or 5 parameters respectively.

PatternEngine(int spWBinsCenter , int spZBinsCenter ,

std:: string plottingpath)

PatternEngine(int spWBinsCenter , int spZBinsCenter ,

int spWBinsRecurl , int spZBinsRecurl ,

std:: string plottingpath)
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During initialisation two bin boundary vectors are created for z -bins and w -bins which hold
the z and φ (or x ) coordinates of borders between two super pixels. If mode is set to 0, this
happens in a linear and equidistant way for each bin boundary. If one would like to study non-
linear binning, the only thing that must be done is to fill these vectors with custom non-linear
boundaries or to add another constructor that does so.

The main member function, that the pattern engine provides is:

unsigned int PatternEngine :: getSuperPixel(float x, float y, float

z)

It takes the coordinates in (x,y,z)-space as argument and returns the unsigned int value
of the corresponding SID. An SID is calculated from the w - and z -bin in the boundary vectors,
where a pixel hit lies in. These two indices are determined by searching the bin boundary vectors.
For better speed, a recursive bin search was implemented that has O(log(n)) complexity (instead
of O(n) for a sequential search). The reason it was implemented in that way is to allow as much
flexibility as possible for custom super pixel binning.

A.3 Template Bank

A.3.1 Components and Main Functionalities

The main functionality of the Template Bank is building up a database which can either be
done by adding many cosmic templates or by loading it from a file. Additionally it can handle
operations on the database in order to benchmark it. This also includes testing if some given
templates occur in the database and furthermore keeping track of some figures of merit. The
main functions that deliver these functionalities are listed below:

• TemplateBank(std::string plottingpath, float stopping_efficiency, int dataset

, int mode, int wBins, int zBins)

Constructor of TemplateBank class. As parameters it uses a path where plots are to be
saved, some metadata of the SPM, and the training dataset that is used (important when
saving and loading the database to and from a ROOT File). The stopping efficiency tells,
up to which εcosmicdetect the database should be trained.

• bool fillTemplate(unsigned int *SPIDs, int hitcount, float p, float dca, float

phi, float theta)

Adds a TID based on SIDs in the SPIDs array into the database with the corresponding
trajectory data. If the TID is already present in the database, the trajectory data is ap-
pended to its entry. The function calculates the cosmic efficiency for every 105 entries that
were added. It returns false, as soon as the stopping efficiency is reached, else true.

• bool checkTemplate(TemplateID &TID)

Checks if the given TID exists in the database and returns true if it does. It also keeps track
of the tested TIDs that existed in the database in a separate std::map<> CheckedMemory.

• bool checkCosmicTemplate(TemplateID &TID)

Basically this function does the same as the previous one, but it has some specialities. It
was designed to measure the εcosmic

detect after the training, using additional Monte Carlo cosmic
data. The functionality can be seen as an external evaluation of a pre-trained database.
Also, it can take into account a TID filter, that ignores some of the templates based on a
(geometric) categorisation. This is described in more detail in Section 4.5.4.
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• void writeAMtoFile(std::string path, int *zBins, int *wBins, ...)

Stores the database of TIDs in a ROOT File and adds some meta data, which includes
the zBins, the wBins, the dataset and the cosmic efficiency.

• bool readAMfromFile(std::string path, float stopping_efficiency, TIDLoadingFilter

filter)

Loads a database of TIDs from a ROOT File into the template database.

A.3.2 Database File Handling

A Cosmic Template Database can be written to a file with the function writeAMtoFile(...)

and loaded with readAMfromFile(...). A template database File contains two TTrees. The
first consists of one entry which contains all the configuration meta data, such as the super
pixel mapping parameters, the cosmic efficiency, the training events, and so on. The second
TTree holds the TIDs as short[4] arrays, a std::string representation of the TID, and could
also store the track parameters of the particles corresponding to this TID. The two functions
mentioned basically implement a std::map<> ⇐⇒ TTree conversion.

The ROOT File data representation with writing and reading is implemented in a separate
class, from which reading and writing classes are derived, the TemplateDatabaseFile.

80



Appendix B

Additional Simulation Results

B.1 Differences for higher SPRs

Figure B.1: Training processes for same SPC with slightly different SPR in the super pixel stripe
regime. This plot is included, because it shows that for higher SPRs, their improvement effect
can be seen as almost negligible

Setting w -bins z -bins w -size z -size sp area εcosmic
detect # templates

[rad] [mm] [rad·mm]

1 192 3 0.0327 133 4.36 80.0 % 7.1 · 105

2 256 4 0.0245 100 2.45 80.2 % 2.4 · 106

3 320 5 0.0196 80 1.57 80.2 % 6.3 · 106

Table B.1: Super Pixel Mappings used in Figure B.1
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