

Search for LFV with Mu3e experiment

NUFACT 2021.09.07

Alexandr Kozlinskiy (JGU Mainz, Institut für Kernphysik)

on behalf of the Mu3e Collaboration

Mu3e Experiment

Search for Lepton Flavor Violation (LFV)

- Searching for a decay $\mu^+ \rightarrow e^+ e^+ e^-$
- This decay is not observable in the Standard Model (Br $< 10^{-54}$)
- Any observed decay will point to New Physics

Mu3e Experiment

Current experimental status:

- SINDRUM (1988) Nucl. Phys. B299(1988)1
- Br $< 10^{-12}$ at 90% c.l

Mu3e aims for Single Event Sensitivity (SES) of $2\cdot 10^{-15}$

- Use existing beam line ($\pi E5$, $10^8 \mu/s$) at Paul Scherrer Institute
- Factor 10^3 improvement compared to SINDRUM result
- At Phase II aim for 10^{-16} sensitivity
 - New High Intensity Muon Beamline (HIMB) at PSI
 - See "The HIMB project at PSI" talk on Thursday by Andreas Knecht

Signal

Signal $(\mu \rightarrow 3e)$:

- Three tracks (two positrons and one electron)
- Muon decays at rest
 - $\sum \mathbf{p}_e = 0 \rightarrow \text{need good momentum resolution}$
 - Invariant mass: $M_{e^+e^+e^-} = m_{\mu}$
 - $|\mathbf{p}_e| < 53 \text{ MeV/c} \rightarrow$ large Multiple Scattering (MS) \rightarrow need to reduce material
- Common vertex & time \rightarrow need good vertex resolution

Background

Background:

- Random combinations:
 - Overlap of $\mu^+ \to e^+ + 2\nu$, e^{\pm} scattering
 - *Fake* tracks
 - Not same vertex, time, etc.
- Internal conversion:
 - $\bullet ~\mu^+ \rightarrow e^+ e^+ e^- + 2\nu$
 - Missing momentum & energy

Mu3e Detector

Detector - central station

Double cone hollow target:

- Muons stop on target and decay at rest
- Vertices are distributed over surface of the target for better vertex separation

4 pixel layers:

- Provide hits for track reconstruction
- HV-MAPS technology (minimize material budget to reduce Multiple Scattering)

High Voltage - Monolithic Active Pixel Sensor (HV-MAPS)

- Commercially available (HV-CMOS) process (AMS & TSI 180 nm)
- Combination of matrix + readout, in-pixel electronic
- Large area $(2 \times 2 \text{ cm}^2)$
- High granularity (pixel size $80\times80~\mu\mathrm{m}^2)$
- High efficiency (> 99%)
- Fast charge collection via drift (HV, $\sigma_t < 15 \text{ ns})$
- $\bullet\,$ Can be thinned to $50\,\mu{\rm m}$
- See "HV-MAPS" talk on Wednesday by Andre Schöning

I.Peric, NIM A582(2007)876

MuPiX 10

Design:

- Substrate: 20, 200 $\Omega~cm$
- Thickness: 50-70, 100, 650 μm
- Matrix: 256×250
- Pixes size: 80 \times 80 μm^2
- Active area: 20.48 \times 20 $\rm mm^2$

Performance:

- Efficiency > 99%
- Noise rate < 2 Hz/Pixel
- $\bullet~{\rm Power~consumption} < 350~{\rm mW/cm^2}$
- Time resolution O(13) ns

Inner/vertex tracker

- Sensors are mounted on High Density Interconnect (polyimide substrate with aluminum traces)
- First Layer 8 ladders (placed close to target), second layer 10 ladders (about 1 cm distance from first layer)
- Each ladder made of 6 sensors (12 cm length)

Inner tracker prototype

Detector - central station

Scintillating fibres:

- Time measurement to reduce combinatorial background
- Required resolution of better than 1 ns
- Placed just before outer layers

Scintillating fibres

- 3 layers of fibres (Kuraray SCSF-78MJ, diameter 250 μm)
- $X/X_0 \approx 0.2\%$

- 12 fibre ribbons coupled at both end to SiPM arrays (Hamamatsu S13552-HRQ)
- The SiPM arrays are read out by MuTRIG ASIC
- Prototype time resolution of 250 ps

Detector - recurl stations

Particles bend back in magnetic field:

- Dedicated 'recurl' stations
- Improve momentum resolution (factor 5-10 improvement)

Two recurl stations:

- Two pixel layers (same as outer layers of central station)
- \bullet + scintillating tiles
 - $\sigma_t < 100 \text{ ps}$
 - Suppress accidentals

Scintillating tiles

- Tile detector station: 7 modules
- Module:
 - 13 sub-modules
 - $\bullet\,$ Read out by 13 MuTRIG ASICs

- Sub-module: 32 scintillator tiles
- Protoype performance (DESY testbeam):
 - $\bullet\,$ Efficiency above 99%
 - Single channel (tile) resolution
 ≈ 45 ps

Magnet

The detector is assembled on a beam pipe within the rigid cage:

- Allows for easy mounting and extraction from the magnet by use of rail system
- Supports additional infrastructure, such as power converters, front-end boards, cables, etc.

The cage is inserted inside the magnet:

- Magnetic field: B = 1 T
- Inhomogenity below 10^{-3} and stability better than 10^{-4} over 100 days
- Produced by Cryogenic and delivered to PSI in summer 2020

Readout

Large data rate:

- 10^8 Hz muon stopping rate
- $\bullet\,$ Pixel sensors: up to 740 Mbit/s per link at inner layer (occupancy of 1.3 $\rm\,MHz/cm^2)$
- $\bullet\,$ Fibre detector average hit rate of 620 kHz per channel \rightarrow 700 Mbit/s per link + noise

Reconstruction

Reconstruction

 $10^8 \mu/{\rm s}$ stop and decay on target

- Hit rate of 10⁹ per second + fibre and & tile hits
- Due to limitted storage need fast online reconstruction to reduce rate by factor 100
- Continuous readout (DC beam), no trigger
- Data divided into 64 ns time slices

Reconstruction:

- Fast (triplet) fit for MS dominated environment
- Use same algorithms online and offline

Triplet fit

Track in magnetic field:

- Described by helical trajectory
- Require minimum 3 hits to reconstruct track (triplet)

Tripet - trajectory with Multiple Scattering (MS) in middle point

- No pixel uncertainty and no energy loss
- Only one parameter curvature r (momentum p)
- Triplet fit: minimize MS angle
 - No analytical solution
 - Small MS angles \rightarrow linearization

Track fit

Track:

- Sequence of triplets (2 consecutive triplets share pair of hits)
- Minimize combined χ^2
 - r = weighted average of individual triplet solutions

Offline reconstruction includes effects of pixel size and energy loss

Reconstruction: from triplets to short tracks

Triplet (3 hits) seeds:

- Combine hits from first 3 layers
- 10-20 hits per layer per 64 ns time slice, O(1K) combinations
- Total 10^9 triplet fits each second
- Fake rate ≈ 1 (1 per truth track)

Short (4 hits) tracks:

- Combination of triplet and hit in outer layer
- Fake rate $\approx 1.0\%$

Long 6-hit tracks:

• Combine short track with pair of hits in outer layers

Long 8-hit tracks:

- Combine 2 short tracks with opposite curvature
- Ambiguity in direction (charge)
- Fake rate $\approx 3.7\%$ combination of short tracks from wrong turns

Timing

Time information from fibres and tiles:

- Link fibre and tile clusters to reconstructed tracks
- Use time difference between two fibre hits to identify track charge
- Reconstruct time at first layer that is used to reduce number of wrong combinations during vertex fit

Acceptance and efficiency

- Acceptance: $\epsilon_{acc} \approx 70\%$ (1 hit per layer, min p_{T} , etc.)
- Short tracks: $\varepsilon_{\scriptscriptstyle short} \approx 90\% \cdot \varepsilon_{\scriptscriptstyle acc}~(\chi^2~{\rm cut})$
- Long tracks: $\varepsilon_{\scriptscriptstyle long}\approx 70\%\cdot\varepsilon_{\scriptscriptstyle short}$ (gaps, etc.) \to analysis

Momentum resolution

Short tracks (4 hits)

- $\langle \sigma_p \rangle \approx 1.4 \text{ MeV/c}$
- Depends linearly on momentum

Long tracks (6 and 8 hits)

- $\langle \sigma_p \rangle \approx 0.2 \text{ MeV/c}$
 - $(\times 10$ better than short tracks)
- min $\sigma_p \approx 100 \text{ KeV/c}$

Sensitivity

- Combine 3 long tracks
- Fit vertex and apply cut on vertex time
- $\bullet~+$ other cuts to suppress Bhabha background

Integration run

Successfull integration run campaign from May to July 2021 with reduced detector: 2 pixel layers + fibre detector

Integration run

Mounted in a cage with all the readout electronics, services (cooling pipes), power converters, etc.

Integration run

- Inserted into magnet
- Run with helium cooling, in magnetic field and with a muon beam
- Almost full data readout chain
 - From detectors to front-end boards
 - Then optically from inside the magnet to switching boards in the counting room
 - Finally transfer data to PC and store to disk
- See "Mu3e Integration Run 2021" poster by Marius Köppel

Summary

- Search for $\mu^+ \rightarrow e^+ e^+ e^-$ decay (LFV)
- Single event sensitivity of $2 \cdot 10^{-15}$
- Successfull integration run this summer (2 pixel layers, fibres, magnet, beam)
- TDR published in NIM A https://doi.org/10.1016/j.nima.2021.165679
- Construction and commissioning is under way

Backup

- "The HIMB project at PSI" talk on Thursday by Andreas Knecht
- "HV-MAPS" talk on Wednesday by Andre Schöning
- "Mu3e Integration Run 2021" poster by Marius Köppel
- "The Power Distribution System for the Mu3e Experiment" poster by Sophie Gagneur

Experimental area

Target

Muon stopping rate distribution:

Simulation performance

	Efficiency	Total efficiency
Muon stops	100%	100%
Geometrical acceptance, short tracks	38.1%	38.1%
Geometrical acceptance, long tracks	68.0%	25.9%
Long track reconstruction	67.2%	17.4%
Recurler rejection/Vertex fit convergence	99.4%	17.3%
Vertex fit $\chi^2 < 15$	91.3%	15.8%
CMS momentum < 4 MeV/c	95.6%	15.1%
$m_{ee,low} < 5{ m MeV/c^2}~{ m or} > 10{ m MeV/c^2}$	98.0%	14.9%
$103{ m MeV/c^2} < m_{rec} < 110{ m MeV/c^2}$	97.0%	14.4%
Timing	90.0%	13.0%

Sensitivity

Sensitivity

