

Bachelor Thesis
Institute for Biomedical Engineering, ETH Zurich

System Optimization and
Software Design in Grating-

Interferometry X-Ray Imaging
Laboratories

Lionel Peer

Supervision: Prof. Dr. Marco Stampanoni
Advisor: Dr. Maxim Polikarpov

ABSTRACT

The X-Ray Tomography Group of the Biomedical Engineering Institute at ETH
Zurich operates an X-ray grating interferometer located at the Paul Scherrer In-
stitut. This setup is extensively used for laboratory X-ray imaging of samples for
materials sciences as well as biological and medical ones. As part of ongoing re-
search activities at this setup, I was granted the responsibility to design high-level
operation and data processing software in the context of my Bachelor’s thesis. Be-
fore my arrival the setup had been operated with low-level software and in order
to allow for hardware independent operation and reduce acquisition times, a high
level software package was created. The written operation software allows for a
quick change of hardware components and more can be easily added. In the case of
one detector, a significant reduction in overhead time was achieved. The high-level
approach ensures the safe operation by group members with very little experience,
making it available as a research tool for larger parts of the group. Further, a
collection of frequently used data processing functions was created and their capa-
bilities extended, such that they can handle different types of inputs. Tomographic
reconstruction had so far only been done using parallel geometries. This function-
ality was extended such that it now considers the cone shaped geometry of the
real system and makes use of the highly parallelizable architecture of GPUs, while
operational simplicity for the user was kept at the same level.

ACKNOWLEDGMENTS

My time at TOMCAT was an intense and very interesting one. I got to first hand experience
day-to-day laboratory operations and was included in every single process. I would like to thank
Prof. Dr. Marco Stampanoni, my supervisor and the group leader of TOMCAT, for making
my first research experience possible and introducing me to the world of X-ray imaging.

A special thanks goes to Dr. Maxim Polikarpov who was my direct advisor during these 14
weeks. He gave me a lot of liberty with my research and I was always welcome to introduce
new ideas. This gave me the chance to get a broad view of not only grating interferometry but
X-ray imaging and computed tomography as a whole.

Further I would like to thank Dr. Michał Rawlik, the leader of our neighboring group that
focuses on breast CT, and Simon Spindler, who both gave me great advice on simulations and
tomographic reconstruction. I was always welcome to ask questions, be it during the lunch
breaks or via email.

Another opportunity that I was given over the course of this thesis, was the chance to test the
performance of newly produced high aspect ratio absorption gratings. For this I would like
to thank Dr. Lucia Romano, Zhitian Shi and Dr. Konstantins Jefimovs with whom I got to
spend a great time in the lab.

Finally I would like to thank Lars Lenherr, who wrote his Bachelor’s thesis during the same
time in Michał’s group, for the scientific exchange that we had, both about the setups and the
Bachelor’s thesis as such.

v

CONTENTS

Seite

1. Introduction 1

2. Theory 3
2.1. X-Rays and Matter . 3
2.2. Talbot Effect . 4
2.3. Fractional Talbot Effect & Moiré Patterns . 6
2.4. Talbot-Lau Interferometer . 7
2.5. Image Acquisition, Phase Retrieval & Quality Assessment 8

2.5.1. Visibility . 8
2.5.2. Angular Sensitivity . 9

2.6. Computerized Tomography & Tomographic Reconstruction 9
2.6.1. Mathematical Basis . 10
2.6.2. Reconstruction Algorithms . 10

3. Lab Setup 15
3.1. Detector . 15
3.2. Gratings . 16
3.3. Motorized Towers . 17
3.4. X-Ray Source . 17
3.5. Placing and Alignment of Components . 18

4. Operation Software 21
4.1. Detector Operation . 21

4.1.1. Acquiring Images with Eiger . 23
4.1.2. Speeding up the Tomographic Process 23

4.2. Motor Operation . 24
4.3. The Lab CT as one Object . 25
4.4. Conclusions & Perspective . 26

vii

Contents

5. Data Processing 29
5.1. Reading Detector Output . 29
5.2. Measuring Visibility & Angular Sensitivity . 30
5.3. Extracting the 3 Images . 31
5.4. Tomographic Reconstruction . 34

5.4.1. The Reconstruction Class . 34
5.4.2. Phantom Creation & Performance Testing 36

5.5. Conclusions & Perspective . 38

6. Conclusions & Perspective 39

A. Testing of Bottom-Up Gold Filled High Aspect Ratio Gratings for X-Ray Interferometry 41
A.1. Grating Tests . 41
A.2. Conclusion . 43

B. Operation & Reconstruction Software 47
B.1. Requirements for operating the setup . 47
B.2. Requirements for operating the reconstruction 47
B.3. Operation Software . 48
B.4. Data Processing Software . 64

References 75

Image Sources 79

viii

1 INTRODUCTION

X-ray imaging started with the detection of X-rays by W. Röntgen and the subsequent pub-
lishment of the first X-ray image in 1895. Soon, single projections were not enough anymore
and driven by the motivation to get an insight into the rib cage, without the ribs interfer-
ing, axial tomography was invented in the late 1930s and 40s. Those axial tomographs were
purely mechanical and only in the 1960s, with the rise of the digital technology, the idea of a
computer-based back projection arose. This led to the creation of CT by A. Cormack and G.
Hounsfield, for which they were awarded the Nobel prize in 1979. In parallel, phase contrast
imaging was developed for the visible light spectrum and is a well established technology for
microscopy [5]. Adaptation using X-ray was slow due to challenges in the microfabrication
process of X-ray optical elements. Nevertheless, interferometry for synchrotrons was explored
and successfully deployed during the 1990s [15] and early 2000s. Subsequently, in 2006, the
development of a Talbot-Lau interferometer setup with a conventional X-ray tube was first
published [11]. This opened the doors for future medical applications since the better contrast
in soft tissues has great potential, for example in the detection of breast cancer.

Such a system, has been installed at the X-ray tomography group of Prof. Dr. M. Stampanoni
at the Paul Scherrer Institut. It offers high spatial resolution (10 µm) in a field of view of 5-15
cm. So far, typical acquisition times for tomographic scans ranged from 15 hours to 3 days,
depending on the setup geometry and the number of projections. The motivation behind this
thesis was to bring the acquisition times down by streamlining the process, make it universal for
different hardware components and provide a software infrastructure for quick reconstruction
of the acquired projections. Eventually this setup should be able to acquire and process high
resolution phase contrast tomography, for example of histopathological samples, in a time frame
of 2-3 h. The high-level approach that the software should follow would also allow this setup to
be used as a research tool for other members of the group. After getting comfortable with the
operation of the single components, points of optimization can be identified with which this
high-level framework should be designed. By optimizing the interaction between the hardware
components, acquisition times should be brought down. Tomographic reconstruction should
be enhanced by introducing a simplified access to powerful GPU optimized reconstruction

1

1. Introduction

algorithms. Those algorithms are not only faster, but they also take the diverging X-ray beam
into account, therefore closer resembling the real setup.

The first part of the thesis will cover the theory behind phase contrast X-ray imaging using
interferometers and the reconstruction of acquired tomographic data sets. The second part
covers the different hardware components and improvements made in this respect. Further,
the last two parts, will present the software packages for controlling the setup and for the
reconstruction. The emphasis will lie on improvements that simplify and speed up operation
as well as the processing of data.

2

2 THEORY

The goal of this chapter is to lay out the mathematical and physical foundation behind X-ray
interferometry used for phase contrast imaging and tomographic acquisition and reconstruction.
Understanding this is of importance when looking at the operation and reconstruction software
packages and for the discussion of experimental results.

2.1. X-Rays and Matter

X-rays are photons with an Energy of E = hc
λ , where h is Planck’s constant, which is exper-

imentally derived, and λ is the wavelength of the corresponding photon. While visible light
has wavelengths of 400 nm (violet) to 700 nm (red), the energy range of diagnostic X-rays,
which is the primary focus of this thesis, lies in between 10 keV and 150 keV and therefore
the wavelengths are significantly smaller (0.12 nm to 0.008 nm). The dominating effects of
matter interaction at this energy range are photoelectric absorption, Compton scattering &
Rayleigh scattering. Photoelectric absorption is a contributor to the attenuation or decrease in
intensity of the incoming X-ray beam, Compton scattering both attenuates and scatters, while
Rayleigh only leads to scattering of the photons [19, p. 8]. X-rays follow the wave-particle
duality and interferometric imaging makes use of their wave nature with the help of diffraction
and refraction.

In order to understand the X-ray and matter interaction it is helpful to start with plane waves
propagating in a medium, mathematically described by the following equation:

E(r, t) = Re{E(r)e−iωt} (2.1)

E is the complex field amplitude of the real time dependent field E and E is again described
with the help of field vector E0 and wave vector r, determining polarization and propagation
directions.

E(r) = E0e
±ik·r (2.2)

3

2. Theory

Without loss of generality, but for reasons of simplicity, it is helpful to constrain calculations
to plane waves travelling in z-direction, incident to an object in space. The underscore of the
vectorial field quantities will be dropped from now on and kz = 2π/λ simplifies to a scalar
quantity, the wave number.

Ein(z) = E0e
ikzz (2.3)

As described by [19, p. 11], the total interaction of such an X-ray wave travelling through a
sample between z = 0 and z = z0 can be described by a line integral along the z-axis that sums
all interaction. This results in the following relation between incoming and outgoing waves.

Eout = Eine
ik
∫ z0

0 n(z)dz (2.4)

n(z) is the spatial distribution of the complex coefficient of refraction n = 1− δ + iβ, where β
is related to the attenuation properties of the material and δ to the phase shifting properties.
Putting this into Eq. 2.4 yields a term consisting of a propagative part, a phase shifting part
and an attenuation part.

Eout = Eine
ikz0e−ik

∫ z0
0 δ(z)dze−k

∫ z0
0 β(z)dz (2.5)

Deriving attenuation A (influence on the amplitude) and phase difference from Eq. 2.5, the
resulting equations are the following [19, p. 11]:

A = 1−
(| Eout |
| Eineikz0 |

)2
(2.6a)

φ = arg(Eout)− arg(Eineikz0) (2.6b)

As can be seen from the equations, the incoming field (Ein) that propagated through the
sample space without the sample present (Eineikz0), must be measured as well. From now on,
this will be the so called flat-field image. X-ray detectors use different technologies to measure
the intensity of the beam, therefore determining A from Eq. 2.6a is straightforward. Accessing
the information hidden in the phase of the outgoing wave is more complicated, and its process
will be explained in detail in the next sections.

2.2. Talbot Effect

In 1836, Henry Fox Talbot made the observation that light, incident to a grating, will reproduce
the exact structure of the grating, if a screen is placed at certain distances behind the grating.

4

2.2. Talbot Effect

In 1881 Lord Rayleigh was the first to quantify these distances as:

z = m · d
2

λ
(2.7)

For these distances, d is the period of the grating, λ the wavelength of the incident particle and
m is an arbitrary integer value. The actual reproduction happens at double these distances,
zT = m · 2d2/λ, the image at d2/λ is shifted to the side by half the grating period [12, p. 196].
The value of zT will from now on be called Talbot distance and the integer m will be called the
Talbot order.

In order to calculate this value, one can imagine a wave incident to the grating in the (x, y)
plane at z = 0. The grating structure can be imagined as vertical, which corresponds to
parallel to the y-axis. The incident wave has an angle of incidence of θ between propagation
direction and the (y, z) plane. This angle is of interest since the grating acts on the wave
component perpendicular to both the grating structure and the propagation direction, which
is the x-axis. As presented by [2] the field behind the grating can be calculated by starting with
the projection of the wave vector onto the x axis kx = ksin(θ), yielding the wave of interest as
ψ = eikxx and calculating the wave directly behind the grating as follows:

ψ(x,+0) = ψ(x,−0)T (x) =
∑
n

Ane
i(kx+2π

d
n)x (2.8)

In this equation, T (x) = ∑
nAne

i2π
d
nx is the grating transfer function. It can be observed that

the grating adds multiples of 2π/d to the wave vector kx, which means that everything so far is
perpendicular to the optical axis. The other wave vector component, kz, can be derived from
the total wave vector and the above x-direction component:

kz =
√
k2 −

(
kx + 2π

d
n

)2
(2.9)

Using paraxial- and Taylor approximations, as shown by [20], this can be simplified to:

kz ≈ k −
(
kx + 2πdn

)2
2k (2.10)

Adding this to the calculation from above, the complete field behind the grating presents itself
as the following:

ψ(x, z) =
∑
n

Ane
i(ksin(θ)+2π

d
n)x+i

(
k−(ksin(θ)+2π

d
n)2

2k

)
z

(2.11)

5

2. Theory

For the Talbot effect to happen, spatially coherent waves are required to be incident to the
grating, therefore sin(θ) = 0. Also putting in the relation that k = 2π/λ the field simplifies
to:

ψ(x, z) =
∑
n

Ane
i2π
d
nxei2

π
λ
ze−in

2 πλ
d2 z (2.12)

The second term is not of interest, since it is independent of n and introduces a global phase.
It is visible that e−in

2 πλ
d2 z becomes e−i2mπ·n2 for z = m · 2d2/λ, which was the before defined

Talbot distance. Since this term’s exponent includes an integer multiple of 2π, it is always one
at those distances. The following field at Talbot distances is formed, corresponding exactly to
the transfer function of the grating:

ψ(x, z = m · 2d2/λ) =
∑
n

Ane
i2π
d
nx (2.13)

2.3. Fractional Talbot Effect & Moiré Patterns

When using phase gratings, a similar effect can be observed, called Lohmann images by Suleski
in [16], instead of Talbot self images. They appear at fractions of the Talbot distance and
are therefore part of a class called Fractional Talbot Effects. The main motivation behind
using phase gratings instead of absorption gratings is, that they can be manufactured from
poorly absorbing material, offering very high efficiency compared to standard gratings, where
absorption is necessary for their function. Suleski lists 36 different combinations of duty cycles
and phase shift values producing such images, this thesis will only look at π and π/2 shifting
gratings. For a specific wave length, from now on called design energy, and a phase grating
that causes a phase shift of φ = π/2 at this energy and has duty cycle 50%, this distance is
1/4th of the original Talbot distance or:

zpar,π/2 = m · p
2
1

2λ (2.14)

For a phase shift of π, such an image forms at 1/16th of the Talbot distance, but here the
period of the Lohmann image is half the grating period, as also stated by [3].

zpar,π = m · p
2
1

8λ (2.15)

With the help of geometric magnification, this was the grating specification used in the setup
during the course of this thesis. With s being the complete setup length and l the distance
between the phase grating and a micro focus source, the periods get magnified by M = s

l .

For this reason, the distances were deliberately indexed par, because they are only true for

6

2.4. Talbot-Lau Interferometer

a parallel shaped geometry. For a cone shaped incident beam, those maxima of intensity are
reached at the following distances, as stated by [4], where l is again the source-phase grating
distance:

zcone = l

l − zpar
zpar (2.16)

Since the goal is to detect changes when a sample is placed in the beam, analyzing shifts in this
pattern due to a refractive change is necessary. Unfortunately the pixel size of the detector is
significantly bigger than the period of the pattern which makes a direct analysis impossible.
In order to tackle this problem, an analyzer grating instead of the detector itself, is placed at
such a fractional Talbot distance behind the phase grating. The pattern formed by the phase
grating should have the same periodicity as the analyzer and overlap with its structure. A
refractive change in the beam will then immediately translate into an intensity change on the
detector which follows directly behind this analyzer grating.

2.4. Talbot-Lau Interferometer

In order to reach the needed coherence, a source grating is used that creates individually
coherent line sources. Sufficient coherence is a premise for the use of a grating like the the one
from section 2.2 or 2.3. From now on this source grating will be called G0, the phase grating
G1 and the analyzer grating G2. For these gratings, the periods need to have the following
geometry, where l is now the length between G0 and G1 and d is the distance between G1 and
G2 corresponding to the fractional Talbot distance [11]:

pG0 = l

d
pG2 (2.17)

This is called a Talbot-Lau configuration and by placing the gratings according to above equa-
tion, the incoherence between the single sources works constructively. [22].

The symmetric setup with π-shifting G1 and the same periods everywhere emerges as one
possible configuration for such a Talbot-Lau interferometer. Condition 2.17 is fulfilled and the
magnification factor of M = 2 increases the period of the Lohmann image at zpar,π to match
the period of G2. An example of such a symmetric setup with gratings of period 2 µm and
π-shifting G1 is shown in Fig. 2.1.

7

2. Theory

Fig. 2.1.: Symmetric setup with gold filled absorption gratings and π shifting phase grating. Sample
placement is between G0 and G1

2.5. Image Acquisition, Phase Retrieval & Quality Assessment

Data acquisition is done using a phase stepping technique. The analyzer grating is moved in
x-direction, the direction of the grating modulation, over the course of one grating period and
an image is taken at every step.

The phase stepping leads to a phase stepping curve in each pixel, from which absorption
contrast (amp), differential phase contrast (dpc) and scattering or dark-field contrast (dci)
signals can be derived, using Fourier analysis. The values a0,1 and φ1 in the formulas below
correspond to norm and phase of the first and second Fourier coefficients for either the flat-field
phase stepping curve (ref) or the phase stepping curve with the sample (sam). The formula for
absorption contrast corresponds to the formula mentioned in Eq. 2.6a. For phase information,
the second Fourier coefficient is used (unlike Eq. 2.6b), therefore it is called the differential
phase contrast image [19, p. 21].

amp = 1− a0,sam
a0,ref

(2.18a)

dpc = φ1,sam − φ1,ref (2.18b)

dci = a1,sam
a0,sam

· a0,ref
a1,ref

(2.18c)

2.5.1. Visibility

Since such an interferometer works with polychromatic sources and not everything gets ab-
sorbed in the gold inlays of the absorption gratings, the visibility of the fringes is an important

8

2.6. Computerized Tomography & Tomographic Reconstruction

metric to determine its performance.

As demonstrated by [17], the phase stepping curve Ip(x) is a convolution of the optimal in-
terference pattern for coherent sources Ic(x), the source intensity profile at the detector S′(x),
and the transmission of the analyzer grating G2 (G(x)). Because of the transmission function,
Ip(x) is periodic in the G2 grating period and the visibility can be calculated using Fourier
analysis:

V = Ip,max(x)− Ip,min(x)
Ip,max(x) + Ip,min(x) = 2a1

a0
(2.19)

Here, a0,1 are again the respective Fourier coefficients derived from the phase stepping curve.
It is worth noting that assuming G0 and G2 as perfectly absorbing gratings with duty cycle
50%, the visibility would reach 51.6% [17].

2.5.2. Angular Sensitivity

A different metric for measuring the performance of a grating interferometry is the smallest
detectable refraction angle. It is dependent on the inter grating distance of G1 and G2 (d), the
standard deviation (σφ) of the differential phase contrast image dpc = φ1,sam − φ1,ref and the
G2 period, as presented by [18].

αmin = p2
2πd

l

ls
σφ (2.20)

The distances l and ls are the distances G0-G1 and G0-sample respectively. Since ls is in any
case the smaller distance than l, the sample should be placed as close as possible to G1 in
order to minimize αmin. Longer propagation distances (d) and smaller grating periods are also
beneficial in this regard.

2.6. Computerized Tomography & Tomographic Reconstruction

Computerized tomography has revolutionized diagnostic radiology and the 1979 Nobel prize
in physiology and medicine was awarded for its development. Many others in the field have
followed, for example the 2003 Nobel prize for advancements in magnetic resonance imaging,
a related method that also uses the reconstruction from projections [6].

The idea behind such imaging methods is that, given a sufficient amount of information from
different angular projections through the object, the cross section of the object can be recon-
structed.

9

2. Theory

2.6.1. Mathematical Basis

Even though reconstruction can be done for any kind of projection image mentioned in 2.5,
this section will show it using absorption projections. The formulas hold true for the other
images as well.

Assuming an infinitely small slice of the object between z = 0 and z = D, the attenuation
along a line passing through this slice can be described as:

m =
∫ D

0
µ(x, y)dz (2.21)

The value µ is the attenuation coefficient, closely related to β from the complex coefficient of
refraction mentioned in 2.1 by µ = 2kβ, with k being the wave number. The goal is to derive
the spatial distribution of µ(x, y) in the whole slice from this information.

The mathematical basis for this reconstruction had already been provided by Johann Radon
in 1917 [6, p. 35].

µe(x, y) = − 1
2π2 lim

ε→0

∫ ∞
ε

1
q

∫ 2π

0
m1(x cos θ + y sin θ + q, θ) dθ dq (2.22)

In this formula, m1 is the partial derivative of the the line integral m(l = xcosθ+ ysinθ+ q, θ)
with respect to l. Looking from above onto the slice like in Fig. 2.2, l is the deviation to
the side from the center of rotation and θ is the angle at which the line integral is taken.
The analogy in a real setup is the following: a slice represents a pixel row on the detector, l
one of these pixels and all l with a certain θ form one projection of the slice. Even though
the formula is complicated, it is visible that, given infinitely small l and θ, the attenuation
coefficient distribution in the slice could be completely and uniquely reconstructed.

2.6.2. Reconstruction Algorithms

Since in reality the data set is never complete to the point where infinitesimal θ and l are
reached, reconstruction is dependent on algorithms that provide reconstruction quality for a
finite amount of pixels and acquisition angles. Another important factor besides quality is
the computing time to reconstruct such a slice. This is dependent on the algorithm but also
on its implementation and the available hardware. The algorithms presented here are back
projection-based whereas iterative methods with forward projection will not be explained.

10

2.6. Computerized Tomography & Tomographic Reconstruction

Fig. 2.2.: Computerized Tomography acquisition protocol [7, p. 30]. θ is the angle at which the
acquisition happens, l the deviation to the side. The detector measures the intensity of the attenuated
beam and together with a flat-field measurement, the attenuation A can be derived.

Fourier Slice Theorem

The two algorithms presented here are based on the Fourier slice theorem which states that
projecting a slice of a sample and do a Fourier transform is the same as a 2D Fourier transform
of the sample space. Fig. 2.3 shows the 1D transform of the projections in the 2D Fourier
space. As can be seen, the sampling gets lower with increasing distance from the origin. This
corresponds to the high spatial frequencies, responsible for small details, like sharp edges.
Underrepresentation of these frequencies leads to blurry images [13].

Backprojection

Clearly the simplest reconstruction algorithm, it estimates the density (value of the attenuation
coefficient µ) at a certain point by assigning every value in the a line the value of the line
integral. This is done for all projection angles and the values are summed up [6, p. 125]. The
problem stated in the section before is strongly visible with this reconstruction method: The
image is very blurry due to the underrepresentation of high spatial frequencies. An example
of this is shown in Fig. 2.4. Though unusable in practice, it lays the foundation for the next
algorithm.

11

2. Theory

Fig. 2.3.: Fourier slice theorem. Shown is the 1D Fourier transform of the projections (gray and black
lines) in the 2D Fourier space. A 2D back transformation would yield the sample space, but the
undersampling in the outer regions is well visible (blue) [13].

(a) Original slice through the
sample.

(b) Reconstruction of the same
slice using BP.

Fig. 2.4.: An example of a backprojection using a phantom. The phantom depicts a capillary with
spheres of different radii and density. The image is blurry and no details are visible with this method,
making it unusable in practice.

12

2.6. Computerized Tomography & Tomographic Reconstruction

Filtered Back Projection

The simplest approach to solving the problem mentioned in the sections before, is to apply a
filter to the 1D Fourier transforms of the projections (gray and black line in Fig. 2.3) before
back projecting them [13]. This is to attenuate the low spatial frequencies such that they are
equally represented after the back projection. The most commonly used filter is called Ram-Lak
and is shown in Fig. 2.5. This filter’s attenuation is linear with decreasing frequency and many
other filters exist. An example of a reconstructed slice using FDK (Feldkamp, Davis & Kress),
a 3D extension of the filtered back projection (FBP), will be shown in the Data Processing
chapter in Fig. 5.6.

Fig. 2.5.: Ram-Lak filter that attenuates low spatial frequencies (around ω = 0) and lets high spatial
frequencies pass [1]. This filter counteracts the underrepresentation of high spatial frequencies when
using reconstruction algorithms that are based on the Fourier slice theorem.

13

3 LAB SETUP

This chapter should give an overview of the different hardware parts of the set up. All of them
are mounted on a rail on an optical table such that the distances can be easily adjusted. In
order to find points of optimization, the first 2 to 3 weeks of this thesis consisted of learning
the following tasks:

1. Calculating and adjusting the setup geometry.

2. Learning how to align gratings by hand and laser as well as the fine-alignment with the
motors.

3. Operating the detectors.

4. Combining the hardware in order to do phase stepping scans and determine the perfor-
mance metrics of the system.

All of this was beneficial to the numerous grating tests that were performed during this time
and it also led to the identification of the required capabilities for the operation software,
explained in the next chapter.

3.1. Detector

Different detectors were used with this setup, but most frequently the Eiger R 1M from Dectris
Ltd., because it provided very good image quality without any further processing. This detector
has a photon detection range of 3.5 to 30 keV, a detection threshold can be set, its pixel size
is 75 µm and the image size is 1065× 1030 pixels, resulting in an active surface of 79.9× 77.1
mm [8]. The almost square sensor area proved to be useful when handling samples in pipettes
or capillaries that are mostly elongated along the vertical axis.

When creating setups for higher design energies (above 30 keV), a CdTe-based detector from
Dectris was used, because its detection threshold could be adjusted to such high energy values.

15

3. Lab Setup

Fig. 3.1.: The setup as it was used during the course of this thesis. On the right the Dectris Eiger R
1M detector, the Hamamatsu L10101 microfocus source on the left and the three gratings on their
respective motor towers in between on the rail.

Its pixel size was similar to that of Eiger, but it has a different field of view (256× 3094 pixels
or 19.2× 232 mm) with the longer side along the horizontal axis.

Lastly there was the X-ray sCMOS 16MP from Photonic Science. This detector’s advantage
is that it offers a much smaller pixel size which makes it possible to get even better spatial
resolution of the sample.

3.2. Gratings

One of the centerpieces of the lab setup are the gratings. They are manufactured from silicon
and the absorption gratings are then filled with gold. As explained in 2.4, a Talbot-Lau
configuration is used. Important numbers for characterization of these gratings are duty cycle,
aspect ratio and phase shifting properties. Duty cycle is defined as the ratio of grating ridge
and grating period, aspect ratio as the ratio of trench depth and grating period and the phase
shifting properties depend on the used energy and the trench depth. The gratings used during
the process of this thesis had aspect ratios of up to 30 and introduced a phase shift of π or
π/2.

As mentioned in 2.5.2, a smaller grating period is beneficial for reaching a smaller minimal
detectable angle of refraction, so they should be preferred over gratings of larger period. Apart
from the fact that they are more difficult to produce they add a difficulty to the geometry of
the setup: As can be seen in Fig. 3.2a, the diverging beam passes easily through the central
regions of the gratings but in the outer regions it passes through gold layers and therefore
gets partially absorbed. The effect is a limited field of view, as shown in Fig. 3.2b. The easy

16

3.3. Motorized Towers

solution to this problem is to move the source grating further away, where the divergence has
less of an influence. This was done during the grating test of the high aspect ratio gratings
that is presented in appendix A. The more complex solution would be to bend the gratings
with the right radius.

(a) The diverging beam of the X-ray source causes
absorption in the outer parts of the grating.
This limits the field of view.

(b) The transmission profile of a 2 µm grating.
Apart from some inhomogeneities in the right
part (circles), it can be seen that transmission
is higher in the center part.

Fig. 3.2.: The diverging beam limits the field of view. An easy solution to this is to move the setup
further away from the source where the beam shape is less conical.

3.3. Motorized Towers

Basic alignment of the gratings can be done by visual inspection as well as with the help of a
laser. Pointing it onto the side where the grating is etched into the silicon wafer, the diffraction
pattern can be assessed. In most cases one would want this pattern to be parallel to the earth,
which in turn means that the grating structure is vertical to the earth.

The fine-tuning of the grating alignment happens with the help of motorized towers on which
the gratings are mounted. These towers are customizable with linear motors and goniometers
to reach many degrees of freedom at a very high resolution of motion. Since the sample has
to be rotated and moved out of the detector area during the tomographic process, the sample
itself is also placed on top of such a motor tower. The motor stages for the gratings were from
SmarAct Inc., the one for the sample from HUBER Diffraktionstechnik GmbH & Co. KG.

3.4. X-Ray Source

Two microfocus sources were used with the setup, the L10101 from Hamamatsu Photonics and
a prototype from Sigray Inc. The Hamamatsu source has a maximal tube voltage of 100 kV
and a maximal current output of 200 µA. The source from Sigray has a significantly higher

17

3. Lab Setup

power output, reaching up to 1200 µA at up to 50 kV. The increased power is important since
exposure time is an important factor for increasing the signal-to-noise ratio (SNR). With the
introduction of the Sigray source during the time of this thesis and the boost in power that it
provides, it should be possible to cut the exposure time sixfold in the future.

Another important feature of the X-ray source are the source sizes, since they influence the
coherence. While the Hamamatsu tube has a source size of 10 µm - 15 µm, the Sigray prototype
also includes a structured anode that creates an array of line sources, just like the source grating
G0 would. This means that when making use of this structured anode, G0 is redundant and
can be left out.

3.5. Placing and Alignment of Components

A geometry in accordance with 2.3 and 2.4 has to be chosen for the desired design energy.
Shorter total lengths of the setup have an advantage when it comes to exposure time, longer
distances between G1 and G2 (d) increase the propagation length of the refracted beam and
increase angular sensitivity, shown in 2.5.2.

Basic alignment of the 3 gratings is done using rulers and a laser pointer and G1 is subsequently
aligned with the help of Moiré effects and the motor stage it sits on. Two types of fringes,
produced by the overlapping of the reproduction of G1 with the analyzer G2, can be observed:

1. Vertical fringes coming from a small deviation around the Talbot distance which is along
the z-direction, also corresponding to the optical axis.

2. Horizontal fringes, caused by a rotation of one of the gratings around the z-axis.

The vertical fringe is visible from the beginning if alignment by hand and laser was done
carefully. The goal is to make them completely vertical without diverging towards the top or
the bottom, and then move G1 along the optical axis such that they get bigger and eventually
disappear. This is the placement where the intensity pattern of G1 and the grating structure
of G2 are congruent. Such a process is shown in Fig. 3.3. A set of printed gratings on overhead
projector sheets proved to be a helpful tool for the interpretation of the observed fringes.

18

3.5. Placing and Alignment of Components

(a) Visible fringes di-
rectly after alignment
by hand.

(b) Almost vertical
fringes by rotating G1
around the z-axis.

(c) Big vertical fringes,
indicating that align-
ment is far advanced.

(d) Fringe pattern has
disappeared, gratings
are aligned.

Fig. 3.3.: Grating alignment flow. The slight divergence towards the bottom seen in Fig. 3.3c can be
corrected by rotating G1 around the x-axis.

19

4 OPERATION SOFTWARE

So far this setup had been operated with the help of a few scripts for operation of the detector
as well as the motors, but most operations happened inside of Jupyter Notebooks following a
low-level approach. The goals of the software development part were the following:

1. Implement a package that allows for high-level operation of the system.

2. Leave enough flexibility for future hardware components to be integrated in this package.

3. Reach a considerable reduction in acquisition times for the whole tomographic process.

This chapter tries to highlight where optimizations were made in order to reach these goals,
what their impact was and why certain parts were left untouched. The full code can be found
in the appendix.

4.1. Detector Operation

The detector is one of the key elements of such a setup. As mentioned in the previous chapter,
the main detector in use was the Eiger R 1M by Dectris. After gaining experience in operating
it with a class that had existed before, the functionality that should be expected from every
detector operated with this setup was identified. This led to the creation of the interface
Detector as seen in the class chart (Fig. 4.1). Separate classes for each detector were created
and each class had to implement at least the functionality defined by the interface. This
happens with the help of the attributes client, which are instances of the low level classes
that were used before. This ensures that experienced users still get access to all low-level
operations if necessary, with a call of Eiger.client in the case of the Eiger detector.

21

4. Operation Software

lab-ct-tomcat

LabSetup

mvsampleMotor
rotsampleMotor
stepscanMotor

step_scan()
absorp_tomo()
stepscan_tomo()

<<interface>>
Detector

IP
storagePath
thresholdEnergy
ntrigger
nimages_per_file
nimages
ROI
config()
config_energy()
config_imgparams()
config_storagePath()
arm()
disarm()
trigger()
snap_one()
save()
delete()

Motor
rot()
rotr()
mv()
mvr()
get_position()
get_angle()

Eiger

client

CdTe
client

PhotonicScience
client

Operation Notebook

Reconstruction
run()

Dataprocessing

get_masterfile()
get_masterlist()
master_to_array()
master_4D()
extract_3_images()

Reconstruction
Notebook

im
p
ort

import

ins
ta
nt
iat
e

in
st
an

ti
at
e

instantiate

in
st
an

ti
at
e

Fig. 4.1.: Class Chart. The interface Detector defines the functions and attributes that each detector
should implement. LabSetup gets assigned 3 motors, a detector of a certain type and implements
different functions that make use of all setup hardware. Reconstruction handles geometries and
algorithms of the ASTRA toolbox. High-level operation happens in Jupyter Notebooks.

22

4.1. Detector Operation

4.1.1. Acquiring Images with Eiger

This detector saves data in HDF5 files. Every acquisition sequence consists of arming, sending
a number of triggers for every image to be recorded, and disarming. For every such sequence
a master file is created that contains a lot of metadata about the detector operation and links
to data files, which contain one data set with one or more images each, as can be seen in
Fig. 4.2.

The exact structure of these files is largely influenced by two detector parameters, ntriggers
and nimages_per_file. The first determines how many images the detector expects to take in
the next imaging sequence, the latter how large the data set in each data file should be [9].
As will be presented in the next section, this is of importance when operating the detector to
avoid data loss and ensure a quick image acquisition with little overhead time.

Fig. 4.2.: File structure of Eiger’s HDF5 files.

4.1.2. Speeding up the Tomographic Process

So far every step scan series had been handled as one imaging series. This means that for every
projection angle a master file linking to a data file with 5 images was transferred between the
detector and the local storage. Master files are around 22.6 MB, while such a data file is around
14.2 MB. Since the main interest lies on the image, not the metadata, this discrepancy was
undesired. Optimally the detector could acquire a whole tomographic data set as one imaging
series, but the limiting factor is the buffer space on the detector side. Therefore a break is
needed in between, where data saving happens and a new series is started [9].

Experimentally it was derived that overhead time for saving and clearing the buffer can be
significantly decreased by combining 20 projection angles of 5 phase steps each and the safe
detector operation at those parameters was demonstrated by acquiring several tomographic
data sets.

Overhead time between the two methods was tested and the results can be found in Table 4.1.
The code in List. 4.1 was the one that generated the faster results. It can be seen that overhead
is very similar for the different exposure times but largely different from the process of saving

23

4. Operation Software

List. 4.1: Testing acquisition times with the Eiger detector. Shown here is the fast configuration where
images are only saved after 20 projections or 100 images.

1 expTime = 5
2 n_im = 100
3
4 eiger . config_imgParams (nimages_per_file=5 , ntrigger=n_im)
5
6 time1 = time . time ()
7 eiger . arm (expTime)
8 for i in range (n_im) :
9 eiger . trigger ()

10 eiger . disarm ()
11 eiger . save ()
12 eiger . delete ()
13 time2 = time . time ()
14
15 timetot = time2 - time1
16 print (timetot)

Table 4.1.: Acquisition times for 100 images with different exposure times, once with saving every
phase stepping scan of 5 images, once with saving only at the end.

20 proj. per masterfile overhead 1 proj. per masterfile overhead
15 s exposure 1523 s 23 s 1590 s 90 s
5 s exposure 520 s 20 s 587 s 87 s

only 1 projection angle per master file. This experiment was only conducted over 20 projection
angles and a time difference of 70 s was reached. A typical number of projections for this setup
would be 4 per degree, yielding a total of 1440 projections and a time saving of 5040 s or 1.4
h. This is a significant decrease compared to the prevalent method from before.

4.2. Motor Operation

The setup uses two different types of motor stages. One, the sample stage, is operated via
the epics package for python, the others are operated through a custom written package.
Though not implementing the exact same commands, both packages ensure that the python
interpreter waits for the motor to reach its position. This is important to check because
acquiring a projection or a flat-field while the sample is in movement, or not yet completely
out of the detector area, should be avoided.

Instances of the motor classes all implement functions for relative movement, absolute move-
ment and position feedback. They were left untouched since they already allowed high-level
operation and worked very reliably.

24

4.3. The Lab CT as one Object

4.3. The Lab CT as one Object

Acquisition of a whole tomographic data set may take several hours, therefore the risk of human
error that leads to bad or incomplete data should be mitigated. The purpose of the LabSetup

class is to implement the basic functionalities that are regularly used with this setup in such
a way that they minimize the potential for human error and maximize time efficiency. This
is done by implementing things learned during operation of the setup, like the imaging series
optimization from section 4.1.2.

LabSetup gets assigned three motors, one for moving the sample out of the detector area to
take flat-field projections, one to rotate the sample and one that moves the grating in order
to perform the phase stepping scan. These procedures will generally be performed by the
same motors therefore it makes sense to allocate those as defaults and avoid misassignment of
such.

Further, LabSetup instantiates an object of a class that implements the detector interface.
When instantiating an instance of LabSetup, the user can choose the detector that he would
like to use. LabSetup’s methods rely on the fact that no matter which type of detector gets
instantiated they can all be operated the same way, calling the same functions. This is the
reason why the approach with the Detector interface was chosen. All detectors that are so
far implemented support at least the functionality that is needed for the 2D operation of the
setup. This means that all of them work reliably together with the step_scan() function that
is defined in LabSetup. Functionality and ease of use of this LabSetup class was proven during
several grating tests, including one where Zhitian Shi, a member of the microfabrication team,
was able to operate the setup on his own in a very short period of time. The results of this
grating test can be seen in appendix A.

For the case of the Eiger detector, where an enhancement of the operation was reached, func-
tions were added to the LabSetup class that make use of those enhancements, either for a
phase contrast tomography or for a pure absorption tomography. The tomographic scans by
default require the user to visually inspect the movement of all involved motors, that the source
is switched on and that the sample is placed on the sample motor stage. This again acts to
minimize the risk of something going wrong during the scan and allows operation of the setup
by a person who does not have a lot of experience. The system check can also be skipped in
case several consecutive tomographies want to be acquired. Further, a log file will be created,
containing all important information needed for further processing of the data set, which will
be of importance when looking at tomographic reconstruction in chapter 5. This includes the
detector threshold, exposure time, information about the scanned angles and info about the
geometry. An example of how the LabSetup class can be used to acquire a tomography and

25

4. Operation Software

a single phase stepping scan can be seen in List: 4.2 and the output of the log file directly
follows.

List. 4.2: Usage of the the LabSetup class to acquire a phase stepping tomography and two phase
stepping scan with a sample. The distances of the setup can be passed with the constructor like it is
seen here or can be added later. These are important properties that should be included in the log
file. sample_in and sample_out are the motor positions where the sample is either inside or outside
the frame.

1 base = ’/sls/ X02DA / Data20 / e15889 / Maxim_LCT /data /2021/ May/ tomotryouts /’
2 lab = LabSetup (storagePath=base , detector=’Eiger ’ , source_sample_d=345 ,

sample_dect_d=160 , vertcenter=410)
3
4 sample_in = - 2000
5 sample_out = 6000
6 angles = np . linspace (0 , 185 , 185 ∗ 4 , endpoint=False)
7 lab . stepscan_tomo (storagePath=base+’tomo1 ’ , threshold=13000 , sample_in=sample_in ,

sample_out=sample_out , angles_degrees=angles , expTime=15 , stepsize=0 . 4)
8
9 # phase stepping scan with the sample

10 lab . mvsampleMotor . mv (sample_in) # move sample in
11 lab . step_scan (5 , 0 . 4 , 15 , storagePath=base+’sample ’) # do a step scan for grating of

pitch 2 um
12
13 # phase stepping scan without the sample
14 lab . mvsampleMotor . mv (sample_out)
15 lab . step_scan (5 , 0 . 4 , 15 , storagePath=base+’sample ’)

List. 4.3: logfile.txt from the tomographic data set acquired by the functions used in List.4.2
Threshold : 13000
Exposure Time : 15
Star t Angle : 0 . 0
End Angle : 185 .0
Number o f P ro j e c t i on s : 740
Source to Sample (r o t a x i s) : 345mm
Sample (r o t a x i s) to Detector : 160mm
Acqu i s i t i on Time : 56705.87584042549

4.4. Conclusions & Perspective

As a result of the implemented software framework it is now possible to operate the setup with
a high-level approach, either from Jupyter Notebooks or directly from scripts. Not only does
this help to mitigate the risk of something going wrong, it also opens new possibilities for other
team members who are now, with very little instruction, able to use this setup as a tool for
their own research. While facilitating this, it was also paid attention to the fact that more
experienced users might want to make use of low-level operation: The already existing classes

26

4.4. Conclusions & Perspective

were integrated into the framework and can still be called and used. In order to preserve the
acquired data for the future, it was made sure that acquisition information gets stored together
with it.

In the case of the Eiger detector, acquisition times for a whole tomographic data set were
significantly cut by enhancing the file saving procedure. The gained knowledge was integrated
into functions for tomographic scans and their successful operation was demonstrated with the
acquisition of several such tomographies.

Possible next steps, in order to further enhance the operation, might include:

1. Cutting overhead times of the motors, since they were not looked at during the course
of this thesis.

2. Cutting overhead times of the two other detectors and write enhanced tomography func-
tions for them. As demonstrated with Eiger, this can make a significant difference.

27

5 DATA PROCESSING

This chapter will present how the quality of the interferometer can be assessed, as well as
the handling and processing of large tomographic data sets. Specifically the retrieval of dif-
ferential phase contrast and dark-field images will be discussed followed by their tomographic
reconstruction. The two main goals were the following:

1. Create a collection of often used data processing functions and enhance their performance
if necessary.

2. Implement an easy to use reconstruction class, capable of tomographic reconstruction of
fan beam and cone beam shaped geometries.

5.1. Reading Detector Output

As mentioned in 4.1.2, the way the Dectris Eiger saves images is very specific. For further
handling of the data it makes sense to import the projection data, or certain slices (detector
rows) thereof, into an array of the dimensions (#projections × #phasesteps × x × y). The
values x and y are the pixel rows and columns of the detector and together form one projection
image.

The challenge lies in finding a quick way to create said 4D array and handing it to the next
step which is the retrieval of the 3 images, discussed in 5.3. In order to do this, one has to
iterate over the files and merge the data sets. This is a lengthy process, even if only certain
slices of the projection set should be imported. Therefore, 2 different approaches were chosen
and their computing times were compared.

Data handling makes use of arrays from the numpy package. These data structures use fixed
sizes such that the values can be stored closely together in storage and are quickly accessible.
It was expected that one fast approach would be to initialize an array of this size with zero
values and write the data sets one by one into it. This has the advantage that storage gets only
allocated once and the values are directly written into the final structure, but the disadvantage

29

5. Data Processing

that its shape does not reveal if all values have been added. A second approach was to create a
Python list of data sets and write them all into an array at the end. This has the disadvantage
that before writing the data into the final structure, the list creation happens as an intermediate
step. The advantage is that with this approach, the shape of the final array clearly states the
actual amount of imported values. The results of this test can be seen in Table 5.1. Since
this is mainly an I/O operation and no calculations are necessary, parallelization does not
have a big influence. It was nevertheless tried to split the import of one master file among
several processes, but the time saving was minimal. Therefore the parallelized approach was
dropped in favor of list appending, which works reliably and its success is verifiable. In any
case a repeated import should be avoided. This can be achieved by saving numpy binaries
of imported slices on fast internal storage of the machine on which data processing happens.
Since those binaries are often only a small fraction of the size of the whole data set they can
be reloaded in a matter of seconds.

Table 5.1.: Computing times of two serial (zero initialization of the final array & list appending) and
a parallel approach (distribute master files to different processes) to creating a 4D array from Eiger
data. The data set contained 1440 projection angles and 2 slices were loaded. Parallelization did not
save a lot of time and was therefore dropped in favor of the simplest approach which is list appending.

Computing Time [s]
1st attempt 2nd attempt

zero initialization 251 233
list appending 234 233

splitting by core number 205 204

Apart from the creation of the 4D array, the data processing collection includes functions that
can extract single phase stepping scans from a master file, as well as create a 3D array from
a pure absorption tomography. These work in similar ways, but data sets are significantly
smaller therefore a speed-up was not tried.

5.2. Measuring Visibility & Angular Sensitivity

This setup is often used for testing of gratings produced at PSI and other institutions. Anyone
operating the setup should be able to quickly analyze the most important performance metrics
of visibility and angular sensitivity. For this, several functions were added to the collection,
able of handling different inputs, making them very versatile and easy to use. Measurement
of the visibility needs data from a phase stepping scan and functions were added that directly
print a histogram that shows the visibility distribution with its peak as well as an image of the
visibility, called the visibility map. Measurement of the angular sensitivity is done in a region

30

5.3. Extracting the 3 Images

of the differential phase contrast image. This region should not include include the sample but
be constrained to the area of good visibility. A code example of a visibility measurement and
angular sensitivity measurement is shown in List. 5.1, an example of an output can be found
in Fig. A.2 of the appendix where a test of high aspect ratio bottom-up gold filled gratings is
presented.

List. 5.1: Example of system operation and subsequent measurement of visibility and angular sensi-
tivity. lab is an instance of LabSetup and the data processing functions are imported as dp.

1 steps = 5
2 grating_period = 2
3 stepsize = grating_period / steps
4 expTime = 120
5 distanceG1_G2 = 0.40
6 distanceSource_G1 = 0.60
7 distanceSource_sam = 0.48
8
9 lab . step_scan (steps , stepsize , expTime)

10 ff = dp . master_to_array (dp . get_masterfile (folder , seqID=7)) # step scan file had
sequence ID 7

11 ref = ff [: , 200 :500 , 4 6 0 : 6 4 0] # choosing ROI
12
13 vis = dp . visibility (ref) # calculate visibility from a phase stepping scan
14 dp . plot_vishistogram (vis) # plot the visibility distribution
15 dp . plot_vismap (vis) # plot the visibility as an image
16
17 # step scan with sample
18 lab . step_scan (steps , stepsize , expTime)
19 sam = dp . master_to_array (dp . get_masterfile (folder , seqID=8)) # step scan file had

sequence ID 8
20 sam = sam [: , 200 :500 , 4 6 0 : 6 4 0] # choosing ROI
21
22 amp , dpc , dci = dp . extract_3_images (sam , ref) # get dpc image for measuring angular

sensitivity
23
24 # calculation of angular sensitivity takes all distances in m, small region of dpc

image is passed
25 print (dp . angular_sensitivity (grating_period ∗ 10∗ ∗ (- 6) , distanceG1_G2 , dpc [5 0 : 1 0 0 ,

5 0 : 1 0 0] , distanceSource_G1 , distanceSource_sam))

5.3. Extracting the 3 Images

Every phase stepping scan in the 4D array from 5.1 must be analyzed and a set of projec-
tions (absorption contrast, differential phase contrast or dark field) must be generated. The
implementation of FFT (fast Fourier transform) which numpy provides is very efficient as was
shown with a comparison of extraction times, the results of which are shown in Table 5.2. The
measurement was restricted to a maximum of 100 detector rows (slices), which means that
from this data, 100 sinograms of each image type were created. This restriction was necessary
since it is difficult to import many more rows from the raw data without the Python inter-
preter crashing. This is a task that should be easily parallelizable since it performs numerical

31

5. Data Processing

calculations on already loaded arrays, but the results do not demand an increase in speed as
it is already reasonably fast.

List. 5.2: Example of the extraction of absorption contrast image and scattering image from a tomo-
graphic data set. The data processing functions are imported as dp and the extraction happens for
the slices 400 to 420.

1 folder = ’/mnt/test/ Data20 / Maxim_LCT /data /2021/ April / tomography / murine_lung /25
sec_4perdeg /’

2 masters = dp . get_masterlist (folder) # create a list with all masterfiles
3
4 myslice = np . s_ [4 0 0 : 4 2 0] # choose which slices from detector data you want to import
5 dataset = dp . master_4D (masters=masters [1 : - 1] , no_of_projections=740 , sino_slice=

myslice) # first and last masterfiles are flatfields
6 ff = dp . master_4D (masters [0] , 1 , myslices)
7
8 amp , dci = dp . extract_3_images (dataset , ff , amp=True , dpc=False , dci=True) # extract

the images

Table 5.2.: Performance of the extraction was tested. The data set contained 740 projection angles
and all 3 images were extracted on a machine with an Intel Xeon Gold 5222 (4 cores of 2 threads
each) and 96 GB of RAM. Extraction is reasonably fast: For handling a limited number of slices from
a data set, there is no need for a speed up.

Computation Time [s]
1st attempt 2nd attempt

10 slices 1.27 1.24
50 slices 5.93 5.97

100 slices 12.18 12.24

The results from such an extraction process can be seen in Fig. 5.1. These pictures depict
a murine lung sample, placed in a capillary. The increased contrast in the dark field signal
compared to the absorption contrast image is remarkable in this sample. More samples can be
seen in Fig. A.3 and Fig. A.4 of the grating test in the appendix.

During the processing of a real sinogram from a tomography with the murine lung sample
it was realized that the photon current provided by the Sigray source was strongly drifting
over time. This leads to stripe artifacts after flat field correction as can be seen in Fig. 5.2.
A straightforward approach to this would be to increase the frequency at which flat-fields
are taken. This has the downside that tomographic scans would again become longer and
depending on how fast the current changes it might not solve the problem. Nevertheless it
should be mentioned that the LabSetup class from 4.3 was extended in order to take a flat field
phase stepping scan after every 20th projection angle. This thesis ended before it was possible
to determine the influence on the results. A different solution would be to explore dynamic
flat-field correction with a database of flat-field images. The similarity of the projection and
the flat-fields could be assessed and the best fitting flat-field would be used for correction.

32

5.3. Extracting the 3 Images

(a) Absorption Contrast (b) Differential Phase Contrast (c) Dark Field

Fig. 5.1.: The results from processing the phase stepping data. The sample is a murine lung placed
in a capillary. The contrast difference for the dark field signal compared to absorption contrast is
remarkable in this sample. The magnification ofM = 3 was considered and the scale bars correspond
to 2 mm in the sample plane.

(a)

(b)

Fig. 5.2.: The figure in (a) shows a sinogram from a tomography with the Sigray source and murine
lung sample. A total of 1440 projections was acquired (horizontal axis) over a time frame of 11 hours
and after performing flat field correction with the same flat field for all projections the drift of the
source was realized. The mean values of the lowest 100 pixels are shown in (b), indicating that the
drift is very strong in the first 6 hours and gets better over time.

33

5. Data Processing

5.4. Tomographic Reconstruction

So far, only the tomopy package had been used for tomographic reconstruction from this
setup. Tomopy uses CPU parallelization to reconstruct from projections taken with parallel
geometries and is very well documented and user-friendly. It also includes a lot of useful tools
for preprocessing the acquired data. Since tomopy was not able to handle reconstruction from
cone beam shaped geometries, access to such algorithms was sought. The ASTRA toolbox
is a package that implements a collection of sophisticated reconstruction algorithms, among
them FBP & FDK (a 3D implementation of FBP) for cone and fan beam geometries as well
as iterative methods, like SIRT. In addition to offering a wide variety of algorithms, many of
them make use of the highly parallelizable Nvidia CUDA GPU architecture. The downside
of ASTRA is, that it is poorly documented and its application is not user-friendly. For this
reason, a reconstruction class was created that should make reconstruction with ASTRA as
easy as it is with tomopy. Since the parallel geometry algorithms of the ASTRA toolbox were
already integrated into tomopy in 2016, such that its users get access to GPU accelerated
reconstruction within the same package [10], the focus was on reconstruction from fan-shaped
and cone-shaped geometries.

5.4.1. The Reconstruction Class

In order for ASTRA to work properly it needs four basic objects:

Volume geometry An object describing the space in which the sample was placed.

Projection geometry Virtual representation of the real world setup dimensions.

Volume data An object in which the reconstructed data will be stored. It receives its dimen-
sions from the volume geometry.

Projection data An object in which the data to be reconstructed – the sinograms – are
stored.

Geometric magnification of a cone beam shaped setup is an issue that can be very confusing
when trying to define a projection geometry in ASTRA. The standard origin is defined as
the center of the sample and the reconstruction voxel size is 1 × 1 × 1. For the geometry
implementation in the Reconstruction class, a little trick presented by [14] is used to shift
the origin into the detector plane, which makes the projection pixel the same size as the one
from the reconstruction. All of the objects from the list above are used to create an algorithm
object and such an object is also created when instantiating an object from the Reconstruction
class using a cone beam shaped geometry. For the fan beam geometry it is a list of algorithm

34

5.4. Tomographic Reconstruction

objects that is created. This is due to the fact that the original fan beam geometry of ASTRA
is only capable of handling one slice at a time. The fan beam handling of several slices is
a significant improvement over using ASTRA directly and having to work with loops in the
script or the Jupyter Notebook. A Reconstruction object has only one method, run(), that
takes an optional argument iterations for iterative algorithms like SIRT.

List. 5.3: Example of how the Reconstruction class can be used to reconstruct slices from a number
of sinograms. The goal was to make it as easy as it is in the tomopy package, therefore the direct
comparison is given in the source code.

1 data = dp . make_sino (dci) # the data to be reconstructed are dark field sinograms
2
3 distance_source_origin = 235
4 distance_origin_detector = 685 - 235
5 detector_pixel_size = 0.075
6 angle_stop = 185
7 rotcenter = 565.7
8 vertcenter = 410
9

10 num_of_projections = 740
11 angles = np . linspace (0 , angle_stop , num=num_of_projections , endpoint=False)
12 angles = angles ∗ np . pi / 180 # ASTRA works with radians instead of degrees
13
14 # reconstruction using tomopy with the gridrec algorithms
15 recon = tomopy . recon (data ,
16 angles ,
17 rotcenter ,
18 algorithm=’gridrec ’)
19
20 # reconstruction using a cone beam shaped geometry and SIRT with 200 iterations
21 recon = Reconstruction (’cone ’ ,
22 ’SIRT3D_CUDA ’ ,
23 rotcenter ,
24 angles ,
25 distance_source_origin ,
26 distance_origin_detector ,
27 detector_pixel_size ,
28 data ,
29 vertcenter=vertcenter)
30
31 data_recon = recon . run (iterations=200)

ASTRA by default assumes the rotation center to be in the center of the sinogram and in
tomopy it is defined by a float passed to the reconstruction function, specifying the pixel where
the rotation center is. The Reconstruction class is implemented such that the rotation center
can now be passed the same way as in tomopy. This makes it easy to use both packages
inside the same script. Further, the vertical difference between the source and the central
slice of the detector can be passed as an optional argument. This is an important property
when reconstructing data from strongly cone shaped geometries. Important to note is that the
vertical difference between the sample and the X-ray source can not be adjusted. This would
only be possible with a definition of the geometry using vectors. This is not only complicated
but the fast FDK algorithm is so far not supported for these geometries. This means that

35

5. Data Processing

in order to be able to create the same geometry in ASTRA as in the real setup, the X-ray
source and the sample have to be vertically aligned, while the detector may be slightly shifted
up or down. The projection of a vertically aligned tip of a needle can be used to determine
the central detector row. An example of how the Reconstruction class can be used is given in
List. 5.3.

5.4.2. Phantom Creation & Performance Testing

In order to test the performance of the package and determine how strongly the real setup is
influenced by the diverging beam, several phantoms were created. The first one was a hollow
cuboid with a square hole. It was derived from [14] and scaled to resemble the size of a real
sample placed in the setup. A cuboid was chosen because the sharp edges show the influence
of only partially attenuated beams very clearly. The phantom itself, together with three of its
slices, are shown in Fig. 5.3. A simulated projection of the phantom was done using the exact
geometry that was used in the real setup with the Sigray source. A look at the edges, as seen
in Fig. 5.4, revealed that the blur caused by beams that only partially pass through the walls
is significant and that reconstruction should definitely be done using a cone beam algorithm.

(a) (b) (c) (d)

Fig. 5.3.: In order to determine how strong the influence of the diverging beam in the real setup is, a
hollow box phantom was created. This phantom is inspired by [13] where picture (a) is from. The
cuboid shape has the advantage that beams which only partially pass through the walls will be clearly
visible as a blur on the otherwise sharp edge. Slices through the back wall (b), the middle (c) and the
front wall (d) show the sharp edge and the scale bar shows that the size of the sample corresponds
to the sample size of the murine lung from Fig. 5.1.

For testing how well the algorithms perform at reconstructing small details, a phantom was
created that resembled the capillary from the murine lung sample from Fig. 5.1 and it was
populated with 1000 spheres of randomized placement, radius and absorption coefficient. This
phantom and one of its projections is shown in Fig. 5.5. Reconstruction of several slices using
both FDK and SIRT were performed and the reconstruction results from this noise-free data
are very convincing. Both reconstructions are shown in Fig. 5.6.

36

5.4. Tomographic Reconstruction

(a) (b) (c)

Fig. 5.4.: A simulated set of projections from the phantom in Fig. 5.3 was created with ASTRA and
a cone beam geometry that corresponds to the real setup. Such a projection is shown in (a), clearly
visible is the lower attenuation in the middle where the beam only passes through back and front
wall (only the back wall in the case of the hole). A slight blur at the edges is also visible, especially
when zooming into the edges (b) and (c). The diverging beam has a higher influence on the upper
edge since the sample was placed above the vertical center (visible in Fig. 5.3).

(a) (b) (c)

Fig. 5.5.: A phantom, resembling the murine lung sample from Fig. 5.1 in shape and size, was created
in order to test the performance of the Reconstruction class. It consists of a cylindric capillary,
populated with 1000 spheres of randomized placement, density and radius. Slices through the side
and the top of the phantom are shown in (a) and (b) respectively. The phantom was placed in a
cone beam geometry of ASTRA and a set of simulated projections was created. One such simulated
projection is shown in (c). Assuming it to be the size of the murine lung sample, the scale bar would
correspond to 8 mm.

37

5. Data Processing

(a) (b) (c)

Fig. 5.6.: A total of 1440 projections (4 per degree) from Fig. 5.5c were used for reconstruction using
a cone beam geometry created with the Reconstruction class. The original phantom slice is shown
in (a), a reconstruction using FDK in (b) and a reconstruction using SIRT with 100 iterations in
(c). Computing times for 100 slices were 3.4 s with FDK and 207 s with SIRT. With such a high
number of projections and completely noise-free data, FDK is not only faster but also delivers superior
reconstruction quality as is clearly visible from the images.

5.5. Conclusions & Perspective

Functions were created and collected to quickly load projections from raw acquisition data and
retrieve absorption, differential phase and dark field images from them. Their performance
was analyzed and improvements were tried where deemed necessary.

Tomographic reconstruction is now possible with 3D enhanced algorithms while the complexity
for the user was kept to a level that is comparable to the software used before. With the help
of phantoms it was shown that the chosen geometry corresponds to the real setup and that the
quality of the reconstruction with high density and noise-free data is very good.

Further exploration of image retrieval from the phase stepping scans could include dynamic
flat-field correction with a flat-field database. For tomographic reconstruction it could include
the minimal number of projections needed for a desired spatial resolution. For this purpose
the phantom with the spheres could be improved with smaller structures, a smaller range of
densities and noise could be artificially added.

38

6 CONCLUSIONS & PERSPECTIVE

During the course of this thesis I learned how X-ray grating interferometry works and how to
operate the micro CT setup at the Paul Scherrer Institute. This led to the identification of
points of improvement in the setup and an operation software package was created which makes
it possible to operate the hardware components from within a single class. The function of the
package was proven with the acquisition of several tomographic data sets and a grating test,
the results of which can be found in appendix A. It was also demonstrated that by optimizing
detector overhead time, a significant reduction in acquisition time is possible. The operation
package allows an easy integration of further hardware components and its sustainability is
supported by its placement on the PSI internal Git platform and a strong emphasis on complete
Python docstrings. This not only helps the process of further development but the end-user
also gets access to package information by a call of the help() function within the script or
notebook. Further improvement of this package should include the cutting of overhead times
in the motors as well as in the other detectors.

The created package for tomographic reconstruction and data processing follows the same
principles of being well documented and easily accessible through PSI Git. It is now possible
to access powerful tomographic reconstruction algorithms of the ASTRA toolbox with an
easy-to-use class and also a function to create projections from a phantom was added. The
functionality of the tomographic reconstruction class was demonstrated with the help of several
phantoms, all of which are accessible via the corresponding Jupyter Notebooks. The collection
for data processing contains all needed functions to assess the most important quality metrics
of the interferometer and to prepare tomographic data for its reconstruction. This collection
only contains the most basic functions and is expected to grow in the future. This could include
dynamic flat-field correction for the image retrieval, which might help solve drift issues of the
X-ray source. When it comes to tomographic reconstruction, the phantoms could be developed
further by adding different structural features and make use of artificial noise in order to better
assess the merits of each algorithm.

39

A TESTING OF BOTTOM-UP GOLD FILLED

HIGH ASPECT RATIO GRATINGS FOR

X-RAY INTERFEROMETRY

The following section includes a grating test that was performed for high aspect ratio 1D
absorption gratings. The gratings were produced using a bottom-up filling Au electrodeposition
technique that yields in void-free gold fillings of the trenches. The grating tests included
measurements of visibility and angular sensitivity, as well as the imaging quality assessment
with several samples.

A.1. Grating Tests

The performance of 1D-gratings was tested with an X-ray grating interferometer setup im-
plemented at TOMCAT, Paul Scherrer Institute. The setup consisted of a microfocus X-ray
source (Hamamatsu Photonics, model L10101) and a Dectris Eiger R 1M photon detector with
a pixel size of 75 µm. The X-ray source was operated with a tube voltage of 42 kV and a
current of 200 µA, providing a source size of 10 µm.

The interferometer was set up in Talbot-Lau configuration, with gratings G0, G1 and G2 being
placed between the X-ray source and the detector, as shown in Fig. A.1. The purpose of
the experiment was to measure the visibility in an X-ray interferometer [17] - a performance
metric for grating interferometers, which depends on absorption properties of G0 and G2.
Better uniformity of the gold fillings translates into better absorption properties which allows
to evaluate the manufacturing quality.

A design energy of 20 keV and the Talbot order 9 were chosen for the visibility tests. The phase
shifting grating G1 was manufactured from silicon with a trench height of 25 µm, providing
a phase shift of π at the given energy. Absorption gratings G0 and G2 were Au-filled with a
height of 60 µm All gratings – G0, G1, G2 – had a pitch of 2 µm and a duty cycle of 0.5 (trench

41

A. Testing of Bottom-Up Gold Filled High Aspect Ratio Gratings for X-Ray Interferometry

Fig. A.1.: A schematic of the symmetric X-ray grating interferometry setup, used for the quality
assessment of the 1D gratings. Source-G0 distance was 20 cm, and the detector was placed right
behind G2. For the case of the Talbot order 9, which was used for visibility measurements, the
overall length l was 29 cm. For the case of the Talbot order 23, the overall length was 73.6 cm.

size of 1 µm. The visibility was measured using a phase stepping technique [23] [21], where
G2 was moved in the grating plane perpendicular to the Au line structures. G2 was moved by
a total of 5 steps over one grating period (0.4 µmper step) and one image was taken for each
step. The acquired visibility map can be seen in the Fig. A.2a, and the peak visibility of 21%
was achieved, which is considered to be an indication of a good grating quality [17].

In order to visually assess the image quality of the tested gratings, two samples were alternately
placed at a distance of 9.5 cm, upstream to G1. The samples were chosen to fit in the area
of a uniform visibility (Fig. A.2a, orange selection). For each sample, the stepping scan was
performed [23], allowing to reconstruct three images with absorption, differential phase and
dark-field contrast, respectively. The total magnification at the Talbot Order 9 was about 2,
resulting in the effective pixel size of 38 µm.

Speaking of the imaging applications, angular sensitivity is another important performance
metrics of the grating interferometer, which corresponds to the minimal refraction angle (αmin)
that can be still detected by the interferometer. The refraction occurs after the interaction
of X-rays with the features inside the sample. It was demonstrated in [21], that an angular
sensitivity of less than 100 nrad is desirable to achieve good contrast. As for the case of our
setup at the Talbot order 9, the angular sensitivity of 134 nrad was calculated, using the
formula in [21] and calculating the standard deviation in the empty space of the differential

42

A.2. Conclusion

(a) (b) (c)

Fig. A.2.: The visibility map (a) indicates a uniform visibility distribution in the central region of
interest (shown in orange), corresponding to the pronounced peak of 21% visibility at the histogram
of individual pixels within this area (b). When enlarging the analyzed area in the horizontal direction
(a, shown in green), the visibility drops rapidly towards the edges as seen from the histogram (c).
This is due to the higher absorption at the edges of the G2 grating. Because of the high aspect ratio
(60) and the high divergence of an X-ray beam generated by the laboratory X-ray source, the strong
misalignment among X-rays and grating lines progressively increases the grating absorption at the
edges. The usual solution for this issue is bending the grating to match the geometry of the X-ray
wave front and improve their transmission.

phase contrast image. As angular sensitivity improves with using the higher distances, we
decided to increase the G0-G2 distance up to 73.6 cm, to match the Talbot order 23. In
addition, we modified the sample: the polysterene balls were put in the ethanol to reduce the
absorption contrast. The sample was placed upstream the G1 at the distance of 9 cm and
the magnification of 1.6 was achieved. The imaging results shown in Fig. A.4a-c indicated
an angular sensitivity of 90 nrad. This allowed to clearly highlight sample interfaces in the
differential phase contrast, while showing no contrast in absorption mode.

A.2. Conclusion

The performance of 1D gratings was tested by measuring the peak visibility of 21% in a Talbot-
Lau X-ray interferometry setup. The recorded number indicates high manufacturing quality
of the produced gratings, which was additionally confirmed by the good image quality of
imaged samples, leading to high potential for such gratings in material science and biomedical
applications.

43

A. Testing of Bottom-Up Gold Filled High Aspect Ratio Gratings for X-Ray Interferometry

(a) (b) (c)

(d) (e) (f)

Fig. A.3.: Absorption (a, d), differential phase (b, e) and dark field (c, f) contrast images of two
samples - polysterene balls of 700 µm and stem of Poaceae, respectively. The plant (Poaceae) sample
is almost transparent in the absorption and phase contrast regimes, while the dark-field image clearly
reveals more details of its inner structure. Scale bars at all images corresponds to 1 mm at the sample
position as the magnification factor of 2 is taken into account.

44

A.2. Conclusion

(a) (b) (c)

Fig. A.4.: Absorption (a), differential phase (b) and dark field (c) contrast images of the polystyrene
balls with the diameter of 700 µm placed in the ethanol. The sample provides no contrast in the
absorption mode while clearly revealing its structure in the differential phase image and, partially, -
in the dark field image. Scale bars at all images corresponds to 1 mm at the sample position as the
magnification factor of 1.6 is taken into account.

45

B OPERATION & RECONSTRUCTION

SOFTWARE

last update of this README file: 4. June 2021

This is a package to operate and process the data of the LAB CT setup at TOMCAT. A
working clone of this package is currently located in ’Data20/Maxim_LCT/Lionel_dev/lab-
ct_tomcat/’ and can for example be operated from cons-10.

please direct questions to lionel.peer@gmail.com

B.1. Requirements for operating the setup

• make sure the low level class DEigerClient is added to this folder (or make sure Detec-
tor.py gets access to this file)

• make sure the package smaract_client_py3 from git.psi.ch is cloned in the same folder
(or just make sure that LabSetup.py gets access to this package)

• add or change smaract_client_py3.channel_definition.py where you instantiate channels
for the smaract motors (gratings towers) and for the epics motors (sample tower)

• make sure controls.remote_detector for calling the CdTe detector is reachable by Detec-
tor.py

• make sure client.PS_GSENSE_Control for calling the PhotonicScience detector is reach-
able by Detector.py

B.2. Requirements for operating the reconstruction

• conda environment with astra toolbox and tomopy, a currently working command that
creates such an environment with the name ’tomoastra’ is given below:

47

B. Operation & Reconstruction Software

conda create -n tomoastra -c conda-forge -c astra-toolbox/label/dev python=3.6 astra-toolbox
tomopy

• your workstation needs a Nvidia GPU in order to use of the Reconstruction class!

B.3. Operation Software

List. B.1: Detector.py

1 import os
2 import glob
3 import h5py
4 import hdf5plugin
5 import matplotlib . pyplot as plt
6 import math
7 import numpy as np
8 import re
9 import time

10

11

12 # these must be provided
13 import DEigerClient as eigclient
14 import controls . remote_detector
15 import client . PS_GSENSE_Control as PS
16

17

18 class Detector :
19 """ Detector Class defines methods to be implemented by different subclasses of

Detector .
20 It is kind of for illustration of how you should create functions and is

responsible for handling the variables that are common among all detectors .
21 """
22

23 def __init__ (self , IP , storagePath , photonEnergy , thresholdEnergy , ROI=None ,
ntrigger=5 , nimages=1 , nimages_per_file=5 , expTime=5) :

24 """ Instantiate and initialize a Detector .
25

26 Parameters :
27 IP (str): IP address of the detector server
28 storagePath (str): where to store the images
29 photonEnergy (int): targeted photon energies
30 thresholdEnergy (int): detector threshold photon energy
31 ROI (numpy .s_): 2D numpy slice object specifying region of interest
32 ntrigger (int): expected number of sent triggers
33 nimages (int): images to be taken for each trigger
34 nimages_per_file (int): images to be stored in one array
35 """
36 self . IP = IP
37 storagePath = os . path . join (storagePath , ’’) # add slash at end of path if

not already there
38 self . storagePath = storagePath

48

B.3. Operation Software

39 if not os . path . exists (self . storagePath) :
40 os . makedirs (self . storagePath)
41 self . photonEnergy = photonEnergy
42 self . thresholdEnergy = thresholdEnergy
43 self . ntrigger = ntrigger
44 self . nimages = nimages
45 self . nimages_per_file = nimages_per_file
46 self . ROI = ROI
47 self . expTime = expTime
48

49 def config_energy (self , photonEnergy , thresholdEnergy) :
50 """ Reconfigure targeted photon energy and detector threshold energy .
51

52 Parameters :
53 photonEnergy (int): targeted photon energies
54 thresholdEnergy (int): detector threshold photon energy
55 """
56 self . photonEnergy = photonEnergy
57 self . thresholdEnergy = thresholdEnergy
58

59 def config_storage_path (self , storagePath) :
60 """ Reconfigure where to store the images .
61

62 Parameters :
63 storagePath (str): where to store the images
64 """
65 storagePath = os . path . join (storagePath , ’’)
66 self . storagePath = storagePath
67 if not os . path . exists (self . storagePath) :
68 os . makedirs (self . storagePath)
69 print (" Saving file to " + self . storagePath)
70

71 def config_imgParams (self , ntrigger , nimages , nimages_per_file) :
72 """ Reconfigure expected number of sent triggers and number of images taken

per trigger .
73

74 Parameters :
75 ntrigger (int): expected number of sent triggers
76 nimages (int): images to be taken for each trigger
77 nimages_per_file (int): how many pictures to store in one array
78 """
79 self . ntrigger = ntrigger
80 self . nimages = nimages
81 self . nimages_per_file = nimages_per_file
82

83 def config_ROI (self , ROI) :
84 """ Reconfigure region of interest of the detector .
85 Useless at the moment , but may help in the future
86

87 Parameters :
88 ROI (numpy .s_): 2D numpy slice object specifying region of interest
89 """
90 self . ROI = ROI
91

49

B. Operation & Reconstruction Software

92 def snap_one (self , expTime , saving=True) :
93 """ Take one image with specified exposure time and save it to the detectors

storage path.
94

95 Parameters :
96 expTime (int): seconds of exposure time
97 """
98 self . expTime = expTime
99

100 def arm (self , expTime) :
101 """ Make detector ready for acquisition sequence .
102

103 Parameters :
104 expTime (int): seconds of exposure time
105 """
106 self . expTime = expTime
107

108 def trigger (self) :
109 """ Append an image to the acquisition sequence ."""
110 print ("Not implemented for parent class Detector .")
111

112 def disarm (self) :
113 """ End the acquisition sequence """
114 print ("Not implemented for parent class Detector .")
115

116 def delete (self) :
117 """ Delete all images on the server side."""
118 print ("Not implemented for parent class Detector .")
119

120 def save (self) :
121 """ Save all images from the server to local storage ."""
122 print ("Not implemented for parent class Detector .")
123

124 def show (self , image , ROI=np . s_ [: , :] , vmin=None , vmax=None , figsize=None) :
125 """ Show an image .
126

127 Parameters :
128 image (numpy . array): 2D or 3D numpy array containing the image to be shown .

in case of 3D, the first image will be shown . try show_parallel ().
129 ROI (numpy .s_): 2D numpy slice for zooming into specific region
130 vmin (float): min data range
131 vmax (float): max data range
132 figsize (float , float): float tuple , size in inches (fuck imperial !)
133 """
134 plt . subplots (figsize=figsize)
135 try :
136 if image . ndim is 3 :
137 plt . imshow (image [0] [ROI] , cmap=’gray ’ , vmin=vmin , vmax=vmax)
138 elif image . ndim is 2 :
139 plt . imshow (image [ROI] , cmap=’gray ’ , vmin=vmin , vmax=vmax)
140 except :
141 print ("This image does not have the right shape . Enter a 2D or 3D numpy

array ")
142

50

B.3. Operation Software

143 def show_parallel (self , images , ROI=np . s_ [: , :] , vmin=None , vmax=None , figsize=
None) :

144 """ Show several images next to each other .
145

146 Parameters :
147 image (numpy . array or list): 3D numpy array containing images to be shown or

list of 2D arrays
148 ROI (numpy .s_): 2D numpy slice for zooming into specific region
149 vmin (float): min data range
150 vmax (float): max data range
151 figsize (float , float): float tuple , size in inches (fuck imperial !)
152 """
153 if type (images) is list :
154 no_plots = len (images)
155 elif type (images) is np . ndarray :
156 no_plots = images . shape [0]
157

158 fig , axs = plt . subplots (1 , no_plots , figsize=figsize)
159 for i in range (no_plots) :
160 axs [i] . imshow (images [i] [ROI] , cmap=’gray ’ , vmin=vmin , vmax=vmax)
161 plt . show ()
162

163 class Eiger (Detector) :
164 """ Create an instance of Eiger if you want to use this detector without doing

any phase stepping or even tomography ."""
165

166 def __init__ (self , storagePath , IP=" 129.129.99.92 " , photonEnergy=20000 ,
thresholdEnergy=10000 , ntrigger=100 , nimages=1 , nimages_per_file=5 , init=False) :

167 """ Instantiate and initialize an Eiger Detector .
168

169 Parameters :
170 IP (str): IP address of the detector server
171 storagePath (str): where to store the images
172 photonEnergy (int): targeted photon energies
173 thresholdEnergy (int): detector threshold photon energy
174 ntrigger (int): expected number of sent triggers
175 nimages (int): images to be taken for each trigger
176 nimages_per_file (int): how many images to store in one array
177 """
178 super (Eiger , self) . __init__ (storagePath=storagePath , IP=IP , photonEnergy=

photonEnergy , thresholdEnergy=thresholdEnergy , ntrigger=ntrigger , nimages=
nimages , nimages_per_file=nimages_per_file)

179 self . client = eigclient . DEigerClient (host=self . IP)
180 if init == True :
181 print (" Reinitializing the Eiger Detector , setting seq ID to 1...")
182 self . client . sendDetectorCommand (" initialize ")
183 else :
184 print (" Configuration of Eiger Detector ...")
185 self . client . setDetectorConfig (" ntrigger " , self . ntrigger)
186 self . client . setDetectorConfig (" nimages " , self . nimages)
187 self . client . setDetectorConfig (" photon_energy " , self . photonEnergy)
188 self . client . setDetectorConfig (" threshold_energy " , self . thresholdEnergy)
189 self . client . setFileWriterConfig (" nimages_per_file " , self . nimages_per_file)

51

B. Operation & Reconstruction Software

190 print (" Photon energy set to " + str (self . client . detectorConfig ("
photon_energy ") [" value "]) + " eV")

191 print (" Threshold energy set to " + str (self . client . detectorConfig ("
threshold_energy ") [" value "]) + " eV")

192 print (" ntrigger set to " + str (self . client . detectorConfig (" ntrigger ") [" value
"]))

193 print (" nimages set to " + str (self . client . detectorConfig (" nimages ") [" value "
]))

194 print (" nimages_per_file set to " + str (self . client . fileWriterConfig ("
nimages_per_file ") [" value "]))

195 print (" Saving files to " + self . storagePath)
196

197 def reinitialize (self) :
198 """ Reset the sequence ID to 1 and keep detector parameters ."""
199

200 print (" Reinitializing the Eiger Detector , setting seq ID to 1...")
201 self . client . sendDetectorCommand (" initialize ")
202 self . __init__ (self . storagePath , self . IP , self . photonEnergy , self .

thresholdEnergy , self . ntrigger , self . nimages , self . nimages_per_file)
203

204 def config_energy (self , thresholdEnergy , photonEnergy=None) :
205 """ Reconfigure targeted photon energy and detector threshold energy .
206

207 Parameters :
208 thresholdEnergy (int): detector threshold photon energy
209 photonEnergy (int): targeted photon energies
210 """
211 super (Eiger , self) . config_energy (photonEnergy=photonEnergy , thresholdEnergy=

thresholdEnergy)
212 print (" Reconfiguration of Eiger Detector ...")
213 if photonEnergy is not None :
214 self . client . setDetectorConfig (" photon_energy " , self . photonEnergy)
215 self . client . setDetectorConfig (" threshold_energy " , self . thresholdEnergy)
216 print (" Photon energy set to " + str (self . client . detectorConfig ("

photon_energy ") [" value "]) + " eV.")
217 print (" Threshold energy set to " + str (self . client . detectorConfig ("

threshold_energy ") [" value "]) + " eV.")
218

219 def config_imgParams (self , ntrigger , nimages , nimages_per_file) :
220 """ Reconfigure expected number of sent triggers and number of images taken

per trigger
221

222 Parameters :
223 ntrigger (int): expected number of sent triggers
224 nimages (int): images to be taken for each trigger
225 nimages_per_file (int): how many images to store in one array
226 """
227 if ntrigger > 120 :
228 print (’Recommended to go to lower ntrigger value . This can lead in the

detector hanging up and data loss.’)
229 super (Eiger , self) . config_imgParams (ntrigger=ntrigger , nimages=nimages ,

nimages_per_file=nimages_per_file)
230 print (" Reconfiguration of Eiger Detector ...")
231 self . client . setDetectorConfig (" ntrigger " , self . ntrigger)

52

B.3. Operation Software

232 self . client . setDetectorConfig (" nimages " , self . nimages)
233 self . client . setFileWriterConfig (" nimages_per_file " , self . nimages_per_file)
234 print (" ntrigger set to " + str (self . client . detectorConfig (" ntrigger ") [" value

"]))
235 print (" nimages set to " + str (self . client . detectorConfig (" nimages ") [" value "

]))
236 print (" nimages_per_file set to " + str (self . client . fileWriterConfig ("

nimages_per_file ") [" value "]))
237

238 def arm (self , expTime) :
239 """ Arm the Eiger for passed exposure time.
240

241 Parameters :
242 expTime (float): exposure time in seconds
243 """
244 super (Eiger , self) . arm (expTime)
245 self . client . setDetectorConfig (" frame_time " , self . expTime + 0.000020)
246 self . client . setDetectorConfig (" count_time " , self . expTime)
247 print (" Arming the Eiger Detector ...")
248 retVal = self . client . sendDetectorCommand ("arm")
249 if type (retVal) is not dict :
250 print (" EIGER control hang and got probably reinitialized ")
251 sys . exit (" EIGER hang")
252 self . last_sq_id = retVal [’sequence id ’]
253 print (" Sequence ID is: " + str (self . last_sq_id))
254

255 def disarm (self) :
256 """ Disarm the Eiger . End acquisition sequence ."""
257 time . sleep (0 . 2)
258 self . client . sendDetectorCommand (" disarm ")
259 print (" Eiger Detector disarmed ")
260

261 def trigger (self) :
262 """ Acquire image for acquisition sequence ."""
263 self . client . sendDetectorCommand (" trigger ")
264

265 def snap_one (self , expTime , saving=True) :
266 """ Take one image with given exposure time
267

268 Parameters :
269 expTime (float): exposure time in seconds
270 saving (bool): default True , specifies if detector should save () and delete

()
271

272 Return :
273 storagePath (str): where image was saved
274 last_sq_id (int): the sequence id of the last image
275 """
276 super (Eiger , self) . snap_one (expTime)
277 self . arm (self . expTime)
278 self . trigger ()
279 self . disarm ()
280 if saving :
281 self . save ()

53

B. Operation & Reconstruction Software

282 self . delete ()
283 return self . storagePath , self . last_sq_id
284

285 def save (self , storagePath=None) :
286 """ Save all images from the server to storagePath or to default storage path

of detector .
287

288 Parameters :
289 storagePath (str): default is self. storagePath
290 """
291 time . sleep (1)
292 matching = self . client . fileWriterFiles ()
293 old_path = self . storagePath
294 if storagePath is not None :
295 self . config_storage_path (storagePath)
296 for fn in matching :
297 self . client . fileWriterSave (fn , self . storagePath)
298 self . config_storage_path (old_path)
299

300 def save_onlydata (self) :
301 """ Save only the _data files created by Eiger to specified storage Path."""
302 time . sleep (1)
303 matching = self . client . fileWriterFiles ()
304 contains_data = lambda x : " _data_ " in x
305 matching = list (filter (contains_data , matching))
306 for fn in matching :
307 self . client . fileWriterSave (fn , self . storagePath)
308

309 def delete (self) :
310 """ Delete all images on the server side."""
311 time . sleep (1)
312 matching = self . client . fileWriterFiles ()
313 for fn in matching :
314 self . client . fileWriterFiles (fn , method=’DELETE ’)
315

316 def master_to_array (self , file) :
317 """ Return 3D numpy array of images stored in master file.
318

319 Parameters :
320 file (str): path to h5 master file containing images
321 """
322 with h5py . File (file , ’r’) as f :
323 arr = np . array (f [’entry ’] [’data ’] [’data_000001 ’])
324 for i in list (f [’entry ’] [’data ’] . keys ()) [1 :] :
325 try :
326 arr = np . append (arr , f [’entry ’] [’data ’] [i] , axis=0)
327 except :
328 print ("Some images might not have been added due to corrupted

file links ")
329 break
330 return arr
331

332 def get_masterfile (self , sequence_id) :
333 """ Return path to master file with specified sequence ID.

54

B.3. Operation Software

334

335 Parameters :
336 sequence_id (int): which file to get path from
337

338 Return :
339 path (str): path to searched master file
340 """
341 contains_id = lambda x : ("_" + str (sequence_id) + " _master ") in x
342 file = list (filter (os . path . isfile and contains_id , glob . glob (self .

storagePath + ’*’)))
343 return file [0]
344

345 class CdTe (Detector) :
346 """ Create an instance of CdTe if you want to use this detector without doing any

phase stepping or even tomography ."""
347

348 def __init__ (self , storagePath , IP=" 129.129.99.75 " , photonEnergy=None ,
thresholdEnergy=20000 , thresholdEnergy2=50000 , ntrigger=10) :

349 """ Instantiate CdTe.
350

351 photonEnergy (int): this detector does not have this parameter .
352 """
353 super (CdTe , self) . __init__ (IP=IP , storagePath=storagePath , photonEnergy=

photonEnergy , thresholdEnergy=thresholdEnergy , ntrigger=ntrigger)
354 self . thresholdEnergy2 = thresholdEnergy2
355 self . seqID = 1
356 print (" Initialization of CdTe Detector ...")
357 self . client = controls . remote_detector . RemoteDetector (IP , storage_path=self .

storagePath , photon_energy=[self . thresholdEnergy , self . thresholdEnergy2])
358 print (" Threshold 1 set to" , self . thresholdEnergy)
359 print (" Threshold 2 set to" , self . thresholdEnergy2)
360

361 def snap_one (self , expTime , saving=True) :
362 """ Take one image with exposure time: expTime """
363 super (CdTe , self) . snap_one (expTime)
364 self . client . setNTrigger (1)
365 self . client . arm ()
366 self . client . trigger (self . expTime)
367 print (’seqID :’ , self . seqID)
368 if saving :
369 self . save ()
370

371 def arm (self , expTime) :
372 """ Arm CdTe detector with given exposure time."""
373 super (CdTe , self) . arm (expTime)
374 self . client . arm ()
375 print (’seqID :’ , self . seqID)
376

377 def trigger (self) :
378 """ Send trigger to CdTe detector ."""
379 self . client . trigger (self . expTime)
380

381 def disarm (self) :
382 """ Disarm CdTe detector ."""

55

B. Operation & Reconstruction Software

383 self . client . disarm ()
384

385 def config_imgParams (self , ntrigger , nimages , nimages_per_file) :
386 """ File saving with CdTe should be further explored . ntrigger is the only

parameter at the moment that has an influence here."""
387 super (CdTe , self) . config_imgParams (ntrigger=ntrigger , nimages=nimages ,

nimages_per_file=nimages_per_file)
388 self . client . setNTrigger (ntrigger)
389

390 def config_energy (self , thresholdEnergy1 , thresholdEnergy2) :
391 """ Config energy thresholds for CdTe. This detector has no parameter

photonEnergy ."""
392 super (CdTe , self) . config_energy (None , thresholdEnergy1)
393 self . thresholdEnergy2 = thresholdEnergy2
394 self . client . set_energy_and_thresholds ([self . thresholdEnergy , self .

thresholdEnergy2])
395

396 def save (self) :
397 """ Save files in the master file convention with the sequence id."""
398 self . client . save (’master_ ’ + str (self . seqID) + ’.h5 ’)
399 self . seqID += 1
400

401 def delete (self) :
402 """ No such function necessary here."""
403 pass
404

405 def config_storage_path (self , storagePath) :
406 """ Reconfigure where to store the images .
407

408 Parameters :
409 storagePath (str): where to store the images
410 """
411 super (CdTe , self) . config_storage_path (storagePath)
412 self . client . storage_path = self . storagePath
413

414 def get_masterfile (self , sequence_id) :
415 """ Return path to master file with specified sequence ID
416

417 Parameters :
418 sequence_id (int): which file to get path from
419

420 Return :
421 path (str): path to searched master file
422 """
423 contains_id = lambda x : (" master_ " + str (sequence_id)) in x
424 file = list (filter (os . path . isfile and contains_id , glob . glob (self .

storagePath + ’*’)))
425 return file [0]
426

427 def master_to_array (self , file , threshold) :
428 """ Extract dataset from master file."""
429

430 with h5py . File (file , ’r’) as f :
431 arr = []

56

B.3. Operation Software

432 if threshold is 1 :
433 th = ’threshold_0 ’
434 else :
435 th = ’threshold_1 ’
436

437 for i in list (f [’entry ’] [’data ’] [th] . keys ()) :
438 try :
439 arr . append (f [’entry ’] [’data ’] [th] [i] [()])
440 except :
441 print ("Some images might not have been added due to corrupted

file links ")
442 break
443 return np . asarray (arr)
444

445 class PhotonicScience (Detector) :
446 """ Instantiate this one if you want to use the Photonic Science detector ."""
447

448 def __init__ (self , storagePath , IP=’129.129.99.116 ’ , port=50000) :
449 """ Initialize PhotonicScience detector ."""
450 super (PhotonicScience , self) . __init__ (IP=IP , storagePath=storagePath ,

photonEnergy=None)
451 self . port = port
452 self . seqID = 1
453 filename = ’master_ ’ + str (self . seqID)
454 self . client = PS . PSCamera (host=self . IP , port=self . port , camera="

FKGSense_bin1x1 ")
455 self . client . CameraSetup (self . expTime , self . storagePath , filename , self .

nimages)
456

457 def config_energy (self , photonEnergy , thresholdEnergy) :
458 super (PhotonicScience , self) . config_energy (photonEnergy , thresholdEnergy)
459 # has this even a threshold ?
460

461 def config_imgParams (self , ntrigger , nimages , nimages_per_file) :
462 super (PhotonicScience , self) . config_imgParams (ntrigger , nimages ,

nimages_per_file)
463

464 def arm (self , expTime) :
465 super (PhotonicScience , self) . arm (expTime)
466

467 def disarm (self) :
468 pass
469

470 def trigger (self) :
471 pass
472

473 def snap_one (self , expTime) :
474 super (PhotonicScience , self) . snap_one (expTime)
475

476 def save (self) :
477 pass
478

479 def delete (self) :
480 pass

57

B. Operation & Reconstruction Software

List. B.2: LabSetup.py

1 import time
2 import numpy as np
3 import numpy . fft as npfft
4 import matplotlib . pyplot as plt
5

6 import Detector as dect
7

8 import warnings
9 with warnings . catch_warnings () :

10 warnings . filterwarnings (" ignore " , category=RuntimeWarning)
11 warnings . filterwarnings (" ignore " , category=UserWarning)
12 from smaract_client_py3 . channel_definition import ∗

13

14 class LabSetup :
15 """ Lab Setup implements methods that use all hardware parts .
16 Initialise this class as soon as you need to use motors .
17 Otherwise , the Detector .py file may be good enough .
18 """
19

20 def __init__ (self , storagePath , detector , stepscanMotor=G2_TRX , mvsampleMotor=
SAM_TRX , rotsampleMotor=SAM_ROTY , source_sample_d=None , sample_dect_d=None ,
vertcenter=None) :

21 self . stepscanMotor = stepscanMotor
22 self . rotsampleMotor = rotsampleMotor
23 self . mvsampleMotor = mvsampleMotor
24 self . source_sample_d = source_sample_d
25 self . sample_dect_d = sample_dect_d
26 self . vertcenter = vertcenter
27 if detector == ’Eiger ’ :
28 self . detector = dect . Eiger (storagePath=storagePath , init=True)
29 elif detector == ’CdTe ’ :
30 self . detector = dect . CdTe (storagePath=storagePath)
31 elif detector == ’PhotonicScience ’ :
32 self . detector = dect . PhotonicScience (storagePath=storagePath)
33 # add different detectors here
34 else :
35 print ("no such detector ")
36

37 def sys_check (self , sample_in , sample_out) :
38 """ Perform system check ."""
39 input (" Check the detector parameters and press y (yes) to continue ...")
40

41 self . rotsampleMotor . put (90 , wait=True)
42 input (" Check movement of sample rotation motor and press y (yes) to continue

...")
43 self . rotsampleMotor . put (0 , wait=True)
44

45 self . mvsampleMotor . mv (sample_out)
46 input (" Check if sample out of the beam and press y (yes) to continue ...")
47 self . mvsampleMotor . mv (sample_in)

58

B.3. Operation Software

48

49 self . stepscanMotor . mvr (6000)
50 input (" Check if stepscan motor moved and press y (yes) to continue ...")
51 self . stepscanMotor . mvr (- 6000)
52

53 y = input (" Check if x-rays are on and press y (yes) to continue ")
54 print (y)
55

56 return y
57

58 def create_logfile (self , threshold , no_proj , angles_start , angles_end , expTime) :
59 """ Create a log file for a tomography ."""
60 f = open (self . detector . storagePath + " logfile .txt" , "a+")
61 f . write (" Threshold : " + str (threshold) + "\n")
62 f . write (" Exposure Time: " + str (expTime) + "\n")
63 f . write (" Start Angle : " + str (angles_start) + "\n")
64 f . write ("End Angle : " + str (angles_end) + "\n")
65 f . write (" Number of Projections : " + str (no_proj) + "\n")
66 if self . source_sample_d is None :
67 source_sample_d = input ("Source - sample distance for this setup has not

yet been entered . Enter source -to - sample distance in mm:")
68 self . source_sample_d = source_sample_d
69 f . write (" Source to Sample (rotaxis): " + str (self . source_sample_d) + "mm" +

"\n")
70

71 if self . sample_dect_d is None :
72 sample_dect_d = input (" Enter origin -to - detector distance in mm:")
73 self . sample_dect_d = sample_dect_d
74 f . write (" Sample (rotaxis) to Detector : " + str (self . sample_dect_d) + "mm" +

"\n")
75

76 f . close ()
77

78

79 def absorp_tomo (self , storagePath , threshold , sample_in , sample_out ,
angles_degrees , expTime , source_sample_d=None , sample_dect_d=None , waitTime=None
, sys_check=True) :

80 """ Perform pure absorption tomography .
81

82 Parameters :
83 storagePath (str): where to save tomography
84 threshold (str): set detector threshold
85 sample_in (int): motor position when sample in the beam
86 sample_out (int): motor position when sample out of beam
87 angles_degrees (numpy array): angles where projections should be taken
88 expTime (int): exposure time for the projections in seconds
89 waitTime (int): default None , possible wait time for tube to warm up
90 """
91 self . detector . reinitialize ()
92 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=100 , nimages=1)
93 self . detector . config_storage_path (storagePath)
94 self . detector . config_energy (self . detector . photonEnergy , threshold)
95 self . detector . delete ()
96

59

B. Operation & Reconstruction Software

97 if sys_check :
98 y = self . sys_check (sample_in , sample_out)
99 if y is not ’y’ :

100 print (" Exiting tomography ...")
101 return
102

103 self . create_logfile (threshold , angles_degrees . shape [0] , angles_degrees [0] ,
angles_degrees [- 1] , expTime)

104

105 if waitTime is not None :
106 time . sleep (waitTime)
107

108 time1 = time . time ()
109

110 self . rotsampleMotor . put (0 , wait=True)
111

112 # flatfield
113 self . detector . config_imgParams (nimages_per_file=1 , ntrigger=1 , nimages=1)
114 self . mvsampleMotor . mv (sample_out)
115 self . detector . snap_one (expTime)
116

117 # tomography
118 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=100 , nimages=1)
119 self . mvsampleMotor . mv (sample_in)
120

121 for i , angle in enumerate (angles_degrees) :
122 print (" Scanning at angle : " , angle)
123 self . rotsampleMotor . put (angle , wait=True)
124

125 if i%100 == 0 :
126 self . detector . arm (expTime)
127 print ("at image " , i , ", newly armed ")
128

129 self . detector . trigger ()
130

131 if i%100 == 99 or i == len (angles_degrees) - 1 :
132 self . detector . disarm ()
133 print ("at image " , i , ", newly disarmed ")
134 self . detector . save ()
135 self . detector . delete ()
136

137 self . rotsampleMotor . put (0 , wait=True)
138

139 # flatfield
140 self . detector . config_imgParams (nimages_per_file=1 , ntrigger=1 , nimages=1)
141 self . mvsampleMotor . mv (sample_out)
142 self . detector . snap_one (expTime)
143

144 self . mvsampleMotor . mv (sample_in)
145

146 time2 = time . time ()
147 timetot = time2 - time1
148 print ("Scan took " , timetot / 60 , " minutes ")
149

60

B.3. Operation Software

150 f = open (self . detector . storagePath + " logfile .txt" , "a+")
151 f . write (" Acquisition Time: " + str (timetot) + "\n")
152 f . close ()
153

154 def stepscan_tomo (self , storagePath , threshold , sample_in , sample_out ,
angles_degrees , expTime , stepsize , source_sample_d=None , sample_dect_d=None ,
waitTime=None , sys_check=True) :

155 """ Perform stepscan tomography .
156

157 Parameters :
158 storagePath (str): where to save tomography
159 threshold (str): set detector threshold
160 sample_in (int): motor position when sample in the beam
161 sample_out (int): motor position when sample out of beam
162 angles_degrees (numpy array): angles where projections should be taken
163 expTime (int): exposure time for the projections in seconds
164 stepsize (float): step size in um
165 waitTime (int): default None , possible wait time for tube to warm up
166 sys_check (bool): default True; lead through system inspection
167 """
168 self . detector . reinitialize ()
169 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=100 , nimages=1)
170 self . detector . config_storage_path (storagePath)
171 self . detector . config_energy (self . detector . photonEnergy , threshold)
172 self . detector . delete ()
173

174 if sys_check :
175 y = self . sys_check (sample_in , sample_out)
176 if y is not ’y’ :
177 print (" Exiting tomography ...")
178 return
179

180 self . create_logfile (threshold , angles_degrees . shape [0] , angles_degrees [0] ,
angles_degrees [- 1] , expTime)

181

182 if waitTime is not None :
183 time . sleep (waitTime)
184

185 time1 = time . time ()
186

187 self . rotsampleMotor . put (0 , wait=True)
188

189 # flatfield
190 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=5 , nimages=1)
191 self . mvsampleMotor . mv (sample_out)
192 self . step_scan (5 , stepsize , expTime)
193

194 # tomography
195 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=100 , nimages=1)
196 self . mvsampleMotor . mv (sample_in)
197

198 for i , angle in enumerate (angles_degrees) :
199 print (" Scanning at angle : " , angle)
200 self . rotsampleMotor . put (angle , wait=True)

61

B. Operation & Reconstruction Software

201

202 if i%20 == 0 :
203 self . detector . arm (expTime)
204 print ("at image " , i , ", newly armed ")
205

206 self . step_scan (5 , stepsize , expTime , saving=False)
207

208 if i%20 == 19 or i == len (angles_degrees) - 1 :
209 self . detector . disarm ()
210 print ("at image " , i , ", newly disarmed ")
211 self . detector . save ()
212 self . detector . delete ()
213

214 self . rotsampleMotor . put (0 , wait=True)
215

216 # flatfield
217 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=5 , nimages=1)
218 self . mvsampleMotor . mv (sample_out)
219 self . step_scan (5 , stepsize , expTime)
220

221 self . mvsampleMotor . mv (sample_in)
222

223 time2 = time . time ()
224 timetot = time2 - time1
225 print ("Scan took " , timetot / 60 , " minutes ")
226

227 f = open (self . detector . storagePath + " logfile .txt" , "a+")
228 f . write (" Acquisition Time: " + str (timetot) + "\n")
229 f . close ()
230

231 def step_scan (self , n_steps , step , expTime , saving=True , storagePath=None) :
232 """ Perform a single step scan.
233

234 Parameters :
235 n_steps (int): number of steps over one period
236 step (float): the step size in um
237 expTime (int): exposure time of single image
238 saving (bool): saves step scan by default to the detector storage path
239 storagePath (str): default is detector storage path
240 """
241 self . detector . config_imgParams (nimages_per_file=n_steps , ntrigger=n_steps ,

nimages=1)
242 init_pos = self . stepscanMotor . get_position ()
243 if storagePath is not None :
244 old_path = self . detector . storagePath
245 self . detector . config_storage_path (storagePath)
246

247 if saving :
248 print ("Scan will be saved to: " + self . detector . storagePath)
249 self . detector . arm (expTime)
250 for i in range (n_steps) :
251 self . detector . trigger ()
252 self . stepscanMotor . mvr (step)
253 if saving :

62

B.3. Operation Software

254 self . detector . disarm ()
255 self . detector . save ()
256 self . detector . delete ()
257 self . stepscanMotor . mv (init_pos)
258

259 # reset defaults
260 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=100 , nimages=1)
261 if storagePath is not None :
262 self . detector . config_storage_path (old_path)
263

264 # these two functions are so far only experimental , they have not been tested
yet

265 def take_ff (self , before_position) :
266 self . rotsampleMotor . put (0 , wait=True)
267 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=5 , nimages=1)
268 self . mvsampleMotor . mv (sample_out)
269 self . step_scan (5 , stepsize , expTime)
270 self . mvsampleMotor . mv (sample_in)
271 self . rotsampleMotor . put (before_position , wait=True)
272

273 def stepscan_tomo_flatfield (self , storagePath , threshold , sample_in , sample_out ,
angles_degrees , expTime , stepsize , source_sample_d=None , sample_dect_d=None ,

waitTime=None , sys_check=True) :
274 self . detector . reinitialize ()
275 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=100 , nimages=1)
276 self . detector . config_storage_path (storagePath)
277 self . detector . config_energy (self . detector . photonEnergy , threshold)
278 self . detector . delete ()
279

280 if sys_check :
281 y = self . sys_check (sample_in , sample_out)
282 if y is not ’y’ :
283 print (" Exiting tomography ...")
284 return
285

286 self . create_logfile (threshold , angles_degrees . shape [0] , angles_degrees [0] ,
angles_degrees [- 1] , expTime)

287

288 if waitTime is not None :
289 time . sleep (waitTime)
290

291 time1 = time . time ()
292

293 self . rotsampleMotor . put (0 , wait=True)
294

295 # initial flatfield
296 self . take_ff (0)
297

298 # tomography settings
299 self . detector . config_imgParams (nimages_per_file=5 , ntrigger=100 , nimages=1)
300 self . mvsampleMotor . mv (sample_in)
301

302 for i , angle in enumerate (angles_degrees) :
303 print (" Scanning at angle : " , angle)

63

B. Operation & Reconstruction Software

304 self . rotsampleMotor . put (angle , wait=True)
305

306 if i%20 == 0 :
307 self . detector . arm (expTime)
308 print ("at image " , i , ", newly armed ")
309

310 self . step_scan (5 , stepsize , expTime , saving=False)
311

312 if i%20 == 19 or i == len (angles_degrees) - 1 :
313 self . detector . disarm ()
314 print ("at image " , i , ", newly disarmed ")
315 self . detector . save ()
316 self . detector . delete ()
317 self . take_ff (angle)
318

319 time2 = time . time ()
320 timetot = time2 - time1
321 print ("Scan took " , timetot / 60 , " minutes ")
322

323 f = open (self . detector . storagePath + " logfile .txt" , "a+")
324 f . write (" Acquisition Time: " + str (timetot) + "\n")
325 f . close ()
326

327 # this remains here for the moment in order to keep old notebooks working
328 # in principle you don ’t need it anymore
329 def fba (self , data , periods=0) :
330 """ Implementation of fba function ."""
331 data = np . transpose (data , axes=(1 , 2 , 0))
332 fdata = npfft . fft (data)
333 A = np . abs (fdata [: , : , 0])
334 B = np . abs (fdata [: , : , periods+1])
335 P = np . angle (fdata [: , : , periods+1])
336 return (A , B , P)

B.4. Data Processing Software

List. B.3: data_processing.py

1 import time
2 import numpy as np
3 import numpy . fft as npfft
4 import matplotlib . pyplot as plt
5 import os
6 import sys
7 import glob
8 import h5py
9 import hdf5plugin

10 from scipy . signal import argrelextrema
11 import re
12

64

B.4. Data Processing Software

13 def plot_vismap (vis) :
14 """ Plot visibility map of the scan.
15

16 Parameters :
17 vis (2D/3D nparray): visibility from a scan or the scan itself
18 """
19 if vis . ndim is 3 :
20 vis = visibility (vis)
21 plt . figure (figsize=(10 , 10))
22 plt . colorbar (plt . imshow (vis , cmap =’gray ’))
23 plt . title (" Visibility Map")
24 plt . show ()
25

26 def plot_phasemap (phase) :
27 """ Plot phase of the scan.
28

29 Parameters :
30 phase (2D/3D nparray): Pref from a scan or the scan itself
31 """
32 if phase . ndim is 3 :
33 a0 , a1 , phase = fba (phase)
34 plt . figure (figsize=(10 , 10))
35 plt . colorbar (plt . imshow (phase , cmap =’gray ’ , vmin = - 3 . 1 4 , vmax = 3 . 1 4))
36 plt . title (" Phase Map")
37 plt . show ()
38

39 def plot_vishistogram (vis , peak=True) :
40 """ Plot the visibility histogram .
41

42 Parameters :
43 vis (2D nparray): visibility of a scan
44 peak (bool): plot the peak value
45 """
46 if vis . ndim == 3 :
47 vis = visibility (vis)
48

49 if peak is True :
50 height , visib = np . histogram (vis [vis <1] , range=(0 , 0 . 3) , bins=256)
51 a = argrelextrema (height , comparator=np . greater , order=1000)
52 peak_val = visib [a [0] [0]]
53

54 plt . hist (vis [vis <1] , bins = 256 , range=(0 , 0 . 4))
55

56 if peak is True :
57 plt . title (" Visibility Histogram , peak: " + str (peak_val) [: 5])
58 elif peak is False :
59 plt . title (" Visibility Histogram ")
60

61 plt . show ()
62

63 def visibility (flatfield) :
64 """ Calculate visibility of 3D phase step set.
65

66 Parameters :

65

B. Operation & Reconstruction Software

67 flatfield (3D nparray): stepscan data
68

69 Return :
70 visibility (2D nparray): visibility distribution
71 """
72 A0 , A1 , P1 = fba (flatfield)
73 return 2∗ A1/A0
74

75 def angular_sensitivity (period , G1_G2 , diff_phase , source_G1=1 , source_sam=1) :
76 """ Return angular sensitivy from diff phase image .
77

78 For short setups : definitely make use of last two arguments
79

80 Parameters :
81 period (float): grating period in m
82 G1_G2 (int): propagation distance in m
83 diff_phase (2D np. array): area of diff phase image that should be looked at
84 source_G1 (int): distance source -G1
85 source_sam (int): distance source - sample
86 """
87 return period ∗ source_G1 / (2 ∗ np . pi∗ G1_G2 ∗ source_sam) ∗ np . std (diff_phase)
88

89 def fba (data) :
90 """ Return Fourier coefficients .
91

92 Parameters :
93 data (3D nparray): stepscan data
94

95 Return :
96 (A0 , A1 , P1): Fourier coeff and phase needed for visibility and imaging
97 """
98 fdata = npfft . fft (data , axis=0)
99 A0 = np . abs (fdata [0])

100 A1 = np . abs (fdata [1])
101 P1 = np . angle (fdata [1])
102 return (A0 , A1 , P1)
103

104 def show (image , ROI=np . s_ [: , :] , vmin=None , vmax=None , figsize=(10 , 10)) :
105 """ Show an image .
106

107 Parameters :
108 image (numpy . array): 2D or 3D numpy array containing the image to be shown , 0

will be shown for 3D
109 ROI (numpy .s_): 2D numpy slice for zooming into specific region
110 vmin (float): min data range
111 vmax (float): max data range
112 figsize (float , float): float tuple , size in inches (fuck imperial !)
113 """
114 if image . ndim is 3 :
115 image = image [0]
116 plt . subplots (figsize=figsize)
117 plt . imshow (image [ROI] , cmap=’gray ’ , vmin=vmin , vmax=vmax)
118

119 def show_parallel (images , ROI=np . s_ [: , :] , vmin=None , vmax=None , figsize=(15 ,15)) :

66

B.4. Data Processing Software

120 """ Show several images next to each other
121

122 Parameters :
123 image (numpy . array or list): 3D numpy array or list of 2D numpy arrays

containing images to be shown
124 ROI (numpy .s_): 2D numpy slice for zooming into specific region
125 vmin (float): min data range
126 vmax (float): max data range
127 figsize (float , float): float tuple , size in inches (fuck imperial !)
128 """
129 if type (images) is list :
130 no_plots = len (images)
131 else :
132 no_plots = images . shape [0]
133 fig , axs = plt . subplots (1 , no_plots , figsize=figsize)
134 for i in range (no_plots) :
135 axs [i] . imshow (images [i] [ROI] , cmap=’gray ’ , vmin=vmin , vmax=vmax)
136 plt . show ()
137

138 def remove_nans (data) :
139 """ Set all NaN ’s from a dataset to 0. """
140

141 nans = np . isnan (data)
142 data [nans] = 0
143 return data
144

145 def make_sino (data) :
146 """ Make sinograms from projection data."""
147

148 return np . transpose (data , axes=(1 , 0 , 2))
149

150

151 def extract_3_images (data , ff , amp=False , dpc=False , dci=False) :
152 """ Convert dataset into absorption , differential phase contrast and dark field

images .
153

154 Currently uses only the first flatfield .
155

156 Parameters :
157 data (4D numpy array , 3D if single_step): contains phase steps of projections
158 in case of 4D: 0 dimension - for different projections
159 1 dimension - same projection , step scan
160 2,3 - image itself
161 in case of 3D: same as above for 1-3
162 ff (4D numpy array , 3D if single_step): contains flatfield phase steps
163 amp (bool): default True
164 dpc (bool): default True
165 dci (bool): default True
166

167 Return :
168 imgs (tuple): 3D numpy arrays containing the three respective sets of

projections
169 """
170 if data . ndim is 3 :

67

B. Operation & Reconstruction Software

171 A0ref , A1ref , P1ref = fba (ff)
172 A0sam , A1sam , P1sam = fba (data)
173

174 amp_arr = - np . log (A0sam / A0ref)
175 dpc_arr = np . angle (np . exp (1 j∗ (P1sam - P1ref)))
176 dci_arr = - np . log (A1sam / A1ref ∗ A0ref / A0sam)
177

178 return amp_arr , dpc_arr , dci_arr
179

180 if amp :
181 amp_arr = np . zeros ((data . shape [0] , data . shape [2] , data . shape [3]))
182 if dpc :
183 dpc_arr = np . zeros ((data . shape [0] , data . shape [2] , data . shape [3]))
184 if dci :
185 dci_arr = np . zeros ((data . shape [0] , data . shape [2] , data . shape [3]))
186

187 # flatfield iteration to be implemented
188 A0ref , A1ref , P1ref = fba (ff [0]) # currently only using the first flatfield
189

190 for i in np . arange (data . shape [0]) :
191 A0sam , A1sam , P1sam = fba (data [i])
192

193 if amp :
194 amp_arr [i] = - np . log (A0sam / A0ref)
195 if dpc :
196 dpc_arr [i] = np . angle (np . exp (1 j∗ (P1sam - P1ref)))
197 if dci :
198 dci_arr [i] = - np . log (A1sam / A1ref ∗ A0ref / A0sam)
199

200 imgs = []
201 if amp :
202 imgs . append (amp_arr)
203 if dpc :
204 imgs . append (dpc_arr)
205 if dci :
206 imgs . append (dci_arr)
207

208 if len (imgs) is 1 :
209 return imgs [0]
210

211 return tuple (imgs)
212

213

214 def get_masterlist (folder , master_max=None) :
215 """ Create a list of masterfiles from folder . (EIGER ONLY)
216

217 Parameters :
218 folder (str): path to folder with masterfiles
219 master_max (int): seqID of last file
220

221 Returns :
222 masters (list of str): list containing paths to masterfiles
223 """
224 if master_max is not None :

68

B.4. Data Processing Software

225 masters = [None] ∗ master_max
226 for i in range (1 , master_max+1) :
227 masters [i - 1] = get_masterfile (folder , i)
228 else :
229 contains_master = lambda x : (" _master ") in x
230 path = os . path . join (folder , ’’)
231 files = list (filter (os . path . isfile and contains_master , glob . glob (path + ’*’

)))
232 masters = sorted (files , key = lambda x : int (re . findall (r’\d+’ , os . path .

splitext (os . path . basename (x)) [0]) [0]))
233

234 return masters
235

236 def get_masterfile (path , sequence_id) :
237 """ Return path to master file with specified sequence ID. (EIGER ONLY)
238

239 Parameters :
240 path (str): path to folder which contains masterfiles
241 sequence_id (int): which file to get path from
242

243 Returns :
244 file (str): path to masterfile
245 """
246 contains_id = lambda x : ("_" + str (sequence_id) + " _master ") in x
247 path = os . path . join (path , ’’)
248 file = list (filter (os . path . isfile and contains_id , glob . glob (path + ’*’)))
249 return file [0]
250

251 def master_3D (masters , no_proj , sino_slice=np . s_ [:]) :
252 """ Create 3D array from list of masterfiles . (EIGER ONLY)
253

254 Parameters :
255 masters (list of str): list of paths to sorted masterfiles
256 no_proj (int): number of total projections
257 sino_slice (np.s_ object): specify which sinograms in vert direction to load
258

259 Returns :
260 data (3D numpy array): array containing projections
261 """
262 with h5py . File (masters [0] , ’r’) as f :
263 x = f [’entry ’] [’data ’] [’data_000001 ’] [()] . shape [1]
264 y = f [’entry ’] [’data ’] [’data_000001 ’] [()] . shape [2]
265

266 x = len (np . zeros (x) [sino_slice])
267 data = np . zeros ((no_proj , x , y))
268

269 enumerator = 0
270

271 for master in masters :
272 with h5py . File (master , ’r’) as f :
273 for datafile in list (f [’entry ’] [’data ’] . keys ()) :
274 try :
275 data [enumerator : enumerator+5] = f [’entry ’] [’data ’] [datafile] [()

] [:] [sino_slice]

69

B. Operation & Reconstruction Software

276 enumerator += 5
277 except :
278 print (" dangerous situation , check " , master , datafile)
279 break
280

281 return data
282

283 def master_4D (masters , no_of_projections , sino_slice=np . s_ [:]) :
284 """ Create 4D array from list of masterfiles . (EIGER ONLY)
285

286 Parameters :
287 masters (list of str): list of paths to sorted masterfiles
288 no_proj (int): number of total projections
289 sino_slice (np.s_ object): specify which sinograms in vert direction to load
290

291 Returns :
292 data (4D numpy array): array containing phase steps of projections
293 """
294 mylist = []
295 for master in masters :
296 with h5py . File (master , ’r’) as f :
297 for datafile in list (f [’entry ’] [’data ’] . keys ()) :
298 try :
299 mylist . append (f [’entry ’] [’data ’] [datafile] [()] [: , sino_slice])
300 except :
301 print (" dangerous situation , check " , master , datafile)
302 break
303 mylist = np . asarray (mylist)
304 if mylist . shape [0] == no_of_projections :
305 return mylist
306 else :
307 print (" Check if everything has been added ")
308 return mylist
309

310 def master_to_array (file) :
311 """ Return 3D numpy array of images stored in master file. (EIGER ONLY)
312

313 Parameters :
314 file (str): path to h5 master file containing images
315 onylfirst (bool): helpful if only one set of phase steps needed
316

317 Returns :
318 arr (3D numpy array): dataset from this file
319 """
320 arr = []
321 with h5py . File (file , ’r’) as f :
322 for i in list (f [’entry ’] [’data ’] . keys ()) :
323 try :
324 arr . append (f [’entry ’] [’data ’] [i] [()])
325 except :
326 print ("Some images might not have been added due to corrupted file

links ")
327 break
328 return np . asarray (arr) [0]

70

B.4. Data Processing Software

List. B.4: Reconstruction.py

1 import astra
2 import numpy as np
3

4 class Reconstruction :
5 def __init__ (self , geometry , algorithm , rotcenter , angles , source_origin ,

origin_detector , pixel_size , data , filtertype=None , vertcenter=None ,
phase_contrast=False) :

6 """ Create new instance of Tomographic Reconstruction .
7

8 Parameters :
9 geometry (str): ’fanflat ’ or ’cone ’

10 algorithm (str): ’SIRT3D_CUDA ’, ’FDK_CUDA ’ for cone; ’FBP_CUDA ’, ’SIRT_CUDA ’
for fanflat ; see astra - toolbox .com

11 rotcenter (float): pixel specifying rotation center from left side of
projection

12 angles (numpy array): listing the projection angles in radians
13 source_origin (float): distance in mm
14 origin_detector (float): distance in mm
15 pixel_size (float): size in mm
16 data (3D numpy array): sinogram data
17 filtertype (str): default ’ram -lak ’, check astra - toolbox .com
18 vertcenter (float): pixel specifying center of cone beam from top (IMPORTANT

: center sino must be part of dataset)
19 phase_contrast (bool): default False , set True if reconstructing DPC images
20 """
21 self . geometry = geometry
22 self . algorithm = algorithm
23 self . rotcenter = rotcenter
24 self . vertcenter = vertcenter
25 self . angles = angles
26 self . source_origin = source_origin
27 self . origin_detector = origin_detector
28 self . pixel_size = pixel_size
29 self . data = data
30 self . detector_rows = self . data . shape [0]
31 self . detector_cols = self . data . shape [2]
32 self . filtertype = filtertype
33

34 sino_center = self . data . shape [2] / 2
35 off_center = sino_center - self . rotcenter
36

37 if vertcenter is not None :
38 proj_center = self . data . shape [0] / 2
39 vert_offcenter = proj_center - self . vertcenter
40

41 # implement 2D geometries here
42 if self . geometry is ’fanflat ’ :
43 self . algos = []
44 for sino in np . arange (self . data . shape [0]) :
45 proj_geom = astra . create_proj_geom (self . geometry , 1 , self .

71

B. Operation & Reconstruction Software

detector_cols , self . angles , (self . source_origin + self . origin_detector) / self .
pixel_size , 0)

46 proj_geom = astra . functions . geom_postalignment (proj_geom , off_center
)

47

48 vol_geom = astra . creators . create_vol_geom (self . detector_cols)
49

50 projections_id = astra . data2d . create (’-sino ’ , proj_geom , self . data [
sino])

51

52 reconstruction_id = astra . data2d . create (’-vol ’ , vol_geom , data=0)
53

54 alg_cfg = astra . astra_dict (self . algorithm)
55 alg_cfg [’ProjectionDataId ’] = projections_id
56 alg_cfg [’ReconstructionDataId ’] = reconstruction_id
57 if self . algorithm is ’FBP_CUDA ’ :
58 alg_cfg [’option ’] = {’FilterType ’ : self . filtertype }
59

60 if self . algorithm is ’SIRT_CUDA ’ :
61 alg_cfg [’option ’] = {’MinConstraint ’ : 0}
62

63 if phase_contrast :
64 alg_cfg [’option ’] = {’FilterType ’ : ’Hilbert ’}
65

66 algorithm_id = astra . algorithm . create (alg_cfg)
67

68 self . algos . append ([proj_geom , vol_geom , projections_id ,
reconstruction_id , algorithm_id])

69

70 # implement 3D geometries here
71 if self . geometry is ’cone ’ :
72 self . proj_geom = astra . create_proj_geom (’cone ’ , 1 , 1 , self . detector_rows

, self . detector_cols , self . angles , (self . source_origin + self . origin_detector) /
self . pixel_size , 0)

73 self . proj_geom = astra . functions . geom_postalignment (self . proj_geom , [
off_center , vert_offcenter])

74

75 self . projections_id = astra . data3d . create (’-sino ’ , self . proj_geom , self .
data)

76

77 self . vol_geom = astra . creators . create_vol_geom (self . detector_cols , self .
detector_cols , self . detector_rows)

78

79 self . reconstruction_id = astra . data3d . create (’-vol ’ , self . vol_geom , data
=0)

80

81 self . alg_cfg = astra . astra_dict (self . algorithm)
82 self . alg_cfg [’ProjectionDataId ’] = self . projections_id
83 self . alg_cfg [’ReconstructionDataId ’] = self . reconstruction_id
84 if self . algorithm is ’FDK_CUDA ’ :
85 self . alg_cfg [’option ’] = {’FilterType ’ : self . filtertype }
86

87 if self . algorithm is ’SIRT3D_CUDA ’ :
88 self . alg_cfg [’option ’] = {’MinConstraint ’ : 0}

72

B.4. Data Processing Software

89

90 if phase_contrast :
91 self . alg_cfg [’option ’] = {’FilterType ’ : ’Hilbert ’}
92

93 self . algorithm_id = astra . algorithm . create (self . alg_cfg)
94

95 def run (self , iterations=None) :
96 """ Run the created algorithm . Specify number of iterations for SIRT """
97

98 if self . algorithm is ’SIRT3D_CUDA ’ :
99 astra . algorithm . run (self . algorithm_id , iterations)

100 recon = astra . data3d . get (self . reconstruction_id)
101 elif self . algorithm is ’FDK_CUDA ’ or self . algorithm is ’BP3D_CUDA ’ :
102 astra . algorithm . run (self . algorithm_id)
103 recon = astra . data3d . get (self . reconstruction_id)
104 else :
105 recon = []
106 for sino in self . algos :
107 proj_geom = sino [0]
108 vol_geom = sino [1]
109 projections_id = sino [2]
110 reconstruction_id = sino [3]
111 algorithm_id = sino [4]
112 if self . algorithm is ’SIRT_CUDA ’ :
113 astra . algorithm . run (algorithm_id , iterations)
114 else :
115 astra . algorithm . run (algorithm_id)
116 recon . append (astra . data2d . get (reconstruction_id))
117 recon = np . asarray (recon)
118 return recon
119

120 def project_phantom (angles , source_origin , origin_detector , pixel_size , phantom ,
rotcenter=None , vertcenter=None) :

121 """ Create a set of projections using a cone beam shaped projector """
122

123 det_rows = phantom . shape [0]
124 det_cols = phantom . shape [1]
125

126 if rotcenter is not None :
127 sino_center = phantom . shape [1] / 2
128 off_center = sino_center - rotcenter
129 else :
130 off_center = 0
131

132 if vertcenter is not None :
133 proj_center = phantom . shape [0] / 2
134 vert_offcenter = proj_center - vertcenter
135 else :
136 vert_offcenter = 0
137

138

139 vol_geom = astra . creators . create_vol_geom (det_cols , det_cols , det_rows)
140

141 phantom_id = astra . data3d . create (’-vol ’ , vol_geom , data=phantom)

73

B. Operation & Reconstruction Software

142

143 proj_geom = astra . create_proj_geom (’cone ’ , 1 , 1 , det_rows , det_rows , angles , (
source_origin + origin_detector) / pixel_size , 0)

144 proj_geom = astra . functions . geom_postalignment (proj_geom , [off_center ,
vert_offcenter])

145

146 projections_id , projections = astra . creators . create_sino3d_gpu (phantom_id ,
proj_geom , vol_geom)

147

148 projections = np . transpose (projections , axes=(1 , 0 , 2))
149 return projections

74

REFERENCES

[1] University of Calgary, ed. CT Image Reconstruction. url: http://199.116.233.101/

index . php ? title = CT _ Image _ Reconstruction # Sinogram _ and _ Radon _ transform

(visited on 05/22/2021).

[2] William B. Case et al. “Realization of optical carpets in the Talbot and Talbot-Lau
configurations”. In: Opt. Express 17.23 (Nov. 2009), pp. 20966–20974. doi: 10.1364/OE.

17.020966. url: http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-

20966.

[3] Tilman Donath et al. “Inverse geometry for grating-based x-ray phase-contrast imaging”.
In: Journal of Applied Physics 106 (Oct. 2009), pp. 054703–054703. doi: 10.1063/1.

3208052.

[4] M Engelhardt et al. “The fractional Talbot effect in differential x-ray phase-contrast
imaging for extended and polychromatic x-ray sources”. In: Journal of microscopy 232
(Nov. 2008), pp. 145–57. doi: 10.1111/j.1365-2818.2008.02072.x.

[5] Aaron Filler. “The History, Development and Impact of Computed Imaging in Neuro-
logical Diagnosis and Neurosurgery: CT, MRI, and DTI”. In: Internet Journal of Neu-
rosurgery 7 (May 2010), pp. 1–85. doi: 10.1038/npre.2009.3267.5.

[6] Gabor T. Herman. Fundamentals of Computerized Tomography, Image Reconstruction
from Projections. Second Edition. Springer-Verlag London Limited, 2009.

[7] Gabor T. Herman. Fundamentals of Computerized Tomography, Image Reconstruction
from Projections. 2009.

[8] Dectris Ltd., ed. EIGER2 R for Laboratory. url: https://www.dectris.com/products/

eiger2/eiger2-r-for-laboratory/ (visited on 05/19/2021).

[9] Dectris Ltd., ed. User Manual Eiger R/X Detector Systems. url: https : / / media .

dectris.com/UserManual_EIGER.pdf (visited on 05/05/2021).

[10] Daniël M. Pelt et al. “Integration of TomoPy and the ASTRA toolbox for advanced
processing and reconstruction of tomographic synchrotron data”. In: Journal of Syn-
chrotron Radiation 23.3 (May 2016), pp. 842–849. doi: 10.1107/S1600577516005658.
url: https://doi.org/10.1107/S1600577516005658.

75

http://199.116.233.101/index.php?title=CT_Image_Reconstruction#Sinogram_and_Radon_transform
http://199.116.233.101/index.php?title=CT_Image_Reconstruction#Sinogram_and_Radon_transform
https://doi.org/10.1364/OE.17.020966
https://doi.org/10.1364/OE.17.020966
http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-20966
http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-20966
https://doi.org/10.1063/1.3208052
https://doi.org/10.1063/1.3208052
https://doi.org/10.1111/j.1365-2818.2008.02072.x
https://doi.org/10.1038/npre.2009.3267.5
https://www.dectris.com/products/eiger2/eiger2-r-for-laboratory/
https://www.dectris.com/products/eiger2/eiger2-r-for-laboratory/
https://media.dectris.com/UserManual_EIGER.pdf
https://media.dectris.com/UserManual_EIGER.pdf
https://doi.org/10.1107/S1600577516005658
https://doi.org/10.1107/S1600577516005658

References

[11] Franz Pfeiffer et al. “Phase retrieval and differential phase-contrast imaging with low-
brilliance X-ray sources”. In: Nature Physics 2.4 (Apr. 2006), pp. 258–261. issn: 1745-
2481. doi: 10.1038/nphys265. url: https://doi.org/10.1038/nphys265.

[12] Lord Rayleigh. The London, Edinburgh and Dublin Philosophical Magazine and Journal
of Science. XXV. On Copying Diffraction-gratings, and some Phenomena connnected
therewith. Taylor & Francis, 1881. url: https : / / books . google . ch / books ? id =

O5EOAAAAIAAJ.

[13] Tom Roelandts, ed. Tomography, Part 3: Reconstruction. url: https://tomroelandts.

com/articles/tomography-part-3-reconstruction (visited on 05/18/2021).

[14] Tom Roelandts, ed. Tomography, Part 3: Reconstruction. url: https://tomroelandts.

com/articles/tomography-part-3-reconstruction (visited on 05/18/2021).

[15] A. Snigirev et al. “On the possibilities of x-ray phase contrast microimaging by coherent
high-energy synchrotron radiation”. In: Review of Scientific Instruments 66.12 (1995),
pp. 5486–5492. doi: 10.1063/1.1146073. eprint: https://doi.org/10.1063/1.

1146073. url: https://doi.org/10.1063/1.1146073.

[16] Thomas J. Suleski. “Generation of Lohmann images from binary-phase Talbot array
illuminators”. In: Appl. Opt. 36.20 (July 1997), pp. 4686–4691. doi: 10.1364/AO.36.

004686. url: http://ao.osa.org/abstract.cfm?URI=ao-36-20-4686.

[17] T. Thuering and M. Stampanoni. “Performance and optimization of X-ray grating inter-
ferometry”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 372.2010 (2014), p. 20130027. doi: 10.1098/rsta.2013.0027.
eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2013.0027.
url: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0027.

[18] Thomas Thuering et al. “Sensitivity in X-ray grating interferometry on compact systems”.
In: AIP Conference Proceedings 1466.1 (2012), pp. 293–298. doi: 10.1063/1.4742307.
eprint: https://aip.scitation.org/doi/pdf/10.1063/1.4742307. url: https:

//aip.scitation.org/doi/abs/10.1063/1.4742307.

[19] Thomas Thüring. “Compact X-ray grating interferometry for phase and dark-field com-
puted tomography in the diagnostic energy range”. en. PhD thesis. Zürich: ETH Zurich,
2013. doi: 10.3929/ethz-a-010008147.

[20] Mathias Tomandl. “Realisierung von optischen Talbot- und Talbot-Lau-Teppichen”. PhD
thesis. 2013. url: http://othes.univie.ac.at/9413/1/2010-04-22_0402570.pdf.

76

https://doi.org/10.1038/nphys265
https://doi.org/10.1038/nphys265
https://books.google.ch/books?id=O5EOAAAAIAAJ
https://books.google.ch/books?id=O5EOAAAAIAAJ
https://tomroelandts.com/articles/tomography-part-3-reconstruction
https://tomroelandts.com/articles/tomography-part-3-reconstruction
https://tomroelandts.com/articles/tomography-part-3-reconstruction
https://tomroelandts.com/articles/tomography-part-3-reconstruction
https://doi.org/10.1063/1.1146073
https://doi.org/10.1063/1.1146073
https://doi.org/10.1063/1.1146073
https://doi.org/10.1063/1.1146073
https://doi.org/10.1364/AO.36.004686
https://doi.org/10.1364/AO.36.004686
http://ao.osa.org/abstract.cfm?URI=ao-36-20-4686
https://doi.org/10.1098/rsta.2013.0027
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2013.0027
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0027
https://doi.org/10.1063/1.4742307
https://aip.scitation.org/doi/pdf/10.1063/1.4742307
https://aip.scitation.org/doi/abs/10.1063/1.4742307
https://aip.scitation.org/doi/abs/10.1063/1.4742307
https://doi.org/10.3929/ethz-a-010008147
http://othes.univie.ac.at/9413/1/2010-04-22_0402570.pdf

References

[21] Joan Vila-Comamala et al. “High sensitivity X-ray phase contrast imaging by laboratory
grating-based interferometry at high Talbot order geometry”. In: Opt. Express 29.2 (Jan.
2021), pp. 2049–2064. doi: 10.1364/OE.414174. url: http://www.opticsexpress.

org/abstract.cfm?URI=oe-29-2-2049.

[22] TimmWeitkamp et al. “Tomography with grating interferometers at low-brilliance sources”.
In: Developments in X-Ray Tomography V. Ed. by Ulrich Bonse. Vol. 6318. International
Society for Optics and Photonics. SPIE, 2006, pp. 249–258. doi: 10.1117/12.683851.
url: https://doi.org/10.1117/12.683851.

[23] Timm Weitkamp et al. “X-ray phase imaging with a grating interferometer”. In: Opt.
Express 13.16 (Aug. 2005), pp. 6296–6304. doi: 10.1364/OPEX.13.006296. url: http:

//www.opticsexpress.org/abstract.cfm?URI=oe-13-16-6296.

77

https://doi.org/10.1364/OE.414174
http://www.opticsexpress.org/abstract.cfm?URI=oe-29-2-2049
http://www.opticsexpress.org/abstract.cfm?URI=oe-29-2-2049
https://doi.org/10.1117/12.683851
https://doi.org/10.1117/12.683851
https://doi.org/10.1364/OPEX.13.006296
http://www.opticsexpress.org/abstract.cfm?URI=oe-13-16-6296
http://www.opticsexpress.org/abstract.cfm?URI=oe-13-16-6296

IMAGE SOURCES

[1] University of Calgary, ed. CT Image Reconstruction. url: http://199.116.233.101/

index . php ? title = CT _ Image _ Reconstruction # Sinogram _ and _ Radon _ transform

(visited on 05/22/2021).

[7] Gabor T. Herman. Fundamentals of Computerized Tomography, Image Reconstruction
from Projections. 2009.

[13] Tom Roelandts, ed. Tomography, Part 3: Reconstruction. url: https://tomroelandts.

com/articles/tomography-part-3-reconstruction (visited on 05/18/2021).

79

http://199.116.233.101/index.php?title=CT_Image_Reconstruction#Sinogram_and_Radon_transform
http://199.116.233.101/index.php?title=CT_Image_Reconstruction#Sinogram_and_Radon_transform
https://tomroelandts.com/articles/tomography-part-3-reconstruction
https://tomroelandts.com/articles/tomography-part-3-reconstruction

	1 Introduction
	2 Theory
	2.1 X-Rays and Matter
	2.2 Talbot Effect
	2.3 Fractional Talbot Effect & Moiré Patterns
	2.4 Talbot-Lau Interferometer
	2.5 Image Acquisition, Phase Retrieval & Quality Assessment
	2.5.1 Visibility
	2.5.2 Angular Sensitivity

	2.6 Computerized Tomography & Tomographic Reconstruction
	2.6.1 Mathematical Basis
	2.6.2 Reconstruction Algorithms

	3 Lab Setup
	3.1 Detector
	3.2 Gratings
	3.3 Motorized Towers
	3.4 X-Ray Source
	3.5 Placing and Alignment of Components

	4 Operation Software
	4.1 Detector Operation
	4.1.1 Acquiring Images with Eiger
	4.1.2 Speeding up the Tomographic Process

	4.2 Motor Operation
	4.3 The Lab CT as one Object
	4.4 Conclusions & Perspective

	5 Data Processing
	5.1 Reading Detector Output
	5.2 Measuring Visibility & Angular Sensitivity
	5.3 Extracting the 3 Images
	5.4 Tomographic Reconstruction
	5.4.1 The Reconstruction Class
	5.4.2 Phantom Creation & Performance Testing

	5.5 Conclusions & Perspective

	6 Conclusions & Perspective
	A Testing of Bottom-Up Gold Filled High Aspect Ratio Gratings for X-Ray Interferometry
	A.1 Grating Tests
	A.2 Conclusion

	B Operation ` Reconstruction Software
	B.1 Requirements for operating the setup
	B.2 Requirements for operating the reconstruction
	B.3 Operation Software
	B.4 Data Processing Software

	References
	Image Sources

