
Warsaw University of Technology

EMUG-2021

"Source-term analysis for PHÉBUS FPT-1 with MELCOR 2.2 and 2.1" – Experience and Outcomes

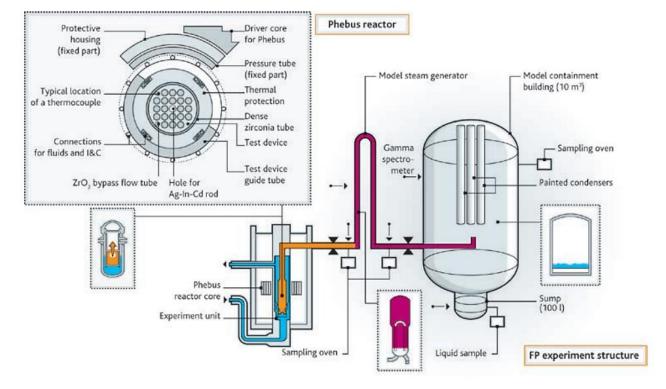
Piotr Darnowski piotr.darnowski@pw.edu.pl

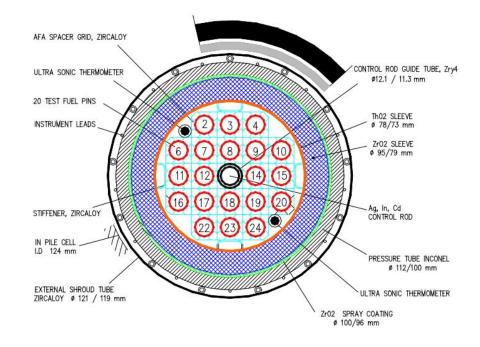
Institute of Heat Engineering Faculty of Power and Aeronautical Engineering Warsaw University of Technology Poland

Introduction

- Revisit of the Phebus FPT-1 with MELCOR 2.2 and 2.1
- Focus on releases from the bundle:
 - Hydrogen
 - Structural materials
 - Radionuclides
- Project financed by PAA in 2018, in 2019 by WUT
- Recently, work ongoing with M2.2.18
- > Papers:

P. DARNOWSKI, M. WŁOSTKOWSKI, M. STĘPIEŃ, G. NIEWIŃSKI, STUDY OF THE MATERIAL RELEASE DURING PHÉBUS FPT-1 BUNDLE PHASE WITH MELCOR 2.2.11954, ANNALS OF NUCLEAR ENERGY, VOL. 148, 2020, 107700, DOI: 10.1016/J.ANUCENE.2020.107700

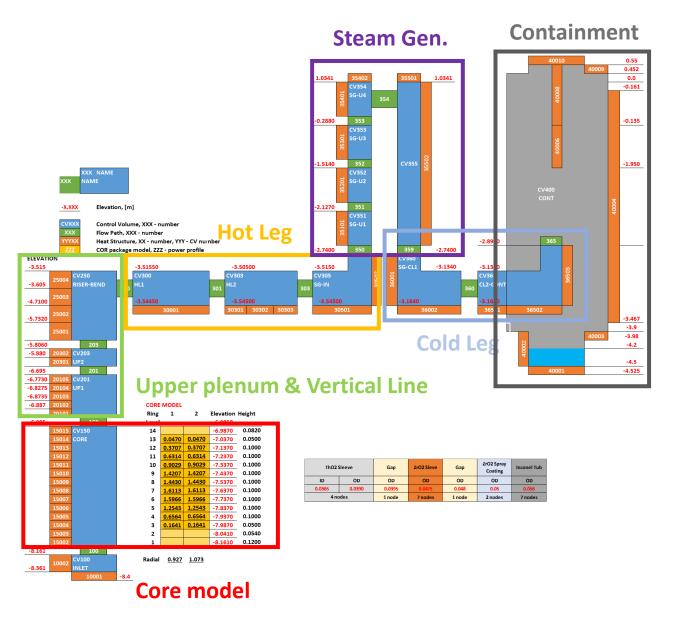

P. MAZGAJ, P. DARNOWSKI, G. NIEWIŃSKI, UNCERTAINTY ANALYSIS OF THE HYDROGEN PRODUCTION IN THE PHEBUS FPT-1 EXPERIMENT, NENE-2019, NENE-2019 PROCEEDINGS, PORTOROZ, SLOVENIA, 9-12.09.2019


Old results - reports in Polish:

https://www.gov.pl/attachment/2ed67789-b620-437b-b7eb-c5930bd841c3

https://www.gov.pl/attachment/64b2fefc-d115-4f26-8ff3-67010bdc246f

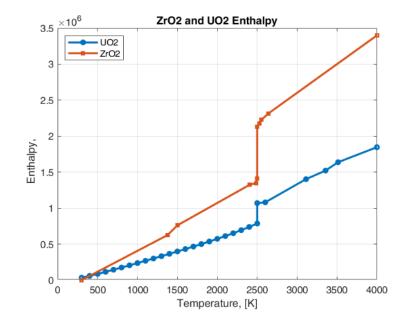
Phebus FPT-1

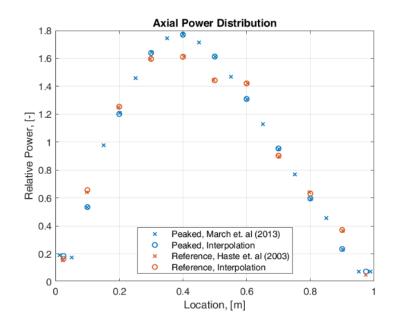

Phébus-FP test matrix.

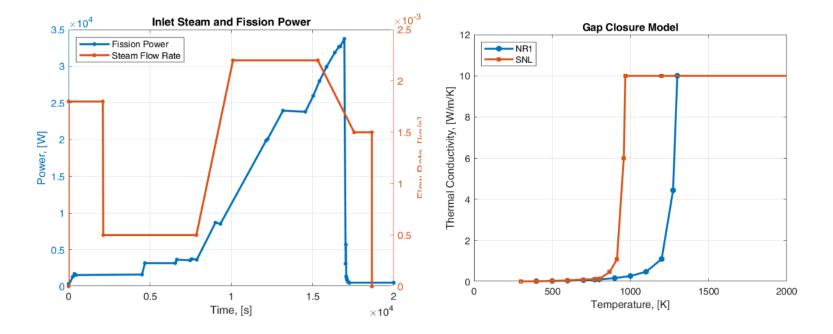
Test	Type of fuel	Fuel degradation	Primary circuit	Containment	Date
FPT-0	Fresh fuel, 9 days pre irradiation, 1 Ag/In/Cd rod	Melt progression & FP release in steam-rich environment	FP chemistry and deposits in non condensing steam	Aerosol deposition, Iodine radiochemistry at pH5	December 2 1993
FPT-1	BR3 fuel≈23.4 GWd/tU, 1 Ag/In/Cd rod, Re-irradiation	As FPT-0 with irradiated fuel	As FPT-0	As FPT-0	July 26 1996
FPT-2	As FPT-1, but with≈31.8 GWd/tU irradiation	As FPT-1 under steam poor conditions	As FPT-1 with effect of boric acid in the steam	Evaporating sump at pH9	October 12 2000
FPT-3	As FPT-1 with B4C instead of Ag/In/Cd, 24.5 GWd/tU irradiation	As FPT-2	As FPT-0	Evaporating sump at pH5 recombiner coupons	November 18 2004
FPT-4	EDF fuel average 38 GWd/tU, no re irradiation, in the form of a debris bed	Low volatile FP and actinide release from the UO ₂ –ZrO ₂ debris bed up to melting	Integral filters in test device, detailed post-test analyses on samples		July 22 1999

Warsaw University of Technology

Model

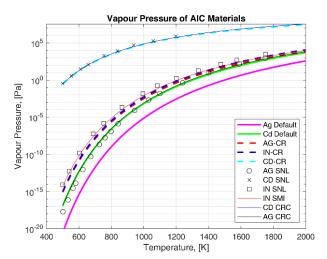

- Base: M2.2.11932
- Additional: M2.1.6342
- Based on publicly available data
 - No access to ISP-46 specification/handbooks
 - ISP-46 report and assoc. papers
 - Several papers published after ISP-46
 - SNL model descriptions in M2.1 Assessment Report.
 - Other reports
- Relatively simple model
- ➢ Single CV for core − to be updated soon 1CV->10CV




Model – some details

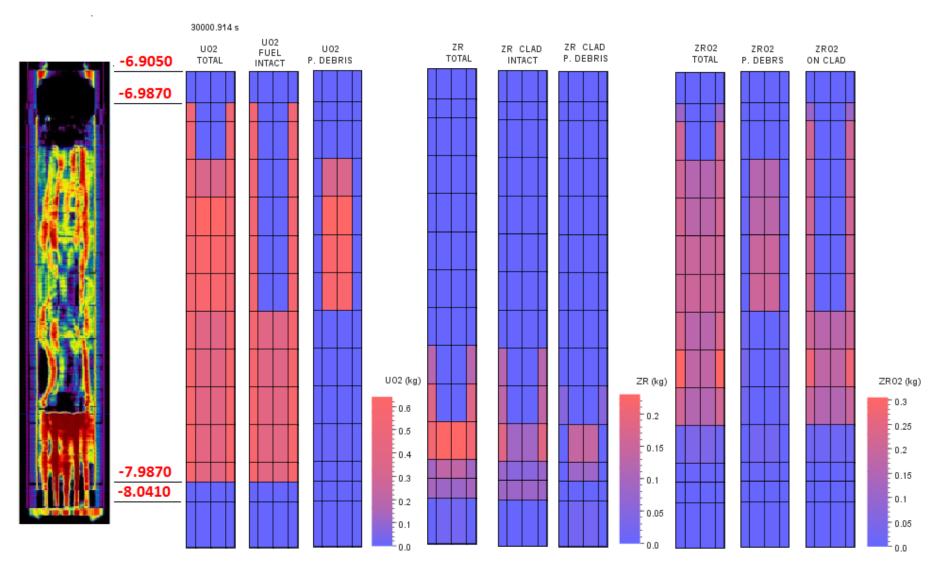
Selected modeling details:

- ZRO2-INT & UO2-INT (with MP_PRTF)
- For M2.2.11 EUT was not working properly
- Some sensitivities studied, e.g.:
 - Shroud gap closure
 - Power profile



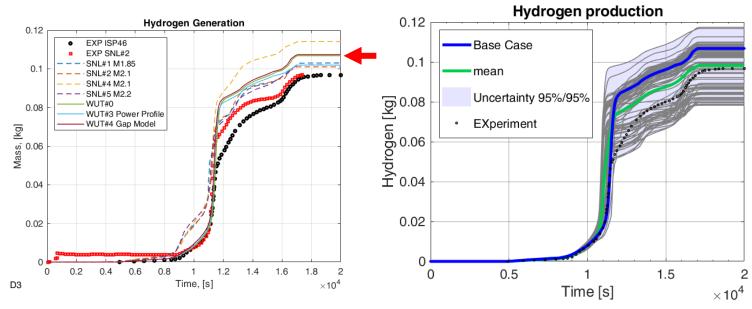
Model – inventories and releases

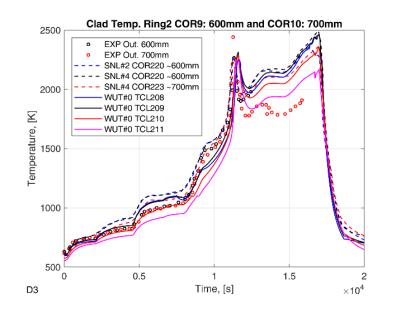
- ➢ Inv. from M2.1 Assessment Report
- Non usual speciation with gap gases present
- CSM, CsI also applied but without chemical speciation model
 - All radionucl. defined with RN1_FPN card (like SOARCA)
- > Ag-CR, In-CR, Cd-CR with silver model
 - SC7110,7111,7120 + COR_CR ACTDC 0.1
- > Alternative as pseudo-FP (SC7103). Also for SNO2 and MO calcs.
- CORSOR-Booth, 2nd, 1st and basic RN1_FP00 -7, -5 or -3


Number	Class	Representative	Initial mass before speciation, [g]	Mass after speciation, [g]
RN1	XE	Kr Xe	35.49	35.49
RN2	CS	Rb Cs	18.37	0.81769
RN3	BA	Ba Sr	15.40	15.40
RN4	I2	Ι	1.98	0.05485
RN5	TE	Te	2.63	2.63
RN6	RU	Ru	17.29	17.29
RN7	МО	Mo Tc	25.0	19.3925
RN8	CE	Pu Np Zr	38.5	38.50
RN9	LA	La	0.0	0.0
RN10	UO2	U	8967.0 COR package	8967.0 COR package
RN11	CD	Sb	0.23	0.23
RN12	AG	Ag	0.0	0.0
RN13	BO2	-	0	0
RN14	H2O	-	0	0
RN15	CON	-	0	0
RN16	CSI	CsI	0	3.94134
RN17	CSM	Cs2MoO4	0	21.14362
RN18	AG-CR	Ag	COR package	COR package
RN19	IN-CR	In	COR package	COR package
RN20	CD-CR	Cd	COR package	COR package
RN21	SNO2	Sn	COR package	COR package
Total mass w	ithout uranium a	and structural materials	154.89	154.89

SNL, 2014. MELCOR Best Practices as Applied in the State-of-the-Art Reactor Consequence Analyses (SOARCA) Project, U.S. NC Report NUREG/CR-7008, (2014).

SNL, 2015. MELCOR 2.1 Computer Code Manual - Volume 3 - Code Assessment, 2015.


AIC equations and parameters: https://gitlab.com/darczu/x-core/-/tree/master/Modules/MaterialDatabase/VapourPressure


Bundle final state

Warsaw University of Technology

Results - Hydrogen

Case	Code	Reference
SNL#1	M1.8.5	(Clément and Haste, 2003)
SNL#2	M2.1	(SNL, 2015)
SNL#3	M1.8.5	(Gauntt, 2010; SNL, 2010)
SNL#4	M2.1	(Wang et al., 2015;
		Wang et al., 2016)
SNL#5	M2.2.11932	(Humphries, 2018a,b)
	M2.2.9496	
	M2.1	
PS1	M1.8.5	(Birchley, 2004; Clément and Haste, 2003)

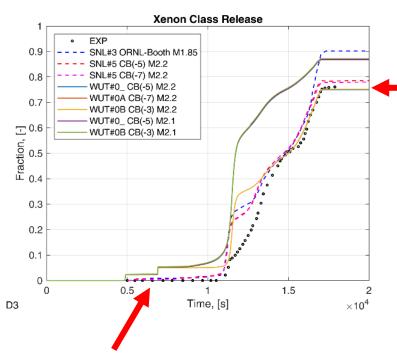
Clément, B., Haste, T., 2003. Thematic Network for a Phebus FPT-1 International Standard Problem. OECD/NEA Comparison Report on International Standard Problem ISP-46 (PHEBUS FPT-1).

SNL, 2015. MELCOR 2.1 Computer Code Manual - Volume 3 - Code Assessment, 2015.

SNL, 2010. MELCOR 1.8.5 Modeling Aspects of Fission Product Release, Transport and Deposition. -An Assessment with Recommondations, Sandia Report SAND2010-1635, (2010).

Gauntt, R.O., 2010. Synthesis of VERCORS and Phebus data in severe accident codes and applications. Sandia National Laboratories Report (SAND2010-1633).

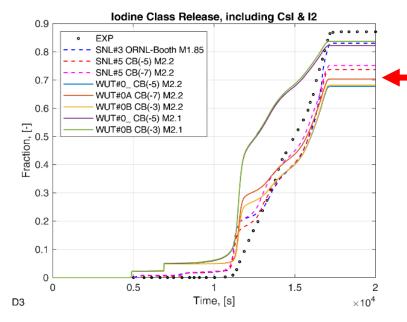
- Wang, J., Corradini, M., Troy, W.F., Yapei, H., Wenxi, Z., Guanghui, T., Qiu, S.S., 2015. Simulation of the PHEBUS FPT-1 experiment using MELCOR and exploration of the primary core degradation mechanism. Ann. Nucl. Energy 85, 193–204.
- Wang, J., Wang, C., Corradini, M.L., Haskin, T., Tian, W., Su, G., Qiu, S., 2016. PHEBUS FPT-1 simulation by using MELCOR and primary blockage model exploration. Nucl. Eng. Des. 307, 119–129. https://doi.org/10.1016/j.nucengdes.2016.06.034.

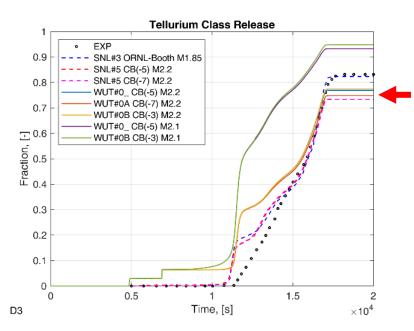

Humphries, LL, 2018a. Quicklook Overview of Model Changes in MELCOR 2.2: Rev 9496 to Rev 11932. Sandia Report (SAND2018-13524).

Humphries, LL, 2018b. Quicklook overview of model changes in MELCOR 2.2: Rev 6342 to Rev 9496. Sandia Report, (SAND2017-5599)

Birchley, J., 2004. Assessment of the MELCOR Code Against PHEBUS Experiment FPT-1 Performed in the Frame of ISP-46. 12th International Conference on Nuclear Engineering, 551–560. https://doi.org/10.1115/ICONE12-49267. ICONE12-49267.

XE, I2, CS, TE

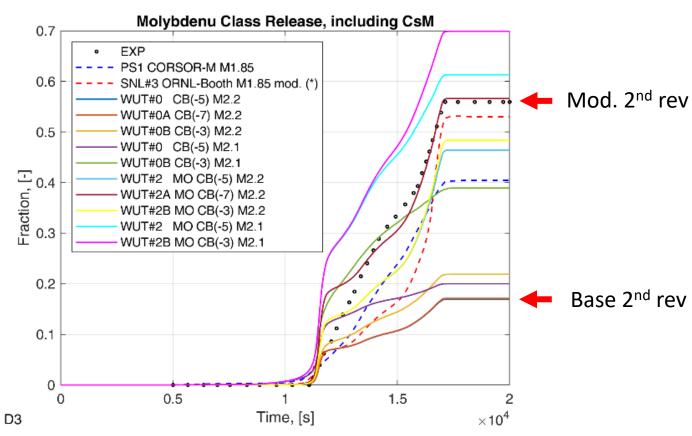

CB - CORSOR-Booth; CB(-5) 1st revision (default), CB(-3) basic version, CB(-7) second revision.



Cesium Class Release with CsOH & CsI & Cs2MoO4 0.9 EXP SNL#3 ORNL-Booth M1.85 0.8 • SNL#5 CB(-5) M2.2 . . SNL#5 CB(-7) M2.2 0.7 WUT#0_ CB(-5) M2.2 - WUT#0A CB(-7) M2.2 WUT#0B CB(-3) M2.2 0.6 WUT#0_ CB(-5) M2.1 Fraction, [-] WUT#0B CB(-3) M2.1 0.3 0.2 0.1 0 0.5 1.5 0 2 Time, [s] $\times 10^4$ D3

"Steps" due to initial gap inventory

Case	Code	Reference
SNL#1	M1.8.5	(Clément and Haste, 2003)
SNL#2	M2.1	(SNL, 2015)
SNL#3	M1.8.5	(Gauntt, 2010; SNL, 2010)
SNL#4	M2.1	(Wang et al., 2015;
		Wang et al., 2016)
SNL#5	M2.2.11932	(Humphries, 2018a,b)
	M2.2.9496	
	M2.1	
PS1	M1.8.5	(Birchley, 2004; Clément and Haste, 2003)


BA+RU+Sb

Barium Class Release Cadmium Class Release - Fuel Antimony (Sb) **Ruthenium Class Release** 0.045 0.7 0.018 EXP EXP EXP ۰ ۰ ۰ - - - SNL#3 ORNL-Booth mod. M1.85 _ _ _ - SNL#3 ORNL-Booth M1.85 --- SNL#3 ORNL M1.85 0.016 0.04 - WUT#0_ CB(-5) M2.2 - WUT#0A CB(-7) M2.2 --- SNL#5 CB(-5) M2.2 --- SNL#5 CB(-5) M2.2 0.6 SNL#5 CB(-7) M2.2 SNL#5 CB(-7) M2.2 0.035 0.014 - WUT#0B CB(-3) M2.2 - WUT#0_ CB(-5) M2.2 WUT#0_ CB(-5) M2.2 WUT#0A CB(-7) M2.2 - WUT#0_ CB(-5) M2.1 WUT#0A CB(-7) M2.2 0.5 WUT#0B CB(-3) M2.1 WUT#0B CB(-3) M2.2 WUT#0B CB(-3) M2.2 0.03 0.012 WUT#0_CB(-5) M2.1 - WUT#0_ CB(-5) M2.1 Fraction, [-] 800'0 Fraction, [-] Fraction, [-] - WUT#0B CB(-3) M2.1 WUT#0B CB(-3) M2.1 0.015 0.006 0.2 . . . 0.01 0.004 0.1 0.005 0.002 0 0 0 0.5 0.5 1.5 0.5 1.5 1.5 2 0 2 0 2 1 1 0 Time, [s] Time, [s] $imes 10^4$ Time, [s] $imes 10^4$ D3 ×10⁴ D3 D3

CB - CORSOR-Booth; CB(-5) 1st revision (default), CB(-3) basic version, CB(-7) second revision.

Case	Code	Reference
SNL#1	M1.8.5	(Clément and Haste, 2003)
SNL#2	M2.1	(SNL, 2015)
SNL#3	M1.8.5	(Gauntt, 2010; SNL, 2010)
SNL#4	M2.1	(Wang et al., 2015;
		Wang et al., 2016)
SNL#5	M2.2.11932	(Humphries, 2018a,b)
	M2.2.9496	
	M2.1	
PS1	M1.8.5	(Birchley, 2004; Clément and Haste, 2003)

Molybdenum

CB - CORSOR-Booth; CB(-5) 1st revision (default), CB(-3) basic version, CB(-7) second revision.

Gauntt, R.O., 2010. Synthesis of VERCORS and Phebus data in severe accident codes and applications. Sandia National Laboratories Report (SAND2010-1633).

Defining the Mo vapor pressure to be that of Cs_2MoO_4 produced significantly improved predictions of Mo release rate observed in the FPT-1 test, as will be shown in the next section of this report.

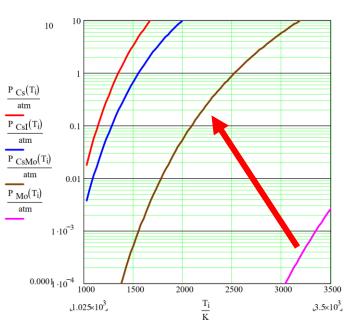
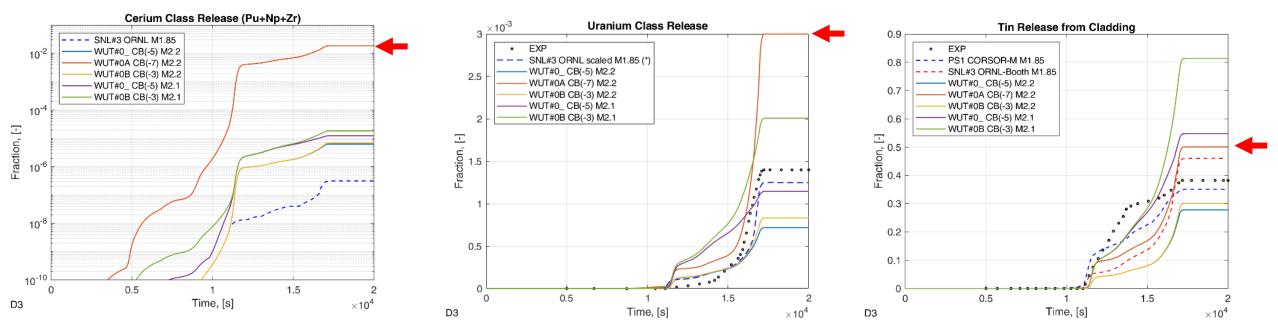
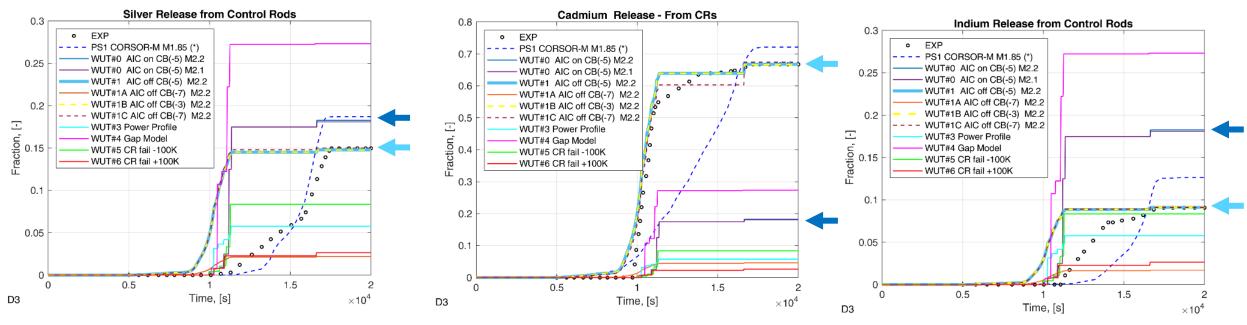



Figure 4. Vapor pressures of selected species.

Case	Code	Reference
SNL#1	M1.8.5	(Clément and Haste, 2003)
SNL#2	M2.1	(SNL, 2015)
SNL#3	M1.8.5	(Gauntt, 2010; SNL, 2010)
SNL#4	M2.1	(Wang et al., 2015;
		Wang et al., 2016)
SNL#5	M2.2.11932	(Humphries, 2018a,b)
	M2.2.9496	
	M2.1	
PS1	M1.8.5	(Birchley, 2004; Clément and Haste, 2003)

- Assuming all Cs-> CsMoO4, only about 20-30% MO class release (!)
- > 20.17 g of elemental Mo and 15.86 g of elemental Cs. can bind ~5.7g Mo
- Alternative modeling: MO Molybdenum (non-CSM) release parameters equal to CSM



CB - CORSOR-Booth; CB(-5) 1st revision (default), CB(-3) basic version, CB(-7) second revision.

Case	Code	Reference
SNL#1	M1.8.5	(Clément and Haste, 2003)
SNL#2	M2.1	(SNL, 2015)
SNL#3	M1.8.5	(Gauntt, 2010; SNL, 2010)
SNL#4	M2.1	(Wang et al., 2015;
		Wang et al., 2016)
SNL#5	M2.2.11932	(Humphries, 2018a,b)
	M2.2.9496	
	M2.1	
PS1	M1.8.5	(Birchley, 2004; Clément
		and Haste, 2003)

Warsaw University of Technology AIC

CB - CORSOR-Booth; CB(-5) 1st revision (default), CB(-3) basic version, CB(-7) second revision.

- Silver model with "discrete" release events
- sensitive e.g. CR failure temp. (base is 1623K) but also to others
- Manual: Code uses lowest vapour pressure and treats AIC as single material. For Ag model it leads to constant release fraction, e.g. 18% for Ag, Cd, In
- > Alternative approach based on (Birchley, 2004), CORSOR-M fitting with SC7105
- AIC as pseudo-FP with fit for CB 1st rev.- RN1_CSC card (SC7103 for CORSOR-Booth)
- Sensitive to revision of CB, 1st rev. fit does not work for 2nd rev.

Conclusions

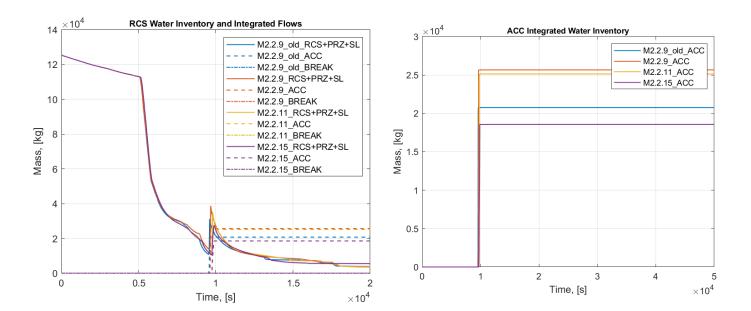
- ➢ For TH, H2 M2.2 and M2.1 results very similar, for RN siginificant differences
- > M2.2.11 better than M2.1, but for some RN underpredicts releases
- CORSOR-Booth Revision 2 (RN1_FP00 -7) recommended
- ➢ Be careful with AIC and Mo
- Molybdenum release to be studied
 - able to reproduce with non-physical assumptions
- Silver model to be studied AIC release
 - able to reproduce final release with pseudo-FP, kinetics not satisfactory
- ▶ Inputdeck to be refined with more recent M2.2.18 and eutectics model
- More detailed CVH, removal of non-typical chemical speciation
- More extensive uncertainty and sensitivity is planned

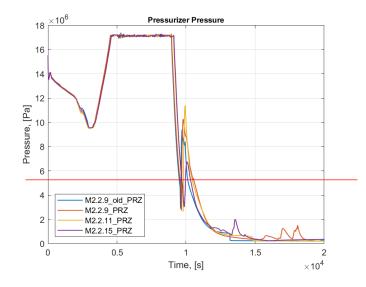
Warsaw University of Technology

References

- Barrachin, M., De Luze, O., Haste, T., Repetto, G., 2013. Annals of Nuclear Energy Late phase fuel degradation in the Phébus FP tests. Ann. Nucl. Energy. 61, 36–53. https://doi.org/10.1016/j.anucene.2013.03.041.
- Birchley, J., 2004. Assessment of the MELCOR Code Against PHEBUS Experiment FPT-1 Performed in the Frame of ISP-46. 12th International Conference on Nuclear Engineering, 551–560. https://doi.org/10.1115/ICONE12-49267. ICONE12-49267.
- Birchley, J., Güntay, S., 2013. Significance of Phébus-FP results for plant safety in Switzerland. Ann. Nucl. Energy. 61, 206–214. https://doi.org/10.1016/j. anucene.2013.02.032.
- Bratfisch, C., Koch, M.K., 2015. Preliminary Results of a Comparative Assessment of ATHLET-CD and MELCOR by Simulating the Experiment Phebus FPT1. NURETH-16 Conference, 2143–2156.

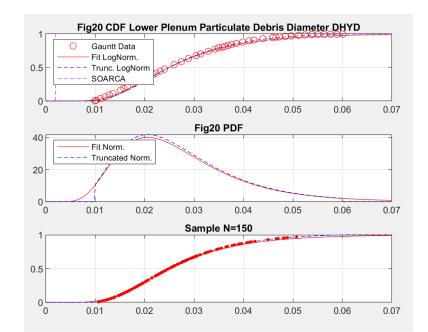
- Clément, B., Haste, T., 2003. Thematic Network for a Phebus FPT-1 International Standard Problem. OECD/NEA Comparison Report on International Standard Problem ISP-46 (PHEBUS FPT-1).
- Clément, B., Haste, T., Krausmann, E., Dickinson, S., Gyenes, G., Duspiva, J., De Rosa, F., Paci, S., Martin-Fuertes, F., Scholytssek, W., Allelein, H.J., Güntay, S., Arien, B., Marguet, S., Leskovar, M., Sartmadjiev, A., 2005. Thematic network for a Phebus FPT1 international standard problem (THENPHEBISP). Nucl. Eng. Des. 235, 347– 357. https://doi.org/10.1016/j.nucengdes.2004.08.057.
- Clément, B., Zeyen, R., 2013. The objectives of the Phébus FP experimental programme and main findings. Ann. Nucl. Energy. 61, 4–10. https://doi.org/ 10.1016/j.anucene.2013.03.037.
- De Luze, O., Haste, T., Barrachin, M., Repetto, G., 2013. Early phase fuel degradation in Phébus FP: Initiating phenomena of degradation in fuel bundle tests. Ann. Nucl. Energy. 61, 23–35. https://doi.org/10.1016/j.anucene. 2012.10.026.
- Dragunov, Y.G., Shchekoldin, V.V., Sorokin, Y.S., 2005. Calculation of the international standard problem ISP-46 using the RELAP/SCDAP and melcor computer codes. At. Energy 99 (6), 887–896. https://doi.org/10.1007/s10512-006-0035-2.
- Dubourg, R., Faure-Geors, H., Nicaise, G., Barrachin, M., 2005. Fission product release in the first two PHEBUS tests FPT0 and FPT1. Nucl. Eng. Des. 235, 2183–2208. https://doi.org/10.1016/j.nucengdes.2005.03.007.
- Forsythe, W.E., Smithsonian Physical Tables 9th ed Table 363, Evaporation of Metals, online version, (2003).
- Gauntt, R.O., 2010. Synthesis of VERCORS and Phebus data in severe accident codes and applications. Sandia National Laboratories Report (SAND2010-1633).
- Gauntt, R.O., Cole, R.K., Erickson, C.M., Gido, R.G., Gasser, R.D., Rodriguez, S.B., Young, M.F., Ashbaugh, S., Leonard, M., Hill, A., MELCOR Computer Code Manuals - Vol. 3: Demonstration Problems Version 1.8.5, NUREG/CR-6119, Vol. 3. Rev. 0, 2001.
- Grégoire, A.C., Haste, T., 2013. Material release from the bundle in Phébus FP. Ann. Nucl. Energy. 61, 63–74. https://doi.org/10.1016/j.anucene.2013.02.037.
- Herranz, L.E., Del Pra, C.L., Rincon, A.M., 2003. CIEMAT Contribution to the PHEBEN-2 Project: Interpretation of the PHEBUS-FPT1 Experiment. CIEMAT Report 1025.
- Humphries, L.L., 2018a. Quicklook Overview of Model Changes in MELCOR 2.2: Rev 9496 to Rev 11932. Sandia Report (SAND2018-13524).
- Humphries, L.L., 2018b. Quicklook overview of model changes in MELCOR 2.2: Rev 6342 to Rev 9496. Sandia Report, (SAND2017-5599)
- Humphries, LL, 2018c. MELCOR Code Development Status, European MELCOR User Group Meeting EMUG-2018, SAND2018-4219C.
- Humphries, L.L., 2018d https://www.psi.ch/sites/default/files/import/emug/ WS2018EN/WS_2018_03.pdf.
- Humphries, L.L., 2019. European MELCOR User Group Meeting EMUG-2019, MELCOR Workshop FP Release Modeling, (2019). https://www.psi.ch/sites/ default/files/2019-04/WS_2019_03.pdf.
- Ikeda, T., Terada, M., Karasawa, H., Nakahara, K., Yamagishi, M., 2003. Analysis of core degradation and fission products release in phebus FPT1 test at IRSN by detailed severe accidents analysis code, IMPACT/SAMPSON. J. Nucl. Sci. Technol. 40, 591–603. https://doi.org/10.1080/18811248.2003.9715396.
- IRSN, 2015. Nuclear Power Reactor Core Melt Accidents Current State of Knowledge. EDP Sciences, ISBN 978-2-7598-1835-8.
- Kim, H.C., Kim, S.B., Park, J.H., Cho, S.W., 2013. Analysis of Phébus FP experiments in Korea. Ann. Nucl. Energy. 61, 215–224. https://doi.org/10.1016/j. anucene.2013.04.018.
- Kontautas, A., Urbonavičius, E., 2009. Analysis of aerosol deposition in PHEBUS containment during FPT-1 experiment. Nucl. Eng. Des. 239, 1267–1274. https:// doi.org/10.1016/j.nucengdes.2009.03.012.
- Leskovar, M., 2002. Simulation of the Phebus FPT1 Experiment with MELCOR 1.8.5. Int. Conf. Nucl. Energy New Eur. 2002, 1–8.


- Leskovar, M., 2003. Influence of Heat Transfer Modelling on Phebus FPT1 Experiment Simulation Results. International Conference Nuclear Energy for New Europe 2003 - NENE2003, 1–8. 319.
- Lide, D.R., 2003. CRC Handbook of Chemistry and Physics, 84th Edition, Section 4. Vapor Pressure of the Metallic Elements online version, Properties of the Elements and Inorganic Compounds.
- March, P., Simondi-Teisseire, B., 2013. Overview of the facility and experiments performed in Phébus FP. Ann. Nucl. Energy. 61, 11–22. https://doi.org/10.1016/j.anucene.2013.03.040.
- Maurice, A., Beuzet, E., Maliverney, B., 2013. Annals of Nuclear Energy Use of Phébus results for EDF severe accidents studies. Ann. Nucl. Energy. 61, 199–205. https://doi.org/10.1016/j.anucene.2013.02.038.
- Mazgaj, P., Darnowski, P., Niewiński, G., 2019. Uncertainty Analysis of the Hydrogen Production in the PHEBUS FPT-1, in: NENE-2019, 28th Int. Conf. Nucl. Energy New Eur., 1–8
- Mazzini, G., 2012. Severe Accident Phenomenology Analyses and Fission Gas Release for Advanced Nuclear Reactors. PhD Thesis University of Pisa.
- U.S. NRC, 1995. Accident Source Terms for Light-Water Nuclear Power Plants, NUREG-1465.
- Phillips, J., Example of Modeling Methodologies Applied in SOARCA EMUG 2017, SAND2017-3373C, (2017).
- Park, J.H., Kim, D.H., Kim, H.D., 2006. Summary of the results from the PHEBUS FPT-1 test for a severe accident and the lessons learned with MELCOR. Nucl. Eng. Tech. 38 (6).
- Powers, D.A., Lee, R.Y., Salay, M.A., 2013. Annals of nuclear energy applications of results from the Phébus-FP programme in the US regulatory process. Ann. Nucl. Energy. 61, 225–229. https://doi.org/10.1016/j.anucene.2013.03.025.
- Raimond, E., Clément, B., Denis, J., Guigueno, Y., Vola, D., 2013. Use of Phébus FP and other FP programs for atmospheric radioactive release assessment in case of a severe accident in a PWR (deterministic and probabilistic approaches developed at IRSN). Ann. Nucl. Energy. 61, 190–198. https://doi.org/10.1016/j. anucene.2013.05.035.
- Šadek, S., Špalj, S., Debrecin, N., 2003. ISP-46 analysis with RELAP5 / SCDAPSIM Computer Code. Int. Conf. – Nucl. Energy New Eur. Proc., 1–13
- Schwarz, C., 2013. Foreword Final seminar phebus project. Ann. Nucl. Energy. 61, 1–3. https://doi.org/10.1016/j.physrep.2016.03.001.
- Sehgal, B.R., 2012. Nuclear Safety in Light Water Reactors Severe Accident Phenomeneology. Academic Press Elsevier.
- SNL, 2015. MELCOR 2.1 Computer Code Manual Volume 3 Code Assessment, 2015.
- SNL, 2014. MELCOR Best Practices as Applied in the State-of-the-Art Reactor Consequence Analyses (SOARCA) Project, U.S. NC Report NUREG/CR-7008, (2014).
- SNL, 2017a. MELCOR 2.2 Computer Code Manual Volume 1 User Guide, 2017.
- SNL, 2017b. Melcor, 2.2 Computer Code Manuals Reference Manual Vol. 2 2017
- SNL, 2010. MELCOR 1.8.5 Modeling Aspects of Fission Product Release, Transport and Deposition. -An Assessment with Recommondations, Sandia Report SAND2010-1635, (2010).
- Vienna Technical University, 2019. Vapor Pressure Calculator https://www. iap.tuwien.ac.at/www/surface/vapor_pressure.
- U.S. NRC, 2018. State-of-the-Art Reactor Consequence Analyses Project -Uncertainty Analysis of the Unmitigated Long-Term Station Blackout of the Peach Bottom Atomic. NRC Report (NUREG/CR-7155).
- Wang, J., Corradini, M., Troy, W.F., Yapei, H., Wenxi, Z., Guanghui, T., Qiu, S.S., 2015. Simulation of the PHEBUS FPT-1 experiment using MELCOR and exploration of the primary core degradation mechanism. Ann. Nucl. Energy 85, 193–204.
- Wang, J., Wang, C., Corradini, M.L., Haskin, T., Tian, W., Su, G., Qiu, S., 2016. PHEBUS FPT-1 simulation by using MELCOR and primary blockage model exploration. Nucl. Eng. Des. 307, 119–129. https://doi.org/10.1016/j.nucengdes.2016.06.034.

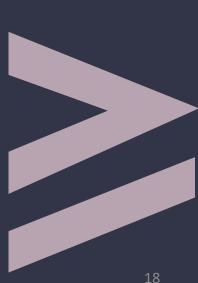

Possible code issues

- M2.2.9-2.2.15 with PWR plant model and ACC model
- SBO + some LOCA
- > ACC activate, but in short time pressure increase again and injection is deactivated.
- Pressure later drops but ACC does not re-activate
- ➢ ESF-ACC-PRS and ESF-ACC-REM indicate water presence and proper pressure.
- P_activate ~ 4.9 Mpa, water ~70 m3

Other:


For FPT-1 supporting plate made of zircaloy, the material was changed to stainless steel as MELCOR was not able to support the bundle

MelSUA Matlab


- Matlab tools to perform uncertanity/sensitivity analysis
- MELCOR Input Variable Functionality
- PowerShell running
- MATLAB: sampling+distribution+preprocessing+postprocessing
- post-processing with EDF file or APTPLOT scripts/files processing
- Early stage of development, basic version works
- ➢ Hopefully next EMUG I will present it in more details.
- ➢ GitLab repository:
- <u>https://gitlab.com/darczu/x-core/-/tree/master/Modules/MLC_package</u>

Warsaw University of Technology

Thank you for your attention!

piotr.darnowski@pw.edu.pl

