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• Develop a MELCOR model of PWR for SAMG V&V.

• Preliminary works involve the sensitivity study of MELCOR nodalization, mainly 
CVH and COR nodalization

• Various COR nodalization and CVH nodal schemes of core are concerned in the 
modelling.
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Model description

• Nordic PWR with 3 identical loops, with the full capacity of 3152MWt.

• Each loop has hot leg, cold leg, RCP, and a steam generator with 1040MWt capacity.

• Pressurizer connects with the right loop, maintaining the RPV pressure at 15.8 MPa.

Safety systems:

Safety injection (HHIS, LHIS)

Accumulators

Safety relief valves

PORVs

Auxiliary feed water systems 
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COR nodal scheme

• 43 levels：
 1~16 levels: Lower Head

 17~43 levels: Active Core

• 10 rings (157 assemblies):
 Active core: 1~7rings.

 Lower head: 1~10rings. 0.0 0.4 0.8 1.2 1.6 2.0
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• Radial power distribution

• Axial power factor
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Modelling of containment

Containment geometry:

Inner diameter: 35.4m;

Total height: ~62m;

Wall thickness: 1.1m;

Design pressure: 6.8 bar;

Gross internal volume: ~50000m3

MVSS:

Levitation of Scrubber: 10.04m;

Volume of scrubber: 332 m3;

Activation criterion: 5.14 bar;

Containment Spray:

Location: top of containment dome;

Spray partition coefficients: 5000.0;
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Refinement of core CVH node

1 Control volume

• Covers the core support plate and 

core top plate.

• Contains all COR cells of active 

core.

• No cross flow to bypass.

• Refine on radial direction.

• Each CV refers to 1 COR ring. 

• No cross flow between core and BP.

• Refine along radial and axial direction.

• Each CV contains 4 COR cells.

• Each CV connects with the 

neighboring CVs.

• No cross flow between core and BP.

7 Control volumes 49 Control volumes

• The general modelling of COR nodalization and CVH nodal scheme for active core are coarse 

COR mesh and single control volume.

• The sensitivity study of CVH nodal scheme is necessary to develop a stable modelling for 

further research.

9



Steady-state simulation

Parameters
1 control volume 

(reference case)
7 control volumes 49 control volumes

Total thermal power (MWt) 3152 3152 3152

RPV pressure (MPa) 15.87 15.87 15.87

Core inlet temperature (K) 561.29 561.31 561.30

Core outlet temperature (K) 596.35 596.36 596.35

Primary flow rate (kg/s) (left loop) 10591.5 10588.7 10592.9

Primary flow rate (kg/s) (right loop) 5293.6 5292.3 5292.7

Secondary side pressure (MPa) 6.052 6.052 6.052

Secondary flow rate (kg/s) (left loop) 3151.0 3150.5 3148.4

Secondary flow rate (kg/s) (right loop) 1581.9 1584.5 1584.5

• The steady-state simulations are performed before the transients in each case.

• To calibrate the refined nodal schemes, the steady-state simulations are performed with full thermal 

power and full RCP capacity.

• The thermal-hydraulic parameters are compared, and the differences are below 0.5%.
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Transient simulation matrix

LOCA SBO

Reference case (1 control volume) LOCA-1CV SBO-1CV

7 control volumes LOCA-7CV SBO-7CV

49 control volumes LOCA-49CV SBO-49CV

• Scenario: (1) unmitigated SBO and (2) unmitigated LBLOCA

Loss of AC power at 0.0 second, Reactor scrams in 1.0 second.

RCP and turbine coast down in 60 second. 

Safety injection and AFW are unavailable. 

Passive safety system such as accumulator injection, PARs are available 

during transients.
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Thermal hydraulic behaviors in RPV (SBO).
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Accumulator injection

• RPV maintains high pressure until the corium melts through RPV lower head.

• The variations of RPV pressure present little difference between cases in first 3 hours.

• Accumulator injection leads to the spikes of RPV water level. 

13

Events

Reference

(1 Control 

Volume)

7 Control 

Volumes

49 Control 

Volumes

Reactor SCRAM 0 s 0 0 s

TAF reached 5962 s 6053 s 5921 s

Cladding failure 7354 s 8797 s 7812 s

BAF reached 7703 s 7855 s 8101 s

RPV boil off 10815 s 15545 s 11975 s

RPV failure 14759 s 30069 s 13822 s

ACC activated 14910 s 24450 s 13965 s

ACC depleted 15095 s 24660 s 14140 s

MVSS activated 25956 s - 24606 s

• RPV pressure • Timing of events

Time (s)



Flow distribution in active core (SBO).

LOCA-7CV (BAF reached) LOCA-49CV (BAF reached)

• In 1CV case, flow distribution in active core is uniform with flow area of core channel.

• In 7CV case, the intermediate rings present higher flow rates, the outer rings present the reverse 

flows.

• In 49CV case, distinct configurations of natural circulation in RPV are presented. 
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Area-averaged mass flow rates (𝑘𝑔/𝑚2𝑠) Area-averaged mass flow rates (𝑘𝑔/𝑚2𝑠)
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Cladding failure

RPV water level reaches TAF

Cladding temperature (SBO).

SBO-1CV (reference) SBO-7CV

SBO-49CV

• Peak cladding temperature

• The variations of cladding temperature perform 

differently with LOCAs.

• The 7CV case predicts the slower increasing of peak 

cladding temperature.
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Core damage states (SBO).
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• The 7CV case and 49CV case predict later cladding failure following the slower increasing of cladding 

temperature.

• In 7CV case, retarded core degradation is predicted.

• In 49CV case, the earlier core degradation is predicted comparing to reference case. 
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Hydrogen generation (SBO).
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• Cumulative hydrogen generation (kg) • Increments of hydrogen mass in COR cell (kg)

The Increments of hydrogen mass are calculated from the final 

difference of  hydrogen mass generated by cladding oxidation in 

each COR cell.

Warm color represents the increment of hydrogen production; cold 

color represents the reduction of hydrogen production.

• More hydrogen production in SBO-49CV 

case.

• The natural circulation in SBO-7CV case 

results in the lower cladding temperature, 

leading to the reduction of hydrogen 

generation in the COR cell of outer rings.

• Steam supply by cross flows leads to more 

hydrogen generation in SBO-49CV case.
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Fission products released from fuel (SBO).
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• Noble gases (XE class)
• Alkali metals (CS class) and Cesium 

iodide (CSI class)

• Similar with LOCAs, the CVH nodalization presents little effect on the release of radioactive fission 

products from the active core.

• Almost 99% initial inventories of noble gases and dissoluble fission products are released from fuel.

• The release of fission products is more likely related to core relocation.
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Concluding remarks

• The 49 CV nodal scheme in active core tends to predict the earlier cladding failure, faster 

core relocation, earlier RPV failure and more hydrogen generation from active core. (more 

conservative for severe accident simulations.) 

• The 7CV nodal scheme perform differentially in LOCA and SBO case. In SBO case, the 

7CV nodal scheme tend to predict the later core relocation and less hydrogen production. 

(different in LBLOCA case) ~multiple flow paths between CVs?

• The final released masses of fission products present little relevance to CVH nodal 

scheme.
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