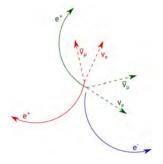


JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ Firmware and Synchronisation of the First Layer in the Mu3e DAQ System Martin Müller, DPG Spring Meeting 2021

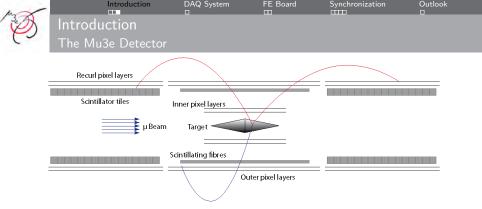
1.~~	Intro	oduction	DAQ System	FE Board	Synchronization	Outlook
3D	Mu3e					
es						



Mu3e

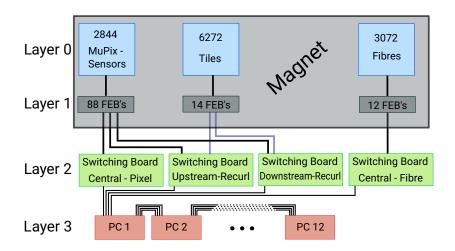
- search for the lepton flavour violating decay $\mu^+ \to e^+ e^- e^+$
- predicted branching ratio of 10⁻⁵⁴ (not observable)
- observation of $\mu^+ \rightarrow e^+ e^- e^+$ would be a clear sign for new Physics

1.~~	Introduction	DAQ System	FE Board	Synchronization	Outlook
3D	Introduction				
C	Background processes				

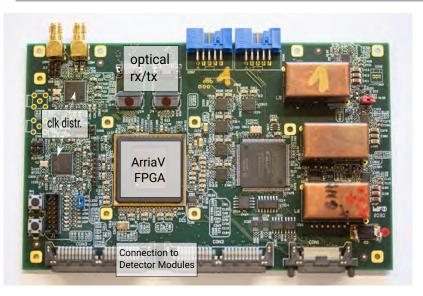

Background processes:

$$\bullet \mu^+ \to \mathrm{e}^+ \nu_\mathrm{e} \overline{\nu}_\mu \mathrm{e}^+ \mathrm{e}^-$$

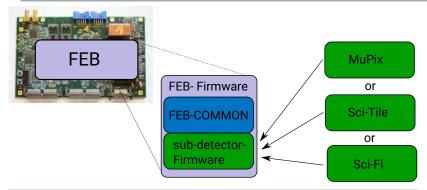
combinatorial


For signal events: $\sum ec{p} = 0, \ \sum E = m_\mu, \ \Delta t = 0$, same vertex

Low electron momenta \rightarrow multiple scattering \rightarrow material budget



- 4 layers of pixel sensors ($\sigma t = 10 \text{ ns}$)
- scintillating fibres ($\sigma t =$ 500 ps) & tiles ($\sigma t =$ 70 ps) to increase timing precision
- $\blacksquare \rightarrow$ need time synchronization (clock and reset) to this precision
- expected data rate of up to 80 GBit/s

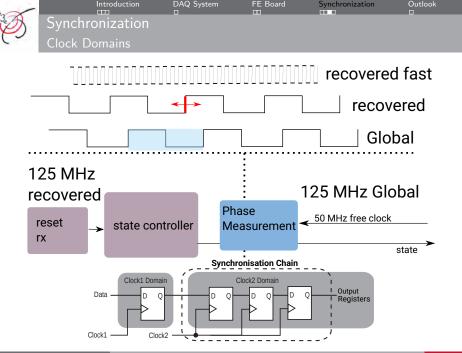

1.~~	Introduction	DAQ System	FE Board	Synchronization	Outlook □	
B	DAQ System					
(5	Overview					

1.~~		Introduction	DAQ System	FE Board	Synchronization	Outlook
3D	FE Boa	rd				
(5	FE Boar	d				

1.~~	Introduction	DAQ System	FE Board	Synchronization	Outlook □	
30	FE Board					
()	Firmware concept					

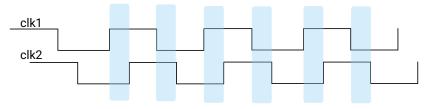
$\mathsf{Common} \leftrightarrow \mathsf{sub-detector} \mathsf{Interface}$

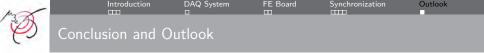
- Detector data
- access to slowcontrol system
- run state signals
- confirmation of run state changes


1.~~	Introduction	DAQ System	FE Board	Synchronization	Outlook □
3-D	Synchronization				
63	Reset idea				

- I run starts need to happen in the same clock cycle for all components in the detector
- 2 \rightarrow time window of 1 global clock cycle (125 MHz) where the reset has to arrive
- $\mathbf{3}$ \rightarrow re-synchronise reset to global clock at detector-asic level
- 4 ightarrow reset with precision of clock distribution

\rightarrow Additional optical Reset line.


1.~~	Introduction	DAQ System	FE Board	Synchronization	Outlook
30	Synchronization				
65	Clock and Reset Box				


Martin Müller

1.~~	Introduction	DAQ System	FE Board	Synchronization	Outlook □
32	Synchronization				
C	Phase measurements				

- using independent, free running clock with frequency f
- measurement time T
- count clk1 != clk2 events on rising edge of independent clock
- \rightarrow phase difference = $\frac{counts}{T \cdot f} \cdot \pi$

We can use this measurement to check if the reset is synchronized even without physical access to the board

- system was operated for the first time with all sub-detectors at DESY last Year.
- Preparation for the first test run with a pixel vertex detector and timing detectors inside the Mu3e Magnet at PSI is ongoing

