
 

 

Composite Indicator Analysis and 

Optimization (CIAO) Tool 

Codebook for practitioners, v.2 

v.2: Revision January 2021 

(v.1: November 2018) 
 

David Lindén1,2 

Dr. Marco Cinelli2,3,* 

Dr. Matteo Spada4,2 

Dr. William Becker5 

Dr. Peter Burgherr 4,2  
 

1Department of Sustainable Development, Environmental Science and Engineering, KTH Royal 

Institute of Technology, Stockholm, Sweden 

2Future Resilient Systems (FRS), Swiss Federal Institute of Technology (ETH) Zürich, Singapore-ETH 

Centre (SEC), Singapore 

3Institute of Computing Science, Poznań University of Technology, Poznań, Poland 

4Technology Assessment Group, Laboratory for Energy Systems Analysis, Paul Scherrer Institute 

(PSI), Villigen PSI, Switzerland 

5European Commission, Joint Research Centre (JRC), Ispra VA, Italy 

*Corresponding author. Email: marco.cinelli@put.poznan.pl   

Cite as:  Lindén, D., Cinelli, M., Spada, M., Becker, W., Burgherr, P. 2021. Composite 

Indicator Analysis and Optimization (CIAO) Tool, v.2. 

http://dx.doi.org/10.13140/RG.2.2.14408.75520  

mailto:marco.cinelli@put.poznan.pl
http://dx.doi.org/10.13140/RG.2.2.14408.75520


 1 

Program description 

The Composite Indicator Analysis and Optimization (CIAO) tool is an expansion of the automated 

menu-version of the Matlab toolbox presented by Becker (2017) for the advanced assessment of 

Composite Indicators (CIs). It was developed in connection to assessing the implicit weights of a novel 

index – the Electricity Supply Resilience Index (ESRI), developed within the Future Resilient Systems 

(FRS) program, at the Singapore-ETH Centre (SEC); see Gasser et al. (2017) and Lindén (2018) for 

further details. The scripts for the CIAO tool are written in MathWorks’s (http://www.mathworks.com) 

commercial software language, Matlab 2017 version1, and contain five main steps: (1) a correlation 

analysis, (2) a weighting and aggregation of the indicators, (3) an estimation of the influence of each 

indicator (Si), (4) a decomposition of such influence, and (5) an optimization of the indicators’ weights.  

Thus, the CIAO tool allows users to: 

1. Perform a detailed examination of the linear and nonlinear relationships among (i) the set of 

indicators and (ii) between the indicators and the Composite Indicator (CI).  

2. Assess how the indicators are “balanced” within the CI, i.e. to what extent the influence of 

each indicator matches its assigned weight.  

3. Tune the weights of the indicators so that the influence of each one matches pre-defined 

importance values.  

Details on the methodology are presented in Becker et al. (2017) and Lindén (2018).    

Please NOTE that two additional commercial toolboxes are required to run the full analysis: The 

Statistics and Machine Learning Toolbox2, and the Optimization Toolbox3. Also, this package uses one 

freely available script from the MATLAB Central/File Exchange: Random Vectors with Fixed Sum4. 

For this analysis, it is used for generating random starting points for the weight-optimization.  

This codebook presents the structure of the package to run the CIAO tool and provides details on each 

script. 

Revision January 2021 (v.2): 

Adaptations have been made to the CIAO code and the codebook to include the application of the 

modules to perform the analysis of information transfer. This includes the addition of a second objective 

for the weight optimization, i.e., maximize information transfer. The user can now choose between two 

objectives: (i) Adjust the contribution of each indicator in relation to its assigned weight, or (ii) 

Maximize the information transferred from the set of indicators to the CI.  

 

 
1 Please NOTE that the current CIAO code was developed with Matlab 2017 version. It is thus recommended 

not to run the CIAO code with another version of Matlab as this might result in loss of functionality due to 

possible changes/updates of functions and underlying math libraries (implemented by MathWorks between 

Matlab version updates), which the authors cannot take responsibility for.  
2 URL: https://se.mathworks.com/products/statistics.html 
3 URL: https://se.mathworks.com/products/optimization.html  
4 Author: Roger Stafford, 2006 - URL: https://se.mathworks.com/matlabcentral/fileexchange/9700-random-

vectors-with-fixed-sum 

http://www.mathworks.com/
https://se.mathworks.com/products/statistics.html
https://se.mathworks.com/products/optimization.html
https://se.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://se.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum


 2 

Scripts 

A flowchart of the CIAO tool is shown in Fig. 1. The scripts run in the tool are described in the following 

sections.  

 

Fig. 1. Flow of the menu-version for implicit weights analysis and optimization in CIs; color coded accordingly: input (blue), 

outputs (orange), functions (grey), menu choices (green). 

MENU_version.m 

MENU_version.m is the main script of this package. By running this script, a user-friendly GUI 

menu is initiated. Although most sub-function settings are automated, the GUI allows the user 

to “click” through the analysis with a certain amount of freedom to choose different settings 

(see the green menu choices in Fig. 1). For an explanation on what the script needs to run, see 

“Input” section at page 9. Default setting loads test_data.m, which is a 58-by-4 matrix (see Input 

section). Then, the main script automatically generates a correlation matrix (with Pearson 

correlation coefficients) and its corresponding p-values for the matrix of indicators (Fig. 2). 



 3 

  

Fig. 2. Output from the correlation analysis, which is obtained automatically by running the script. Note that default setting is 

to name variables X_i, where i=1,2,…,n. 

Subsequently, the user is provided with the choice of what weights to apply to the indicators 

(either equal or custom) and also asked to choose an aggregation function (either arithmetic 

“ArAv”, geometric “GeAv”, or harmonic average “HarAv”); see Fig. 3. NOTE: The showcased 

results are obtained using the default data (test_data.m), aggregated with arithmetic average and 

equal weights. 

  

Fig. 3. The GUI menu for the selection of weights (left) and the selection of aggregation function (right). 

CI_Si_decomposer.m 

CI_Si_decomposer.m is a function called by the main script MENU_version.m. It uses the X 

and y data to provide the first order sensitivity indices (i.e. influence of each indicator, Si), plus 

their decomposed values into correlated and uncorrelated contributions. The function runs 

accordingly:  

function outSi = CI_Si_decomposer(X, y, plott) 

The input parameters are the matrix of indicators (X) and the vector (y), which is the aggregated 

CI. Additionally, the choice of plotting the regression models (plott=1) or not (plott=0) can be 

made; plott=1 gives scatter plots with splines and linear regression fits (Fig. 4).  



 4 

 

Fig. 4. Output from the regression analysis. Plots showing linear (cyan) and the nonlinear splines (red) regression models. 

By running this function, three steps are performed: 

First, the function calls two sub-functions for the estimation of the first order sensitivity indices 

(Si): 

function [R2, par] = lin_SA(y, X, plott) 

this calculates R2 (R2), i.e. the linear estimates of Si, for the X and y data. The linear regression 

parameters (e.g. the predicted outcome variables) are stored in a structured array (par) with two 

fields, including: the predicted outcome values of the regression model (par.yhats), and X-

values sorted in ascending order (par.xsrts). Also, 

function [S_E, S_V, par] = spline_SA(y, X, plott, p, knots) 

this uses the X and y data to calculate the Si, using nonlinear (splines) regression. The 

CI_Si_decomposer.m uses a cubic order of the spline (p=3) and a row vector of knot numbers 

to try (knots = [1 2 3 4 5]) as standard, but this can be altered if desired. The outputs are a 

column vector of first order sensitivity indices estimated via E(y|Xi) (S_E) or V(y|Xi) (S_V). 

The splines regression parameters are stored in a structured array (par) with eight fields, 

including: order of spline (par.p), trial knots (par.trialknots), the predicted outcome and 

variance values of the regression model (par.yhats & par.varhats), number of knots 

(par.knotN), derivatives (par.derivs & par.derivs_xx), and X-values sorted in ascending order 

(par.xsrts). 

Second, a multivariate regression of Xi on X-i (representing the matrix X without the ith 

column, i.e. indicator) is carried out, using either a standard linear model, according to the 

method of Xu and Gertner (2008), or MATLAB’s inbuilt Gaussian process regression model 



 5 

(fitrgp)5 for a nonlinear model. The user is free to choose between these two models, as shown 

in Fig. 5.  

 

Fig. 5. The GUI for the selection of model to perform the multivariate regression. 

The results from the multivariate regression are then used to obtain a residual (i.e. what is “left” 

after correlation is removed). Subsequently, a nonlinear regression (splines) of y on the residuals 

of previous regression is performed to obtain the uncorrelated part (SU). Finally, the correlated 

part (SC) is obtained simply by subtracting the uncorrelated from the Si, i.e. SC=Si-SU. These 

are the decomposed values, which are then plotted in a bar chart (Fig. 6). 

 

Fig. 6. The decomposed Si values; full bars represent the Si values estimated in the previous regression analysis. The 

uncorrelated parts (blue), estimated with nonlinear multivariate regression, and the resulting correlated parts, from either the 

linear (green) and nonlinear (yellow) regression results. 

After these steps have been completed, the output of the CI_Si_decomposer.m is, beside the two 

plots, a structure array (outSi) with 3 fields containing: (1) linear regression results (outSi.lin), 

(2) spline regression results (outSi.spline), and (3) a summarized table of both estimates and the 

decomposed values (outSi.results), shown in Fig. 7. 

 
5 NOTE: for this nonlinear dependence modelling, the Statistics and Machine Learning toolbox is required. If this 

is not detected, linear dependence modelling will be used.  



 6 

 

Fig. 7. Output from the estimation and decomposition of influence. These are the values used for the bar chart in Fig. 6 

above. S_L and S_Sp are the full bar values, i.e. the influence (Si), estimated with linear or nonlinear (splines) regression. 

The SU and SC are the uncorrelated and correlated parts, respectively. 

CIoptimiser.m 

CIoptimiser.m is a self-contained function which optimizes CI weights, using nonlinear 

regression (penalized splines). It requires three choices (Fig. 8) prior to initiating the 

optimization algorithm6.  
  

      

Fig. 8. The GUI for the choice of objective (left), optimization constraint (middle) and solver (right). 

First, the objective of the optimization must be specified. There are two choices: (i) Adjust the 

contribution of each indicator in relation to its assigned weight, or (ii) Maximize the information 

transferred from the set of indicators to the CI. Second, a constraint on the weights must be 

chosen. The weights are either only constrained to sum to one (meaning they can take on 

negative values), OR they must sum to one but also be positive. Third, the choice is between 

two different types of solver, either a local or a global one. Although both are based on the same 

search method, the Nelder-Mead simplex, they differ in two aspects: (a) staring point(s) and (b) 

number of runs. The local solver uses the input weights as starting point, running the search 

algorithm once. Conversely, the global solver (MultiStart7) offers an option to specify the 

quantity of randomly generated starting points, re-running the search method for each one. This 

might be desired if the local solver fails to converge to an optimal solution8. However, for most 

cases, the local solver is sufficient and is thus recommended. After these choices are made, the 

function runs accordingly:  

 
6 NOTE: for constrained optimization, Optimization Toolbox is required. If this is not detected, will automatically 

revert to unconstrained.  
7 For a more detailed overview on this solver, see https://se.mathworks.com/help/gads/multistart.html  
8 For more info on this topic, see https://se.mathworks.com/help/optim/ug/local-vs-global-optima.html 

https://se.mathworks.com/help/gads/multistart.html
https://se.mathworks.com/help/optim/ug/local-vs-global-optima.html


 7 

function outOpt = CIoptimiser(X, Sd, objective, constr, CIeq) 

this function uses the X data to find the optimal set of weights according to a predefined “target” 

(Sd), determined by the objective (objective) and a constraint defined by (constr); constr=1 

represents the sum-to-one constraint, and constr=2 represents the sum-to-one constraint 

together with a positive value constraint. CIeq is the aggregation form (e.g. ‘ArAv’ for 

arithmetic) of the CI and it is set automatically by the MENU_version.m script according to 

which function was chosen for aggregation at the beginning (Fig. 9). The output of this function 

is a structured array (outOpt) with six fields containing, for example: the optimized weights 

(outOpt.wopt), Si at optimized weights (outOpt.Sopt) and some other solver-specific 

parameters.   

 

Fig. 9. Output from weight-optimization, using the sum to one AND positive constraint. As seen from the stopping criterion, 

a local solver is used. Judging by the results, it successfully finds an optimal set of weights that achieves an equal Si. 

- After all the steps are carried out, the main script MENU_version.m automatically compiles two 

summarizing tables (Fig. 10), which showcase the discrepancy between initial Si values and the 

target values (weights), and optimized Si values and the target values (weights). For this 

purpose, both sets of Si values are first normalized to render them comparable to the weights 

(summing to one). Note that this is only performed if “Adjust” objective is selected. 

 

Fig. 10. Summarizing tables of the results, comparing both the Si values at initial weights (above) and Si values at optimized 

weights (below) with reference to the target values (i.e. weights), in this case equal. 



 8 

Input 

A matrix (X), with N-alternatives (rows) by k-variables (columns). Default setting loads test_data.m, 

which is a 58-by-4 matrix (58 alternatives, 4 indicators) containing data that is normalized to a 0-100 

scale. To add your own dataset from, for example, an excel spreadsheet, simply use MATLAB’s inbuilt 

import tool9. Follow the checklist below to confirm that data is imported correctly (format, name, etc.). 

Checklist: 

1) First, create/prepare an excel-file (.xlsx) with the input data. NOTE: The data must be 

normalized10 prior to importing it. Example of a correct dataset can be found here.  

2) When importing the data, set the “output type” to be a numeric matrix (Fig. 11). 

 

Fig. 11. Screenshot representing the choice of output types. Set to Numeric Matrix. 

3) Be sure to assign your imported matrix to the global variable “X”, as this is fundamental for 

running the scripts. This is easily done by right-clicking on the matrix name in the workspace 

and selecting “Rename” (Fig. 12). 

4) Save your imported X-matrix as a .mat file in the same folder as the scripts (Fig. 12). 

 
9 For more info on the import tool in MATLAB see for example, 

https://se.mathworks.com/help/matlab/ref/importtool-app.html  
10 Examples of appropriate normalization methods, (a) Min-Max (b) Target (c) Ranking. Avoid negative values. 

If standardization is used, it requires that all values are brought to a positive scale. This can be done by, for 

example, finding the largest negative value in the data set and adding its absolute form to all values (e.g. X + 

abs(min(X))). This ensures that the minimum value is zero. For more details on normalization methods, see OECD 

(2008).    

https://www.dropbox.com/s/v6kdk61qdfp456v/test_data.xlsx?dl=0
https://se.mathworks.com/help/matlab/ref/importtool-app.html


 9 

   

Fig. 12. Screenshots representing the renaming of the imported matrix (left). Then, when renamed/assigned to the global 

variable X (right), select Save As… and save as a .mat file. 

5) In the MENU_version.m script, simply replace the “load test_data” (Fig. 13) with the name that 

your data is saved as.  

 

Fig. 13. The line in the script MENU_version.m that loads the X matrix for analysis. 

6) Now, everything should be set for running the analysis on your data. 

Output 

Pearson correlations, linear and nonlinear regression estimates (Si), decomposed values (SU and SC), 

optimized Si and weights (wopt), and discrepancy tables. 

 

Acknowledgments 

The research was conducted at the Future Resilient Systems (FRS) at the Singapore-ETH Centre (SEC), 

which was established collaboratively between ETH Zürich and Singapore’s National Research 

Foundation (FI 370074011) under its Campus for Research Excellence And Technological Enterprise 

(CREATE) program. This study has also been supported by the Technology Assessment Group of the 

Laboratory for Energy Systems Analysis at the Paul Scherrer Institute (PSI) in Switzerland. Marco 

Cinelli acknowledges that this project has received funding from the European Union’s Horizon 2020 

research and innovation program under the Marie Skłodowska-Curie grant agreement No 743553. 



 0 

References 

Becker, W. 2017. Matlab toolbox for analysis and adjustment of weights in composite 

indicators. European Commission, Joint Research Centre, 

http://dx.doi.org/10.13140/RG.2.2.27035.46883.  

Becker, W., M. Saisana, P. Paruolo, and I. Vandecasteele. 2017. Weights and importance in 

composite indicators: Closing the gap. Ecological Indicators 80:12-22. 

Gasser, P., P. Lustenberger, T. Sun, W. Kim, M. Spada, P. Burgherr, S. Hirschberg, and B. 

Stojadinović. 2017. Security of electricity supply indicators in a resilience context. 

Pages 1015-1022  European Safety and Reliability Conference. 2017 Taylor & Francis 

Group, London, ISBN 978-1-138-62937-0. 

Lindén, D. 2018. Exploration of implicit weights in composite indicators: the case of resilience 

assessment of countries’ electricity supply. KTH Royal Institute of Technology, KTH 

DIVA. 

OECD. 2008. Handbook on constructing composite indicators: Methodology and user guide. 

OECD publishing, Paris. 

Xu, C., and G. Z. Gertner. 2008. Uncertainty and sensitivity analysis for models with correlated 

parameters. Reliability Engineering & System Safety 93:1563-1573. 

 


