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I. INTRODUCTION

With the imminent relaxation of socio-economic re-
strictions, it becomes vital to assess its effect on the
prevalence of acute infections within the population, as
rapidly as possible. Currently available monitoring in-
struments for the COVID-19 pandemic have an inherent
time delay of about 14 days, as they rely on confirmed
infections, hospitalizations, and death numbers. These
methods give Reff(t) (the number of infections caused by
a single infected person), but their delay is a significant
disadvantage when restrictions are released. If after re-
laxation, Reff(t) rises above 1, one will not be able to
react adequately before two weeks have passed during
which time the prevalence could significantly rise.

Here, we propose the use of random testing to shorten
this reaction time, by obtaining direct and model-
independent information on Reff(t). Through random
testing of between 2′500 and 20′000 people per day,
we find that over periods significantly shorter than two
weeks, it becomes possible to detect a dangerous increase
in Reff with reasonable confidence. When compared to
the delay of nonrandom symptomatic testing currently
being performed, this shorter response time can save tens
of lives per week at the national level, cf. Fig. 1, and re-
duces costs for the health care system as well as for the
economy. Moreover such monitoring provides greater sta-
bility and diminishes the probability of a second wave of
pandemic.

II. ESTIMATING THE FIRST INTERVENTION
TIME

The following is a direct application of the ideas pre-
sented in Ref.1. Here we focus on the question of how
many lives can be saved and how much damage can be
prevented by the more rapid intervention possible with
random testing.

Assume that in the first half (T/2) of the measuring
period T , we detect N1 infected persons. If we denote
with r the number of people tested daily, i0 the preva-
lence (infected fraction in the population being randomly
sampled) just before the measuring period T , and

nd ..= i0 r (2.1a)

the expected number of people detected positive per day,
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FIG. 1. Saved lives per week due to the avoided increase of
infection numbers as a function of the reproduction rate Reff

prevailing right after some restrictive measures are released.
The four colored curves correspond to different numbers r of
people tested per day. The numbers used for the estimate are
given in the main text. We assume a prevalence of i0 = 0.002
in the tested area (as we currently estimate for Geneva) and
an average prevalence in Switzerland of iCH = 0.0005.

then we expect

N1 =
T

2
i0 r ≡

T

2
nd. (2.1b)

In the second half of the measuring period T , we would
expect

N2 = N1 exp(|k|T/2) (2.2)

if the growth rate of infections is |k|. Now, k is related
to the reproduction number R (the expected number of
persons that will be infected by one sick person) through

k ≈ µ× (R− 1), (2.3a)

where the proportionality constant µ > 0 can be obtained
from unmitigated growth data through

µ ≈ k0

R0 − 1
, R0 > 1. (2.3b)

Here, R0 is the basic reproduction rate, i.e., the expected
number of cases directly generated by one case in a pop-
ulation where all individuals are susceptible to infection,
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while k0 is the ensuing exponential rate of change. We
take unmitigated growth for COVID19 to be doubling in
3 days, i.e.,

2 = ek0×3 ⇐⇒ k0 =
ln 2

3
≈ 0.23, (2.4a)

while we choose among the many published estimates2 of
R0,

R0 ≈ 2.9. (2.4b)

From this we get

µ ≈ 0.12. (2.4c)

We can tell with reasonable certainty that the growth
rate k is positive if the difference

N2 −N1 = N1 [exp(|k|T/2)− 1] (2.5a)

is larger than its statistical uncertainty α
√

2N1, i.e.,

N2
1 [exp(|k|T/2)− 1]

2 ≥ 2α2N1. (2.5b)

Here, the typical fluctuation
√
N1 occurring upon sam-

pling a random number with expectation N1 is derived
from the law of large numbers for independent random
variables. The dimensionless parameter α selects the ac-
curacy (confidence) that we seek. We require

α ≥ 1, (2.5c)

and will assume equality (α = 1) below.
Taking the equality in (2.5b), i.e., satisfying the mini-

mal condition on N1, we get the condition

N1 = 2

(
α

exp(|k|T/2)− 1

)2

(2.6a)

or, if we use Eq. (2.1b),

nd =
4

T

(
α

exp(µ |R− 1|T/2)− 1

)2

. (2.6b)

Given nd and the growth rate k (or, equivalently, the
reproduction number R) after a sudden intervention,
we obtain the required sampling time T from solving
Eq. (2.6b). Expanding the denominator under the as-
sumption that

0 < µ |R− 1| T
2
� 1, (2.7a)

one finds

T =

(
4α

µ |R− 1|

)2/3
1

n
1/3
d

. (2.7b)
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FIG. 2. Relative increase of prevalence until an intervention
is taken, plotted as a function of the reproduction rate Reff

that prevails right after releasing some restrictive measures.
The topmost curve shows the result in the absence of sam-
pling, assuming a delay of T ∗ until a first intervention. The
four colored curves correspond to different numbers r of peo-
ple tested per day. The numbers used for the estimate are
given in the main text. We assume a prevalence of i0 = 0.002
in the tested area (as we currently estimate for Geneva).

III. INCREASE OF INFECTION NUMBERS -
THE BENEFIT OF RANDOM TESTING

By the time T the prevalence, i.e., the infection num-
bers, will have increased by the fraction

i(T )− i0
i0

= exp(µ |R− 1|T )− 1 ≈ µ |R− 1|T

=

(
16α2 µ |R− 1|

nd

)1/3

, (3.1)

which is to be compared to the fraction

i(T ∗)− i0
i0

= exp(µ |R− 1|T ∗)− 1 ≈ µ |R− 1|T ∗ (3.2)

with T ∗ ≈ 14 days for methods based on fitting case num-
bers. These two relative increases are shown in Fig. ??
as a function of the effective reproduction number Reff

which prevails after a release of restrictive measures.
Random testing results in a smaller relative increase of

the prevalence when enough information has been gath-
ered to intervene. Its decrease amounts to

∆i

i0
≡ i(T ∗)− i(T )

i0
≈ µ |R−1|T ∗−

(
16α2 µ(R− 1)

nd

)1/3

.

(3.3)
Assuming an average prevalence in Switzerland of

iCH = 0.0005 and a total population of NCH ≈ 8.4 · 106,
we estimate that the number of infected persons is cur-
rently iNCH ≈ 4′200.

This number multiplied by ∆i/i0 given in Eq. (3.3)
yields the number of additional infections avoided due to
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random testing. With a moderate estimate of the mor-
tality rate of m = 0.5%, and assuming that people are
infectious for Tinf = 10 days this means that the num-
ber of saved lives per day in Switzerland can be
estimated to be

4200
m

Tinf

∆i

i0
= 2.1

∆i

i0
. (3.4)

The final result is plotted in Fig. 1, which clearly demon-
strates that such an approach can save a significant num-
ber of lives. Unless the prevalence decreases again due
to further lockdown conditions, there is a steady rate of
lost lives associated with the increase of the prevalence,
which would be avoidable through faster feedback from
random sampling.

IV. COST ESTIMATE

We roughly estimate 50 CHF per tested per-
son: 20 CHF for PCR (estimate by Fabian Rudolf
BSSE/ETHZ, based on new high throughput tests) and
30 CHF for logistics. The latter could be significantly
reduced if individuals were allowed to self-test and send
in their probes by mail, as is currently done in a large
scale random testing study in the UK (Imperial College,

REACT1 study).
The necessary number of tests to assure a certain re-

action time to correct for an overshoot in Reff , and thus
the costs, are inversely proportional to the prevalence
i0. With i0 ≈ 0.002 (our estimate for Geneva), and
nd = 10′000 one needs 5′000 tests per day. This costs
250′000 CHF per day, or 5 million CHF for 3 weeks, which
is a natural time to accompany a strong release measure.
The number of lives one is likely able to save thanks to
random testing is considerable.

V. FURTHER BENEFITS OF RANDOM
TESTING

Random sampling of the prevalence will finally inform
us about the actual prevalence, which so far we can only
estimate from epidemiological modelling, and which is
still subject to substantial uncertainty.

Measuring the prevalence and its time evolution will
help to better estimate unknown parameters for epidemi-
ological modelling and thus improves the future predic-
tions of these models.

The fast feedback on the reproduction rate allows to
quantify the effect of individual policy measures, possibly
with higher accuracy than by fitting with epidemiological
models. This knowledge is valuable to optimize future
interventions to keep the disease under control.
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