Powder neutron diffraction at continuous spallation source SINQ

Vladimir Pomjakushin

Laboratory for Neutron Scattering and Imaging, LNS, Paul Scherrer Institute

Powder neutron diffraction at continuous spallation source SINQ

Vladimir Pomjakushin

Laboratory for Neutron Scattering and Imaging, LNS, Paul Scherrer Institute

Applications of (high resolution) neutron powder diffraction

In the order of number of experiments (at SINQ)

Applications of (high resolution) neutron powder diffraction

In the order of number of experiments (at SINQ)

1) Precise crystal structure refinement complementary to x-rays synchrotron
2) Magnetic ordering phenomena: determination (solving) of long, short, 3D, 2D magnetic structures

Applications of (high resolution) neutron powder diffraction

In the order of number of experiments (at SINQ)

1) Precise crystal structure refinement complementary to x-rays synchrotron
2) Magnetic ordering phenomena: determination (solving) of long, short, 3D, 2D magnetic structures
3) Direct crystal structure solution. Phase analysis of (new) materials

Applications of (high resolution) neutron powder diffraction

In the order of number of experiments (at SINQ)

1) Precise crystal structure refinement complementary to x-rays synchrotron
2) Magnetic ordering phenomena: determination (solving) of long, short, 3D, 2D magnetic structures
3) Direct crystal structure solution. Phase analysis of (new) materials
4) materials science with big non-standard shape "real life" samples, e.g. electrical batteries or residual stresses in industrial materials.

What does one need for efficient (hight resolution) powder neutron diffraction

What does one need for efficient (hight resolution) powder neutron diffraction

1) good $\delta d / d \sim 10^{-3}$ resolution to have (i) good definition of crystal metrics and (ii) to overcome peak overlap
a) usually we need it at high momentum transfer Q
b) but for indexing and magnetic neutron diffraction, low Q-domain is important as well

What does one need for efficient (hight resolution) powder neutron diffraction

1) good $\delta d / d \sim 10^{-3}$ resolution to have (i) good definition of crystal metrics and (ii) to overcome peak overlap
a) usually we need it at high momentum transfer Q
b) but for indexing and magnetic neutron diffraction, low Q-domain is important as well
2) large Q range $\left(\geq 10 \AA^{-1}\right)$ (i) to get good definition of bond lengths with accuracy $\sim 0.001 \AA$ (ii) atomic displacement Debay-Waller parameters ADP, (iii) magnetic multipoles

What does one need for efficient (hight resolution) powder neutron diffraction

1) good $\delta d / d \sim 10^{-3}$ resolution to have (i) good definition of crystal metrics and (ii) to overcome peak overlap
a) usually we need it at high momentum transfer Q
b) but for indexing and magnetic neutron diffraction, low Q-domain is important as well
2) large Q range ($\geq 10 \AA^{-1}$) (i) to get good definition of bond lengths with accuracy $\sim 0.001 \AA$ (ii) atomic displacement Debay-Waller parameters ADP, (iii) magnetic multipoles
3) Stability of neutron monitor/flux spectrum, i.e. number of received neutrons per diffraction pattern should be known with <10-3 relative accuracy

What does one need for efficient (hight resolution) powder neutron diffraction

1) good $\delta \mathrm{d} / \mathrm{d} \sim 10^{-3}$ resolution to have (i) good definition of crystal metrics and (ii) to overcome peak overlap
a) usually we need it at high momentum transfer Q
b) but for indexing and magnetic neutron diffraction, low Q-domain is important as well
2) large Q range $\left(\geq 10 \AA^{-1}\right)$ (i) to get good definition of bond lengths with accuracy $\sim 0.001 \AA$ (ii) atomic displacement Debay-Waller parameters ADP, (iii) magnetic multipoles
3) Stability of neutron monitor/flux spectrum, i.e. number of received neutrons per diffraction pattern should be known with <10-3 relative accuracy
4) Appropriate sample environment. Preferably all should be computer controlled, including sample positioning

What does one need for efficient (hight resolution) powder neutron diffraction

1) good $\delta \mathrm{d} / \mathrm{d} \sim 10^{-3}$ resolution to have (i) good definition of crystal metrics and (ii) to overcome peak overlap
a) usually we need it at high momentum transfer Q
b) but for indexing and magnetic neutron diffraction, low Q-domain is important as well
2) large Q range $\left(\geq 10 \AA^{-1}\right)$ (i) to get good definition of bond lengths with accuracy $\sim 0.001 \AA$ (ii) atomic displacement Debay-Waller parameters ADP, (iii) magnetic multipoles
3) Stability of neutron monitor/flux spectrum, i.e. number of received neutrons per diffraction pattern should be known with <10-3 relative accuracy
4) Appropriate sample environment. Preferably all should be computer controlled, including sample positioning
5) Automatic data reduction system. E.g., let's consider 5 samples/ day each measured at 20 temperatures ($\sim 15^{\prime} /$ point)

Overview of the talk

Overview of the talk

- Swiss neutron spallation course SINQ
- ND @ PSI
- Q-range, resolution, maximal cell volume, peak overlap.
- complementarity of DMC and HRPT diffractometers

Overview of the talk

- Swiss neutron spallation course SINQ
- ND @ PSI
- Q-range, resolution, maximal cell volume, peak overlap.
- complementarity of DMC and HRPT diffractometers
- Examples of results demonstrating the possibilities of SINQ powder diffractometers.
- Accuracy on crystal metric in multiferroic TmMnO_{3}
- Topologically nontrivial skyrmionic incommensurate superspace magnetic structure in Well semimetal CeAlGe.
- A quantum liquid of magnetic octupoles in pyrochlore Ce2Sn2O7

Overview of the talk

- Swiss neutron spallation course SINQ
- ND @ PSI
- Q-range, resolution, maximal cell volume, peak overlap.
- complementarity of DMC and HRPT diffractometers
- Examples of results demonstrating the possibilities of SINQ powder diffractometers.
- Accuracy on crystal metric in multiferroic TmMnO_{3}
- Topologically nontrivial skyrmionic incommensurate superspace magnetic structure in Well semimetal CeAlGe.
- A quantum liquid of magnetic octupoles in pyrochlore Ce2Sn2O7
- HRPT specific features
- radial collimators: pluses and one minus
- Sample changers
- sample positioning and atomic displacement parameters
- Sample environment. Other non-dedicated equipment
- Wish list for the future

Overview of the accelerator facility HIPA/PSI

D. Kiselev, et al J Radioanal Nucl Chem (2015) 305:769

Overview of the accelerator facility HIPA/PSI

D. Kiselev, et al J Radioanal Nucl Chem (2015) 305:769

Overview of the accelerator facility HIPA/PSI

The spallation neutron source SINQ is a continuous source - the first and the only of its kind in the world - with a flux of about $4 \mathbf{1 0}^{14}$ $\mathrm{n} / \mathbf{c m}^{2} / \mathbf{s}$. Beside thermal neutrons, a cold moderator of liquid deuterium (cold source) slows neutrons down and shifts their spectrum to lower energies.

Flux of the monochromatic beam at diffraction instruments is about $10^{5}-10^{6} \mathrm{n} / \mathrm{cm}^{2} / \mathrm{s}$

SINQ diffraction instruments overview

$\sqrt[\sim l]{\text { In }}$ Instruments HRPT\&DMC (Powder), TriCS (Single crystal), POLDI (strain) and TASP/MuPAD (polarised, 3D spherical neutron polarimetry)
New materials in condensed matter physics, chemistry and materials science with a focus on magnetism Examples are: energy research, frustrates systems, crystallography, ferroelectrics

HRPT: V. Pomjakushin, D. Sheptyakov

DMC: L. Keller

SINQ diffraction instruments overview

Instruments HRPT\&DMC (Powder), TriCS (Single crystal), POLDI (strain) and TASP/MuPAD (polarised, 3D spherical neutron polarimetry)

New materials in condensed matter physics, chemistry and materials science with a focus on magnetism Examples are: energy research, frustrates systems, crystallography, ferroelectrics

SINQ diffraction instruments overview

SINQ diffraction instruments overview

Instruments HRPT\&DMC (Powder), TriCS (Single crystal), POLDI (strain) and TASP/MuPAD (polarised, 3D spherical neutron polarimetry)

New materials in condensed matter physics, chemistry and materials science with a focus on magnetism Examples are: energy research, frustrates systems, crystallography, ferroelectrics

Neutron (thermal) flux from the $D_{2} \mathrm{O}$ moderator, Maxwellian at $90^{\circ} \mathrm{C}$ (HRPT,ZEBRA, POLDI)

Total: $5 \cdot 10^{7} 1 / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{mA}$ at SINQ current $2 \mathrm{~mA}: 10_{8}^{8}$

wavelength range from the "white" flux. at HRPT $\lambda=0.84-2.96 \AA$

Intensity of Bragg scattering from big single crystal: Lorentz factor, extinction, geometry, ...

for fixed monochromator takeoff 2θ for HRPT

Neutron flux from cold moderator (DMC,SANS,TASP), liquid $D_{2}, T=25 K$ or $-248 C$

Diffraction instruments for solid state physics problems at swiss spallation source SINQ

- HRPT - High Resolution Powder Diffractometer for Thermal Neutrons, $\lambda=0.84-2.96 \AA$ (max intensity at 1.15-1.89 \AA), High resolution 10^{-3} and high Q-range $\leq 14.3 \AA^{-1} \quad Q=\frac{4 \pi \sin \theta}{\lambda}=2 \pi / d$
- DMC - High Intensity Powder Diffractometer for Cold Neutrons, $\lambda=2.35-5.4 \AA$ (max intensity at $4-5 \AA$), high Bragg scattened intensity (up to x10 HRPT) and good resolution at low and moderate $Q \leq 4 \AA^{-1}$. min $Q \sim 0.1 \AA^{-1}$

ZEBRA - Single crystal diffractometer, $\lambda=1.18,2.3 \AA$, Thermal Neutrons

- TASP (triple axes) with MuPAD for polarised ND, Cold Neutrons
- small angle neutron instrument SANS-I, Q-range: $6 \cdot 10^{-3} \mathrm{~nm}^{-1}$ ($0.0006 \AA^{-1}$) to $5.4 \mathrm{~nm}^{-1}\left(0.54 \AA^{-1}\right)$ - up to $1 \AA^{-1}$ with lateral shift by 50 cm

High Resolution Powder Diffractometer for Thermal Neutrons

Ge monochromator, 11 single

choice of wavelength at HRPT

	$2 \theta_{\mathrm{M}}=90^{\circ}$		$2 \theta_{M}=120^{\circ}$	
$\begin{aligned} & \text { (hkk) } \\ & \text { Ge } \end{aligned}$	λ, \AA	Effective intensity	λ, \AA	Effective intensity
311	2.40971	0.64	2.9536	~ 0.16
400	-998,		2.4491,3	0.53
133	1.8324	1	2.24612	
511	1.5384	1.55	1.886	1
533	1.2183	0.83	1.494	0.88
711	1.1194.	0.6	1.372	0.71
733	0.9763	0.34	1.197	0.63
822	0.9419	0.48	1.154	0.70
466			1.044	0.24
866			0.840	0.08

${ }^{1}$ PG(C) filter

21/3 λ contamination
${ }^{3}(2 / 3) \lambda$ contamination due to double Bragg scattering is avoided by rotating the

$\max Q:$ from 1.15 to 0.84A

Powder ND at SINQ/PSI

HRPT - High Resolution $\underline{\text { Powder }}$

 Diffractometer for Thermal Neutrons. linear detector with 1600 channels, 0.1°Responsible: Vladimir Pomjakushin, Denis Sheptyakov

HRPT RESOLUTION FUNCTIONS

DMC - cold neutron powder diffractometer linear detector with 400 channels, 0.2°

Responsible: Lukas Keller, Matthias Frontzek

DMC: experimental resolution functions $\Delta d / d(Q, \lambda)$

Powder ND at SINQ/PSI

HRPT - High Diffractometer for linear detector wit|

Responsible: Vladimir Por

HRPT RESOLUT

HRPT RESOLUTION FUNCTIONS
(FWHM, $2 \theta_{\mathrm{M}}=120^{\circ}$)

כowder diffractometer lannels, 0.2°
as Frontzek

ion functions $\Delta \mathrm{d} / \mathrm{d}(\mathrm{Q}, \mathrm{N})$

Powder ND at SINQ/PSI

HRPT - High Resolution Powder

Diffractometer for Thermal Neutrons at SINQ

HRPT RESOLUTION FUNCTIONS

DMC - cold neutron powder diffractometer

DMC: experimental resolution functions $\Delta \mathrm{d} / \mathrm{d}(\mathrm{Q}, \lambda)$

Powder ND at SINQ/PSI

HRPT - High Resolution Powder Diffractometer for Thermal Neutrons at SINQ

DMC - cold neutron powder diffractometer

DMC: experimental resolution functions $\Delta \mathrm{d} / \mathrm{d}(\mathrm{Q}, \mathrm{N})$

HRPT RESOLI 0.010 (FWHI

Powder ND at SINQ/PSI

HRPT - High Resolution Powder

Diffractometer for Thermal Neutrons at SINQ
DMC - cold neutron powder diffractometer

Ition functions $\Delta d / d(Q, \lambda)$

excellent resolution and high Q-range

Complementarity 1.9A HRPT and 4.5A DMC

excellent resolution and high Q-range

powder diffraction patterns in CeAlGe

4.5Å DMC

 skyrmion structureCeAlGe 4.506A T=1.6K Sample="CeAlGe"
Monitor 4050000 WaveLength 4.506 Temperature 5.63 ± 4.19

Q-range/resolution in powder diffraction. Peak overlap.

Diffraction patterns, High resolution powder diffractometer HRPT @ SINQ

Q-range limitation - image quality in Fourier transform

$\mathbf{f}(\mathbf{q}) \sim \int \mathbf{e i q}^{\mathrm{iq} r} \mathbf{b}(r) \mathbf{d} r$

Q-range limitation - image quality in Fourier transform

$$
\min \delta r \sim \pi / \mathrm{Q}_{\max }
$$

Limitations on maximal unit cell volume (number of atoms) in powder neutron diffraction

Volumes up to 1000-2000 \AA, about 100-200 atoms, concentration 0.08-0.1 at/A3
(114 atoms, 14 sites, 4 elements)
(148 atoms, 19 sites, 6 elements)

Structures: solved/refined from HRPT NPD data

$\mathrm{Ca}_{3} \mathrm{Cu}_{x} \mathrm{Ni}_{2-x}\left(\mathrm{PO}_{4}\right)_{4}$ Quantum spin trimer $18 \times 5 \times 18 \AA \AA, V=1300 \AA^{3}$
\square
$\left(\mathrm{Li}_{1.4} \mathrm{Fe}_{6.8}\left[\mathrm{CH}_{2}\left(\mathrm{PO}_{3}\right)_{2}\right]_{3}\left[\mathrm{CH}_{2}\left(\mathrm{PO}_{3}\right)\left(\mathrm{PO}_{3} \mathrm{H}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{C} 2 / \mathrm{c}$ sp.gr. Lithium Iron Methylenediphosphonate Lithium Iron Methylenediphosphonate
$18 \times 8 \times 9 \AA, V=1300 \AA^{3} 148$ atoms
bond lengths accuracy $\sim 0.001 \AA$

Hardly can be done at SINQ, due to intensity/resolution limitations...

Macromolecular crystallography: Crystal structure of the eukaryotic 60S ribosomal subunit...

Method: X-RAY DIFFRACTION X06SA of the Swiss Light Source, PSI

Exp. Data:

Structure Factors

Figure: Model of the eukaryotic ribosome (taken from Klinge et al.)

rms bonds $\sim 0.01 \AA$

HRPT resolution calibration

comparison of neutrons HRPT and lab. \& SLS synchrotron x-ray resolutions

comparison of HRPT resolution curves for HR and $H T$

Medium Resolution MR
High Intensity HI

Statistics of the use of different resolutions at HRPT (2010-2017):

High Intensity	HI	289157	92.2%
Medium Resolution	22774	7.3%	
High Resolution	HR	1580	0.5%

How often we use high resolution HR at HRPT?

When do we need HR,MR? It costs $x 3, x 10$ increase in data collection time with respect to high intensity

Statistics of the use of different resolutions at HRPT (2010-2017):

High Intensity	HI	289157	92.2%
Medium Resolution MR	22774	7.3%	
High Resolution	HR	1580	0.5%

How often we use high resolution HR at HRPT?

When do we need HR,MR? It costs $x 3, x 10$ increase in data collection time with respect to high intensity

Beam-time is finite..., and HR often not needed for the refinement within known structure model and Bragg peak intensities are fixed by the model.

Statistics of the use of different resolutions at HRPT (2010-2017):

High Intensity	HI	289157	92.2%
Medium Resolution	22774	7.3%	
High Resolution	HR	1580	0.5%

How often we use high resolution HR at HRPT?

When do we need HR,MR? It costs $x 3, x 10$ increase in data collection time with respect to high intensity

Beam-time is finite..., and HR often not needed for the refinement within known structure model and Bragg peak intensities are fixed by the model.

Must use/have high resolution in the following cases

- Indexing of peaks
- structure solution
- small deviations from high symmetry metrics (space group)

Statistics of the use of different resolutions at HRPT (2010-2017):

High Intensity	HI	289157	92.2%
Medium Resolution MR	22774	7.3%	
High Resolution	HR	1580	0.5%

When do we need HR,MR? It costs $x 3$, $x 10$ increase in data collection time with respect to high intensity

Beam-time is finite..., and HR often not needed for the refinement within known structure model and Bragg peak intensities are fixed by the model.

Must use/have high resolution in the following cases

- Indexing of peaks
- structure solution
- small deviations from high symmetry metrics (space group)
- Peak/background, for small (magnetic) peaks

Statistics of the use of different resolutions at HRPT (2010-2017):

High Intensity	HI	289157	92.2%
Medium Resolution MR	22774	7.3%	
High Resolution	HR	1580	0.5%

Spin-lattice coupling and antiferromagnetic order in orthorhombic multiferroic* TmMnO_{3}

materials that have coupled electric, magnetic and structural order parameters

HRPT resolution in HI mode $\delta \mathrm{d} / \mathrm{d}>2 \mathrm{~N}^{-3}$

Example of accuracy on metric : orthorhombic multiferroic TmMnO_{3}

material that have coupled electric,
$\sim 0.0001 \AA=10 \mathrm{fm}$ (proton radius 2 fm) $\begin{array}{ll}\mathrm{T}(\mathrm{K}) & \delta \mathrm{d} / \mathrm{d}\end{array}$
magnetic and structural order parameters

T (K)
Lattice constants

Examples of PND@HRPT applications to magnetic structures

Examples of PND@HRPT applications to magnetic structures

1. Limitation from the medium resolution at low Q. Impossibility to resolve two very different magnetic models in $\mathrm{La}_{1 / 3} \mathrm{Sr}_{2 / 3} \mathrm{FeO}_{3}$ (to find out if it has charge ordering CO)

Examples of PND@HRPT applications to magnetic structures

1. Limitation from the medium resolution at low Q. Impossibility to resolve two very different magnetic models in $\mathrm{La}_{1 / 3} \mathrm{Sr}_{2 / 3} \mathrm{FeO}_{3}$ (to find out if it has charge ordering CO)
2. Good enough resolution at low-Q domain: modulated with long period magnetic structure and topological charges (skyrmions) in Weyl semimetal CeAIGe

Examples of PND@HRPT applications to magnetic structures

1. Limitation from the medium resolution at low Q. Impossibility to resolve two very different magnetic models in $\mathrm{La}_{1 / 3} \mathrm{Sr}_{2 / 3} \mathrm{FeO}_{3}$ (to find out if it has charge ordering CO)
2. Good enough resolution at low-Q domain: modulated with long period magnetic structure and topological charges (skyrmions) in Weyl semimetal CeAIGe
3. high-Q range and resolution is not important: Magnetic octupole-octupole correlations on the pyrochlore lattice in $\mathrm{Ce}_{2} \mathrm{Sn}_{2} \mathrm{O}_{7}$

Limitation from the resolution. Impossibility to resolve two very different magnetic models.

Crystal and magnetic structure of $\mathrm{R}_{1 / 3} \mathrm{Sr}_{2 / 3} \mathrm{FeO}_{3}(\mathrm{R}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd})$, F. Li et al, Phys. Rev. B 97, 174417(2018)
Fm3m -> R-3c at above RT, rhombohedral distortion 5 10-4
In R-3c AFM below 200 K in $\mathrm{La}_{1 / 3} \mathrm{Sr}_{2 / 3} \mathrm{FeO}_{3}$

Limitation from the resolution. Impossibility to resolve two very different magnetic models.

Crystal and magnetic structure of $\mathrm{R}_{1 / 3} \mathrm{Sr}_{2 / 3} \mathrm{FeO}_{3}(\mathrm{R}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd})$, F. Li et al, Phys. Rev. B 97, 174417(2018)
Fm3m -> R-3c at above RT, rhombohedral distortion 5 10-4
In R-3c AFM below 200K in $\mathrm{La}_{1 / 3} \mathrm{Sr}_{2 / 3} \mathrm{FeO}_{3}$

Superspace magnetic structure and topological charges in Weyl semimetal CeAlGe

P. Puphal, et al, Physical Review Letters, 124, 017202 (2020)
$k 1=[g, 0,0]$, SM point of BZ, $g=0.06503(22) \sim 65 \AA$
Magnetic NPD difference profile taken between $\mathrm{T}=1.7 \mathrm{~K}$ and 10 K
(c)

Gamma point $\mathrm{k}=0$ does not fit NPD

Superspace magnetic structure and topological charges in Weyl semimetal CeAlGe

P. Puphal, et al, Physical Review Letters, 124, 017202 (2020)

CeAlGe: Maximal symmetry full star superspace 3D+2 magnetic group 14_1md1'(a00)000s(0a0)OsOs

Topological density and charge

$$
\begin{aligned}
& \mathbf{M}_{\mathrm{Ce} 1}=m_{1} \sin (\tilde{k} x) \mathbf{e}_{\boldsymbol{x}}+m_{2} \sin (\tilde{k} y) \mathbf{e}_{\boldsymbol{y}}+\left(m_{3} \cos (\tilde{k} x)+m_{4} \cos (\tilde{k} y)\right) \mathbf{e}_{\boldsymbol{z}} \\
& \mathbf{M}_{\mathrm{Ce} 2}=m_{2} \sin (\tilde{k} x) \mathbf{e}_{\boldsymbol{x}}+m_{1} \sin (\tilde{k} y) \mathbf{e}_{\boldsymbol{y}}+\left(m_{4} \cos (\tilde{k} x)+m_{3} \cos (\tilde{k} y)\right) \mathbf{e}_{\boldsymbol{z}} \quad \tilde{k}=2 \pi\left|\mathbf{k}_{1}\right|=2 \pi\left|\mathbf{k}_{\boldsymbol{z}}\right|=2 \pi \boldsymbol{g}
\end{aligned}
$$

Magnetic octupole-octupole correlations on the pyrochlore lattice in Ce2Sn 207 Romain Sibille, et al arXiv:1912.00928 [cond-mat.str-el]

Radial integrations of spherical Bessel function $\left\langle j_{n}\right\rangle$ as fun e neutron momentum transfer $\sin \theta / \lambda$, reproduced from ref. 4 and broken lines represent the results of Ce and Np

Samples, T, P, H and other equipment at HRPT/SINQ

- standard sample container: 6-10 mm dia $\times 50 \mathrm{~mm}\left(<4 \mathrm{~cm}^{3}\right)$
- due to low background small samples can be measured ($30 \mathrm{~mm}^{3}$)
- Radial collimators
- Sample changers 4-8 samples, $\mathrm{T}=1.5-300 \mathrm{~K}$
- standard LNS sample environment:
- Temperature $=50 \mathrm{mK}-1800 \mathrm{~K}$,
- Magnetic field $\mathrm{H}=6 \mathrm{~T}$ (vertical)
- Automatic $\mathrm{He}, \mathrm{N}_{2}$ refilling systems
- zero matrix high pressure cells:
- clamp cells for 9 and 15 kbar
- Paris Edinburgh cell 100 kbar

Samples, T, P, H and other equipment at HRPT/SINQ

- standard sample container: 6-10 mm dia $\times 50 \mathrm{~mm}\left(<4 \mathrm{~cm}^{3}\right)$
- due to low background small samples can be measured ($30 \mathrm{~mm}^{3}$)
- Radial collimators
- Sample changers 4-8 samples, $\mathrm{T}=1.5-300 \mathrm{~K}$
- standard LNS sample environment:
- Temperature $=50 \mathrm{mK}-1800 \mathrm{~K}$,
- Magnetic field H=6T (vertical)
- Automatic $\mathrm{He}, \mathrm{N}_{2}$ refilling systems
- zero matrix high pressure cells:
- clamp cells for 9 and 15 kbar
- Paris Edinburgh cell 100 kbar

Samples, T, P, H and other equipment at HRPT/SINQ

- standard sample container: 6-10 mm dia $\times 50 \mathrm{~mm}\left(<4 \mathrm{~cm}^{3}\right)$
- due to low background small samples can be measured ($30 \mathrm{~mm}^{3}$)
- Radial collimators: many pluses \& one minus
- Sample changers 4-8 samples, T=1.5-300 K
- standard LNS sample environment:
- Temperature $=50 \mathrm{mK}-1800 \mathrm{~K}$,
- Magnetic field H=6T (vertical)
- Automatic $\mathrm{He}, \mathrm{N}_{2}$ refilling systems
- zero matrix high pressure cells:
- clamp cells for 9 and 15 kbar
- Paris Edinburgh cell 100 kbar

Oscillating radial collimator to avoid scattering from sample environment.

HRPT radial collimators

Radial collimator with the
 shielding.
There are two radial collimators with 14 mm and 28 mm full width full maximum triangular transmission function.

Scheme of radial collimator

Radial Collimator HRPT (green)

Monitor 1181954 waveLength 1.886

clamp cells for 9 and 14 kbar

NaCl in High Pressure Cell (HPC15) at HRPT for different radial collimators (RC)
NaCl_in_HPC15_no_force_1.886_HL_a3=38.0 Monitor 20085456 WaveLength 1.8857

1p9HI_NaCl_HPC15_rc2 Sample="NaCl_HPC15"
Monitor 2608064 WaveLength 1.8857 Temperature 174.8 ± 2.3

Zero matrix TiZr

New RC2 (fwhm=7mm)
Peak/BG=5.5 (gain factor 2.9 in comparison with RC1) Now the Peak/BG ration is similar to one in the ParisEdinburgh pressure cell (~5 for NiO)

Some drawbacks of radial collimators (RC)

Related to RC and positioning business

Aberration:
Sample shifted from calibration position

Some drawbacks of radial collimators (RC)

Related to RC and positioning business

Some drawbacks of radial collimators (RC)

Related to RC and positioning business

average Debay-Waller ADP (x, y) of Na2Ca3A12F14 at $1.9 A$

detector center

precise sample positioning with respect to calibration

We can determine by diffraction the (x, y) position of sample with the accuracy better than 0.1 mm ! by the detector (radius 1500mm) from systematic diffraction peaks shifts $[\sin () \cos ()]$

precise sample positioning with respect to calibration
We can determine by diffraction the (x, y) position of sample with the accuracy better than 0.1 mm ! by the detector (radius 1500 mm) from systematic

Samples, T, P, H and other equipment at HRPT/SINQ

- standard sample container: 6-10 mm dia $\times 50 \mathrm{~mm}\left(<4 \mathrm{~cm}^{3}\right)$
- due to low background small samples can be measured ($30 \mathrm{~mm}^{3}$)
- Radial collimators
- Sample changers 4-8 samples, $\mathrm{T}=1.5-300 \mathrm{~K}$
- standard LNS sample environment:
- Temperature $=50 \mathrm{mK}-1800 \mathrm{~K}$,
- Magnetic field $\mathrm{H}=6 \mathrm{~T}$ (vertical)
- Automatic $\mathrm{He}, \mathrm{N}_{2}$ refilling systems
- zero matrix high pressure cells:
- clamp cells for 9 and 15 kbar
- Paris Edinburgh cell 100 kbar

HRPT low temperature 5-sample changer

A device for routine powder diffraction measurements at temperatures between $1.5 \mathrm{~K}-300 \mathrm{~K}$.
-All samples have the same temperature, i.e. time for temperature change is saved;
-Five samples mounted on a caroussel-type changer, that is a special inset for an orange cryostat
-The sample is rotated to avoid preferred orientation and achieve "ideal" centering

HRPT room temperature 8-sample changer

Fully loaded with 8 samples, the sample changer is ready to be installed in-place on the HRPT sample table.

HRPT room temperature 8-sample changer

Fully loaded with 8 samples, the sample changer is ready to be installed in-place on the HRPT sample table.

HRPT room temperature 8-sample changer

Fully loaded with 8 samples

User Experiment 20061119
"Structure of leached Raney Ni alloys" (Nov. 2007):
~80 samples measured in 4 beam days:

20 samples/day!

HRPT sample table.

Samples, T, P, H and other equipment at HRPT/SINQ

- standard sample container: 6-10 mm dia $\times 50 \mathrm{~mm}\left(<4 \mathrm{~cm}^{3}\right)$
- due to low background small samples can be measured ($30 \mathrm{~mm}^{3}$)
- Radial collimators
- Sample changers 4-8 samples, $\mathrm{T}=1.5-300 \mathrm{~K}$
- standard LNS sample environment:
- Temperature $=50 \mathrm{mK}-1800 \mathrm{~K}$,
- Magnetic field H = 6 T (vertical)
- Automatic $\mathrm{He}, \mathrm{N}_{2}$ refilling systems
- zero matrix high pressure cells:
- clamp cells for 9 and 15 kbar
- Paris Edinburgh cell 100 kbar

Automatic $\mathrm{He}, \mathrm{N}_{2}$ refilling systems using temperature sensors in cryostat. Computer controlled with remote access

Samples, T, P, H and other equipment at HRPT/SINQ

- standard sample container: 6-10 mm dia x $50 \mathrm{~mm}\left(<4 \mathrm{~cm}^{3}\right)$
- due to low background small samples can be measured ($30 \mathrm{~mm}^{3}$)
- Radial collimators
- Sample changers 4-8 samples, $\mathrm{T}=1.5-300 \mathrm{~K}$
- standard LNS sample environment:
- Temperature $=50 \mathrm{mK}-1800 \mathrm{~K}$,
- Magnetic field H = 6 T (vertical)
- Automatic $\mathrm{He}, \mathrm{N}_{2}$ refilling systems
- zero matrix high pressure cells:
- clamp cells for 9 and 15 kbar
- Paris Edinburgh cell 100 kbar
- Completely automatic experimental control system and the data reduction by Perl scripts. End user get datafiles and logs with all necessary experimental conditions. No run-numbers anymore. Remote control from anywhere.

Samples, T, P, H and other equipment at HRPT/SINQ

- standard sample container: $6-10 \mathrm{~mm}$ dia $\times 50 \mathrm{~mm}\left(<4 \mathrm{~cm}^{3}\right)$
- due to low background small samples can be measured ($30 \mathrm{~mm}^{3}$)
- Radial collimators
- Sample changers $4-8$ samples, $T=1.5-300 \mathrm{~K}$
- standard LNS sample environment:
- Temperature $=50 \mathrm{mK}-1800 \mathrm{~K}$,
- Magnetic field H=6 T (vertical)
- Automatic $\mathrm{He}, \mathrm{N}_{2}$ refilling systems
- zero matrix high pressure cells:
- clamp cells for 9 and 15 kbar
- Paris Edinburgh cell 100 kbar
- Completely automatic experimental control system and the data reduction by Perl scripts. End user get datafiles and logs with all necessary experimental conditions. No run-numbers anymore. Remote control from anywhere.
- Stroboscopic mode of operation

HRPT: stroboscopic mode of operation, time slices down to 20 ms

Application to study the ageing mechanisms in the industrial-sized real batteries.
The 112 patterns above (each just 1 minute) are a merge of 4 consecutive charge-discharge cycles, and are having the quality sufficient for Rietveld refinement.
D. Sheptyakov, L. Boulet-Roblin, V. Pomjakushin, C. Villevieille et. al., in press.

My wish/thoughts list

\star ND Resolution to $<=10^{-4}$ (possible for both CW and TOF), to be able to study what?
\star the magnetic structure forces lower symmetry space group, which change in metric 10-3-10-4 and smaller. Many examples...

* Transitions in multiferroics: small distortions in subgroup, often <<10-3
\star crystallographic twins/magnetic domains in single crystal ND: if unresolved mimic the powder averaging
\star intrinsic phase separation, HTSC, AFeSe, ...
\star Q-range for both crystal structure and magnetic multipoles, beyond dipole approximation.
\star analyser in the scattered beam to get only elastic scattering.
\star Sample changers, completely computer controlled experiments and data analysis in case of "predictable" results.

Thank you!

