Crystal and magnetic structures, unconventional superexchange interactions and disorder effects in $A_2MnGaO_{5+\delta}$ (A=Sr,Ca) layered oxides

V. Pomjakushin

I.M.Frank Laboratory of Neutron Physics, JINR, Dubna

A. Balagurov, T. Elzhov

Frank Laboratory of Neutron Physics, JINR, Dubna

D. Sheptyakov, P. Fischer

Laboratory for Neutron Scattering, ETH Zurich and PSI, Villigen

A. Abakumov, E. Antipov, M. Lobanov, M. Rozova

Chemistry Department, Moscow State University, Moscow

D. Khomskii

Solid State Physics Laboratory, Materials Science Centre, University of Groningen

V. Yushankhai

Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna

Three buffer (AO) layers: brownmillerite structures of A_2MnGaO_{5+x} (A=Sr, Ca)

Neutron diffraction. Crystal structure

Crystal structures of Sr_2MnGaO_5 , Ca_2MnGaO_5 and $Ca_2MnGaO_{5.5}$

Neutron diffraction. Magnetic structure

Short range ordering effects

Magnetic and crystal structures

AF in-plane superexchange (SE)

Antiferromagnetic MnO₂ planes both for Mn³⁺ and Mn⁴⁺ in accord with standard SE.

Interplane Mn-O-O-(O)-Mn superexchange

Interplane Mn-O-O-(O)-Mn superexchange

Interplane Mn-O-O-(O)-Mn superexchange

Magnetic moments of Mn³⁺ and Mn⁴⁺

Magnetic moment seen by neutron diffraction is appreciably reduced -local disorder, hybridization?

$M_{\rm eff}$ accessed by neutron diffraction

Local magnetic field distribution seen by μ SR

Muon spin polarization P(t) below T_N $P(t) = \sum_{i=1}^{n} a_i G(t, f_i, \sigma_i)$ $G(t) = \frac{1}{3} + \frac{2}{3}e^{(\sigma t)^2/2}(\cos \omega t - \sigma^2 t / \omega \sin \omega t)$ $\varpi = 2\pi f \sim < B_{loc} > <$ Coherent precession – long range ordering of Mn-spins $\sigma \sim < \Delta B_{loc}^2 >^{1/2} \longleftarrow$ Muon spin relaxation – $a \sim |$ ordered fraction disorder of Mn-spin configuration/value/direction Spectral density of $B_{x,y,z}$ $<\Delta B_{loc}^2 >^{1/2}$ $< B_{loc} >$ $\mathsf{B}_{X,Y,Z}$

Short range magnetic ordering in Sr₂MnGaO_{5.5}

Local field distribution in Sr₂MnGaO₅ and Ca₂MnGaO₅

Configurational disorder

Local spin-flips in Sr₂MnGaO₅ and Ca₂MnGaO₅

Summary

- Novel manganese layered oxides A₂MnGaO_{5+δ} (A=Sr,Ca) with adjustable Mn³⁺/Mn⁴⁺-valence: synthesis and structure.
- > The principal structure difference between the $\delta \approx 0$ (Mn³⁺) and $\delta \approx 0.5$ (Mn⁴⁺) is GaO_{1+ δ} buffer layer, which is formed by tetrahedra or partially filled octahedra
- ► AFM ($\delta \approx 0$) --> FM ($\delta \approx 0.5$) coupling between the AFM ordered MnO₂layers. Unconventional diagonal superexchange Mn⁴⁺-O-O-O-Mn⁴⁺
- Disorder effects in magnetic ordering spin flips and short range phase separation. The magnetic disorder can be caused by the disorder in oxygen positions in GaO_{1+δ} -layer.

The end

Intermediate Mn-valence in Sr₂MnGaO_{5+ δ}. δ =0.13, δ =0.41

ND-µSR: Short-range order in Sr₂MnGaO_{5.5}

Configurational disorder

ND-µSR: Local magnetic disorder

$M_{\rm eff}$ accessed by neutron diffraction

Mn³⁺/ Mn⁴⁺ in octahedral site

