Effect of oxygen isotope substitution on magnetic ordering in $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$

V. Pomjakushin

Laboratory for Neutron Scattering, ETH Zürich and PSI, Villigen

A. Balagurov

I.M. Frank Laboratory of Neutron Physics, JINR, Dubna

D. Sheptyakov

Laboratory for Neutron Scattering, ETH Zurich and PSI, Villigen

K. Conder, E. Pomjakushina

Laboratory for Developments and Methods, PSI Laboratory for Neutron Scattering, ETH Zürich and PSI, Villigen

Large isotope effect in metallic manganites

¹L. P. Gor' kov and V. Z. Kresin, Phys. Rep. **400**, 149 (2004). ²A.S.Alexandrov, N.F.Mott Int. J. Mod. Phys **8**, 2075 (1994) ³A.S.Alexandrov, V.V.Kabanov, D.K.Ray, PRB **49**, 9915 (1994)

Isotope effect expected if:

Isotope effect allows us to verify the type of interactions involved!

Giant isotope effect in intermediate-bandwidth manganites

M-I is a percolate-type transition in phase separated state

Giant isotope effect in $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$, y=0.75

ICNS 2005

5

(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO₃ phase diagram

(La_{1-v}Pr_v)_{0.7}Ca_{0.3}MnO₃ phase diagram

7

У

 $(La_{1-v}Pr_{v})_{0.7}Ca_{0.3}MnO_{3}$ phase diagram

У

8

Samples

Powders of $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$

- O-series (y=0.2, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 1.0): by the solid state synthesis from oxides and carbonates of respective metals. The ¹⁸O (>85%) samples as well as the final ¹⁶O samples were obtained via respective oxygen isotope exchange at the same conditions
- N-series¹: by the "paper" synthesis starting from aqueous solutions of nitrates of the respective metals (N-series) with the final thermal treatment similar to the O-series

[1] Balagurov et al, *Phys. Rev. B* 60, 383 (1999); *Phys. Rev. B* 64, 024420-1 (2001); *Eur. Phys. J. B* 19, 215 (2001)

Experiment

1. Neutron (T=2-1400K) and synchrotron x-ray (room T) diffraction

Magnetic structure as a function of temperature

Magnetic structure as a function of temperature

Ground magnetic state of (La_{1-v}Pr_v)_{0.7}Ca_{0.3}MnO₃

Microstrains effect on phase separation in $(La_{1-v}Pr_v)_{0.7}Ca_{0.3}MnO_3$

Phase separation is favored by internal micro-strains!

Suppression of all types of ordering near M-I transition in $(La_{1-v}Pr_{v})_{0.7}Ca_{0.3}MnO_{3}$

Influence of quenched disorder on the competition between ordered states separated by a first-order transition

Summary $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$ (y=0.2-1.0) with ¹⁶O/ ¹⁸O

- polaronic narrowing of the carrier bandwidth and the crystal lattice micro-strains control the volume fractions of the mesoscopic FM and AFM clusters.
- phase separation is favored by the presence of the micro-strains.
- a quenched disorder is responsible for the formation of the long-scale phase separated state
- There exists a genuine FMI phase for Pr_{0.7}Ca_{0.3}MnO₃, but with the DE-kind of interactions involved.

The End

Pseudocubic-orthorhombic transition

Microstructure parameters

Orbital and Charge ordering

$(La_{1-y}Pr_y)_{0.7}Ca_{0.3}(Mn^{3+})_{0.7}(Mn^{4+})_{0.3}O_3$

From D.E. Cox et al., PRB (1998)

➤ satellite (to *Pnma*) Bragg peaks due to a-axis doubling

➤anisotropic (along [100]) peak broadening due to the microstrains ◄

Readily observed from NPD data

OO effects

$(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3: \chi_{ac}(T)=\chi'(T)+i\chi''(T)$

Deconvolution of the Bragg-peak widths

T-dep of anisotropic strain

Τ, Κ

Thermal displacement parameters

a,b,c

Magnetic state. Bragg I(T)

Saturated effective magnetic moments in (La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO₃

Saturated effective magnetic moments in $(La_{1-v}Pr_{v})_{0.7}Ca_{0.3}MnO_{3}$

ICNS 2005

30

What is the difference between two series? Crystal structure?

 $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$, y=0.75 from both N- and O-series *Pnma, single phase at 290K*

SLS X-ray material beamline. Ultra-high resolution. λ =0.9A HRPT/SINQ diffraction pattern. λ =1.9A, HI-mode

Comparison of lattice parameters

 $(La_{1-y}Pr_{y})_{0.7}Ca_{0.3}MnO_{3},$

Bragg peak widths. Synchrotron X-ray, HRPT

Pseudo-cubic metrics: Strong peak overlap

Deconvolution of the Bragg-peak widths. Comparison of HRPT and synchrotron

Thermal cycling through T_C

y=0.75

DMC pattern

