Effect of oxygen isotope substitution on magnetic ordering in $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$

V. Pomjakushin

Laboratory for Neutron Scattering, ETH Zürich and PSI, Villigen

A. Balagurov

I.M. Frank Laboratory of Neutron Physics, JINR, Dubna

D. Sheptyakov

Laboratory for Neutron Scattering, ETH Zurich and PSI, Villigen

K. Conder, E. Pomjakushina

Laboratory for Developments and Methods, PSI Laboratory for Neutron Scattering, ETH Zürich and PSI, Villigen

Large isotope effect in metallic manganites

¹L. P. Gor' kov and V. Z. Kresin, Phys. Rep. **400**, 149 (2004). ²A.S.Alexandrov, N.F.Mott Int. J. Mod. Phys **8**, 2075 (1994) ³A.S.Alexandrov, V.V.Kabanov, D.K.Ray, PRB **49**, 9915 (1994)

Isotope effect expected if:

Isotope effect allows us to verify the type of interactions involved!

Giant isotope effect in intermediate-bandwidth manganites

$(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$ phase diagram A-cation

Mott

⁵

(La_{1-v}Pr_v)_{0.7}Ca_{0.3}MnO₃ phase diagram

Mott Mn-O-Mn valence bond angles У_{МI} FM double exchange metal insulattor $\mathbf{y}_{\mathbf{c}}$ 160 240 $T_{C} \sim \phi$ Mn-O1-Mn 220 159 200 ¹⁶C VIn-O-Mn (deg) 158 180 ¹⁸O T_{c}, T_{N} (K) 160 (180°-φ) 157 140 120 Mn-O2-Mn 156 $b_{\sigma} \sim \cos(\phi)$ 100 0.8 0.2 155 0.6 0.4 1.0 0.8 0.6 0.2 1.0 0.4 y

SINQ users meeting 2006

y

Questions

- How the Orbital (OO), charge (CO) and magnetic ordering (AFM, FM) depend on temperature and the effective bandwidth (Pr conc. y, oxygen mass)?
- What is the ground magnetic state? Factors controlling phase separation.
- Origin of the giant isotope effect?
- Microscopic mechanism of phase separation.

Experiment

1. Neutron (T=2-1400K) and synchrotron x-ray (room T) diffraction

Crystal structure: pseudocubic-orthorhombic transition

Orbital and charge ordering OO/CO (I)

Microstructure parameters

Anisotropic micro-strain - structure indicator of CO

Anisotropic micro-strain along [100]

Picture rom D.E. Cox et al., PRB (1998)

SINQ users meeting 2006

Magnetic ordering as a function of temperature

Mott

SINQ users meeting 2006

Magnetic ground state of (La_{1-v}Pr_v)_{0.7}Ca_{0.3}MnO₃

Pseudo CE=PCE: [1/2 0 0] and [1/2 1/2 0]

Magnetic ground state of (La_{1-v}Pr_v)_{0.7}Ca_{0.3}MnO₃

Magnetic ground state of $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$

Microstrains effect on phase separation

Phase separation is favored by internal micro-strains

Origin of mesoscopically inhomogeneous state

- quenched disorder enhances the fluctuation of the competing orders near the original bicritical point [e.g. J.Burgy, A.Moreo, M. Mayr, E.Dagotto et al, PRL, PRB 2000-2004]
- *lattice distortions* and the long-range strain similar to one observed at the martensite type structural transition [e.g. K. H. Ahn, T. Lookman, and A. R. Bishop, Nature 428, 401 (2004)]

Suppression of all types of ordering near M-I transition in $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$

Influence of quenched disorder on the competition between ordered states separated by a first-order transition

SING USERS MEETING 2000

Summary

$(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$ (y=0.2-1.0) with ¹⁶O/ ¹⁸O

- At T=0, there are 3 distinct coexisting mesoscopically phase separated phases: CO/ AFMI + (FMM, FMI)
- the carrier bandwidth (m_O, y) and the crystal lattice micro-strains control the volume fractions of the FM and AFMI clusters.
- quenched disorder is responsible for the formation of the long-scale phase separated state

The End

Samples

Powders of $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$

- O-series (y=0.2, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 1.0): by the solid state synthesis from oxides and carbonates of respective metals. The ¹⁸O (>85%) samples as well as the final ¹⁶O samples were obtained via respective oxygen isotope exchange at the same conditions
- N-series¹: by the "paper" synthesis starting from aqueous solutions of nitrates of the respective metals (N-series) with the final thermal treatment similar to the O-series

[1] Balagurov et al, *Phys. Rev. B* 60, 383 (1999); *Phys. Rev. B* 64, 024420-1 (2001); *Eur. Phys. J. B* 19, 215 (2001)

MO Imaging of Percolative Conduction Paths and Their Breakdown in Phase-Separated (La_{0.3}Pr_{0.7})_{0.7}Ca_{0.3}MnO₃

(Faraday effect) magnetization

Tokunaga, et al Phys Rev Letters 2004.

Magnetic ordering as a function of temperature

Orbital and Charge ordering

$(La_{1-y}Pr_y)_{0.7}Ca_{0.3}(Mn^{3+})_{0.7}(Mn^{4+})_{0.3}O_3$

From D.E. Cox et al., PRB (1998)

SINQ users meeting 2006

➤ satellite (to *Pnma*) Bragg peaks due to a-axis doubling

➤anisotropic (along [100]) peak broadening due to the microstrains

≻Mn-O bond length mismatch

Readily observed from NPD data

 $(La_{1-v}Pr_{v})_{0.7}Ca_{0.3}MnO_{3}$ phase diagram

Mott

Giant isotope effect in $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$, y=0.75

SINQ users meeting 2006

OO effects

$(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3: \chi_{ac}(T)=\chi'(T)+i\chi''(T)$

SINQ users meeting 2006

OO/CO effects (I)

Deconvolution of the Bragg-peak widths

T-dep of anisotropic strain

Τ, Κ

Thermal displacement parameters

a,b,c

Magnetic state. Bragg I(T)

Saturated effective magnetic moments in (La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO₃

Saturated effective magnetic moments in $(La_{1-v}Pr_{v})_{0.7}Ca_{0.3}MnO_{3}$

SINQ users meeting 2006

39

What is the difference between two series? Crystal structure?

 $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$, y=0.75 from both N- and O-series *Pnma, single phase at 290K*

SLS X-ray material beamline. Ultra-high resolution. λ =0.9A HRPT/SINQ diffraction pattern. λ =1.9A, HI-mode

Comparison of lattice parameters

 $(La_{1-y}Pr_{y})_{0.7}Ca_{0.3}MnO_{3},$

Bragg peak widths. Synchrotron X-ray, HRPT

Pseudo-cubic metrics: Strong peak overlap

Deconvolution of the Bragg-peak widths. Comparison of HRPT and synchrotron

Thermal cycling through T_C

y=0.75

DMC pattern

