Effect of oxygen isotope substitution on magnetic ordering in $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$

V. Pomjakushin
Laboratory for Neutron Scattering, ETH Zürich and PSI, Villigen

A. Balagurov
I.M. Frank Laboratory of Neutron Physics, JINR, Dubna

D. Sheptyakov
Laboratory for Neutron Scattering, ETH Zürich and PSI, Villigen

K. Conder, E. Pomjakushina
Laboratory for Developments and Methods, PSI
Laboratory for Neutron Scattering, ETH Zürich and PSI, Villigen
Large isotope effect in metallic manganites

Decrease in \((T_C \sim t^*)\) by \(^{16}\text{O} \rightarrow ^{18}\text{O}\) exchange

\[
\alpha_0 \approx 0.9 \\
(T_C \sim M^{-\alpha_0})
\]

\[
\Delta T = 21 \text{ K}
\]

From G.-M. Zhao et al.
Nature 381(1996) 676

Oxygen isotope exponent \((T_C \sim M^{-\alpha_0})\)

\[
\alpha_0 = -\Delta \ln T_C / \Delta \ln M
\]

Polaronic narrowing\(^1-3\) of bandwidth \(t\)

\[
t^* = t \exp(-g^2)
\]

where \(g^2 = \lambda \cdot t / \omega\)

coupl. const

\[
\omega \sim M^{-0.5}
\]

\[
\alpha_0 = -\Delta \ln T_C / \Delta \ln M \sim 0.5E / \hbar \omega
\]

\(\alpha_0 \approx 0.8 - 1\)

can be theoretically estimated\(^1\)

\(^2\) A.S.Alexandrov, N.F.Mott Int. J. Mod. Phys 8, 2075 (1994)
\(^3\) A.S.Alexandrov, V.V.Kabanov, D.K.Ray, PRB 49, 9915 (1994)
Isotope effect expected if:

Polaronic narrowing works:

- e-hopping time $\tau \sim 1/\omega$
- opt. phonon ~ 20 meV

Isotope effect expected?

YES
- double-exchange charge ordering
- $T_C \sim zt^*$
- $T_{CO} \sim t^*/V$, $V \sim 0.2$

NO
- Superexchange
 - $J_{AF} \sim -b^2/U$
 - $J_F \sim b^3/U^2$
 - $\tau = \hbar/U$, $U \sim 5$ eV

Isotope effect allows us to verify the type of interactions involved!
Giant isotope effect in intermediate-bandwidth manganites

\[t^* = t \exp\left(-\frac{E_{pol}}{\omega}\right) \] is not enough!

\[^{16}\text{O} \rightarrow ^{18}\text{O} \]

\[T_c \rightarrow 0 \text{ K?} \]

\[(\text{La}_{0.25}\text{Pr}_{0.75})_{0.7}\text{Ca}_{0.3}\text{MnO}_3\]

\[(\text{La}_{0.5}\text{Nd}_{0.5})_{0.67}\text{Ca}_{0.33}\text{MnO}_3\]

Guo-meng Zhao et al, SSC 104, 57 (1997)
\[(\text{La}_{1-y}\Pr_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3 \] phase diagram

A-cation

- **Mott**
 - Insulator
 - FM double exchange metal

\[b_\sigma \sim \cos(\phi) \sim \langle r_A \rangle \sim (1-\text{const} \cdot y) \]

Is increased with \(y \) resulting in the insulator-metal transition

\[J_F \sim b_\sigma \]

\[J_{AF} \sim -b_\pi^2/U \]

Mesoscopic phase separation AFM + FM

\[\text{small} \quad \langle r_A \rangle = 1.319\text{Å} \quad \text{Pr} \]

\[\text{large} \quad \langle r_A \rangle = 1.356\text{Å} \quad \text{La} \]
$(\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3$ phase diagram

Mott insulator \leftrightarrow FM double exchange metal

$T_C \sim \phi$

$(180^\circ - \phi)$

$b_\sigma \sim \cos(\phi)$
Questions

• How the Orbital (OO), charge (CO) and magnetic ordering (AFM, FM) depend on temperature and the effective bandwidth (Pr conc. y, oxygen mass)?
• What is the ground magnetic state? Factors controlling phase separation.
• Origin of the giant isotope effect?
• Microscopic mechanism of phase separation.
Experiment

1. Neutron (T=2-1400K) and synchrotron x-ray (room T) diffraction

High resolution HRPT diffractometer, Cold DMC (up to 4.2Å) at SINQ/PSI

2. ac-magnetic susceptibility, T=2K-400K, DSC
Crystal structure: pseudocubic-orthorhombic transition

\[(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3\]

A-cation

The micro-strains is an intrinsic property of this system due to:
1. A-cation radius dispersion
2. structure transformation
Orbital and charge ordering OO/CO (I)

\[(La_{1-y}Pr_y)_{0.7}Ca_{0.3}(Mn^{3+})_{0.7}(Mn^{4+})_{0.3}O_3\]

\[3t_{2g}1e_g\]

\[Mn^{3+} : Mn^{4+} = (70:30)\%\]

\[\theta = \frac{\theta}{2}\left|3z^2 - r^2\right| + \sin\frac{\theta}{2}\left|x^2 - y^2\right]\]

\[tg(\theta) = \frac{Q_2}{Q_3} = \frac{\sqrt{3}(l-s)}{(2m-l-s)}\]

pseudo-spin plane

“defect” CO model:

\[Mn^{4+} (%) = \frac{1}{2} - \frac{m-s}{l-s} \approx 26\%\]
Orbital and charge ordering OO/CO (II)

\[(La_{1-y}Pr_y)_{0.7}Ca_{0.3}(Mn^{3+})_{0.7}(Mn^{4+})_{0.3}O_3\]

CO is suppressed
Microstructure parameters

Bragg peak width
δd/d = δa/a ⊗ d/L ⊗ “instrument”

strain size

De-convolution of the pseudo-Voigt Bragg peaks width δ(2θ) = “Cagliotti” with the instrument resolution function.

T=290K
y=0.75

x-ray, 0.93 Å
HRPT, 1.9 Å

δd_{st}/d=0.23(2)%
δd_{st}/d=0.16(1)%
Anisotropic micro-strain - structure indicator of CO

Anisotropic micro-strain along [100]
~ a measure of CO

\[\frac{\delta d_{st}}{d} \]

Micro-strains as a function of Pr concentration (sp. gr. \textit{Pnma})

Picture rom D.E. Cox et al.,PRB (1998)
Magnetic ordering as a function of temperature

Mott

insulator ↔ FM double exchange metal

$y = 0.8$

$T_C, T_N (K)$

Mesoscopic phase separation AFM + FM

y_c

$T (K)$

$I(T) = I_0(1 - (T/T_N)^\alpha)^\beta$

DMC/SINQ

$\lambda = 2.56\text{Å}$

$y = 0.8$
Magnetic ground state of \((\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3\)
Magnetic ground state of (La$_{1-y}$Pr$_y$)$_{0.7}$Ca$_{0.3}$MnO$_3$

Effective magnetic moments = $\sqrt{\text{volume} \cdot \text{moment}}$

\[
\left(\frac{m_A}{M_A}\right)^2 + \left(\frac{m_F}{M_A}\right)^2 = \text{volume} = 1
\]

\[
m_F^2(m_A^2) = M_F^2\left(1 - \frac{m_A^2}{M_A^2}\right)
\]

\[
M_A = 2.26(1)\mu_B
\]

\[
M_F = 3.57(2)\mu_B
\]

Percolation threshold

FM volume (%)

y=0.9

y=0.8

y=0.5

y=1.0

AFM volume (%)

FM volume (%)

FMI, FMM, AFMI

3.

1.

2.

\[T_C\]

\[T_N\]

Mesoscopic phase separation AFM + FM
Magnetic ground state of \((\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3\)

Polaronic narrowing acts as the narrowing due to the increase in \(y\): the phase balance is shifted towards the AFM/CO phase.
Microstrains effect on phase separation

Phase separation is favored by internal micro-strains

Percolation

strain=0.23%

strain=0.15%

Phase separation is favored by internal micro-strains
Origin of mesoscopically inhomogeneous state

• *quenched disorder* enhances the fluctuation of the competing orders near the original bicritical point [e.g. J. Burgy, A. Moreo, M. Mayr, E. Dagotto et al, PRL, PRB 2000-2004]

• *lattice distortions* and the long-range strain similar to one observed at the martensite type structural transition [e.g. K. H. Ahn, T. Lookman, and A. R. Bishop, Nature 428, 401 (2004)]
Suppression of all types of ordering near M-I transition in \((\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3\)
Influence of quenched disorder on the competition between ordered states separated by a first-order transition

(La\(_{1-y}\)Pr\(_y\))\(_{0.7}\)Ca\(_{0.3}\)MnO\(_3\)

RFIM + correlated disorder

\[H = -J\sum_{\langle ij \rangle} S_i S_j + J'\sum_{\langle ik \rangle} S_i S_k \]

\(J' \to J'_{ik} = J' + W_{ik} \)

\(\alpha \sim 3 \) elasticity mechanism of the distortion propagation (Khomskii, Kugel, 2001) \(\sim 1/d_{\langle ik \rangle}^{\alpha} \)

Typical random field distribution

Ising spin distribution

2D

3D
Summary

$\text{La}_{1-y}\text{Pr}_y\text{Ca}_{0.3}\text{MnO}_3$ ($y=0.2-1.0$) with ^{16}O/ ^{18}O

- At T=0, there are 3 distinct coexisting mesoscopically phase separated phases: CO/AFMI + (FMM, FMI)
- the carrier bandwidth (m_O, y) and the crystal lattice micro-strains control the volume fractions of the FM and AFMI clusters.
- quenched disorder is responsible for the formation of the long-scale phase separated state
The End
Samples

Powders of \((La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3\)

- **O-series** \((y=0.2, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0)\): by the solid state synthesis from oxides and carbonates of respective metals. The \(^{18}\text{O}\) (>85%) samples as well as the final \(^{16}\text{O}\) samples were obtained via respective oxygen isotope exchange at the same conditions.

- **N-series\(^1\)**: by the “paper” synthesis starting from aqueous solutions of nitrates of the respective metals (N-series) with the final thermal treatment similar to the O-series.

MO Imaging of Percolative Conduction Paths and Their Breakdown in Phase-Separated \((\text{La}_{0.3}\text{Pr}_{0.7})_{0.7}\text{Ca}_{0.3}\text{MnO}_3\)

(Faraday effect) magnetization

Magnetic ordering as a function of temperature

\[y = 0.5 \]

\[T_C, T_N (K) \]

Integrated intensity

DMC/SINQ \(\lambda = 2.56 \text{Å} \)

AFM + FM

Macro-phase separation

\(T_N, T_C \)
Orbital and Charge ordering

\((\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}(\text{Mn}^{3+})_{0.7} (\text{Mn}^{4+})_{0.3}\text{O}_3\)

- Satellite (to \textit{Pnma}) Bragg peaks due to a-axis doubling
- Anisotropic (along [100]) peak broadening due to the microstrains
- Mn-O bond length mismatch

Readily observed from NPD data

From D.E. Cox et al., PRB (1998)
\((\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3\) phase diagram

Mott

Insulator ≻ FM double exchange metal

\(y_c\)

Mesoscopic phase separation AFM + FM

\(T_c, T_N\)
Giant isotope effect in $(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3$, $y=0.75$

Neutron diffraction intensities

Increase in the m_O leads to complete suppression of the FMM phase and hence to the insulating state

OO effects
(La$_{1-y}$Pr$_y$)$_{0.7}$Ca$_{0.3}$MnO$_3$: $\chi_{ac}(T) = \chi' (T) + i\chi'' (T)$

Pomjakushin et al, 2005, unpublished
OO/CO effects (I)

\[(\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}(\text{Mn}^{3+})_{0.7}(\text{Mn}^{4+})_{0.3}\text{O}_3\]

\(\text{Mn}^{3+} : \text{Mn}^{4+} = 70:30\)

\(3t_{2g}1e_g\)

\(3t_{2g}\)

Mn-O bond lengths in LPCM (y=0.7)

Charge ordered

Orbitally ordered

Orbitally disordered

sp.gr. \(\text{Pnma}\)
Deconvoolution of the Bragg-peak widths

\[(La_{1-y}Pr_y)_{0.7}Ca_{0.3}MnO_3, \ y=0.75\]

O-series
- \(\delta a/a = 0.22(1)\%\)
- \(L=1800(60)\text{Å}\)

N-series
- \(\delta a/a = 0.15(1)\%\)
- \(L=4400(400)\text{Å}\)

\[\delta d/d = \delta a/a \otimes d/L\]

Deconvolution of the pseudo-Voigt Bragg peaks width \(\delta(2\theta) = "Cagliotti"\) with the instrument resolution function.

\[I_{\text{exp}} = \int_{-\infty}^{\infty} PV_{\text{sample}}(2\theta - \xi) PV_{\text{instrument}}(\xi)d\xi\]
T-dep of anisotropic strain

![Graph showing the temperature dependency of anisotropic strain.](image)
Thermal displacement parameters

B^{1/2} \sim T <1/\omega^2> 1/M
Magnetic state. Bragg I(T)

\(x = 0.8, 0.75, \text{“New” O-series}\)

\[\begin{align*}
\text{Intensity (counts)} & \quad 0 & 50 & 100 & 150 & 200 \\
\text{Temperature (K)} & \quad 0 & 800 & 1200 & 1600
\end{align*}\]

\(x = 0.75, \text{“Old” N-series}\)

\[\begin{align*}
\text{Intensity (counts)} & \quad 0 & 50 & 100 & 150 & 200 \\
\text{Temperature (K)} & \quad 0 & 400 & 800 & 1200 & 1600 & 2000 & 2400 & 2800 & 3200 & 3600 & 4000 & 4400 & 4800 & 5200 & 5600 & 6000 & 6400 & 6800 & 7200 & 7600 & 8000 & 8400 & 8800 & 9200 & 9600 & 10000 & 10400 & 10800 & 11200 & 11600 & 12000
\end{align*}\]

No FM

FM suppressed
Saturated effective magnetic moments in
$(La_{1-y}Pr_{y})_{0.7}Ca_{0.3}MnO_3$

“New” O-series

Metallic FM+AFM separated state

\[m_F^2(m_A^2) = M_F^2 \left(1 - \frac{m_A^2}{M_A^2} \right) \]

\[M_{FM} = 3.52(14)\mu_B \]

\[M_{AFM} = 2.32(33)\mu_B \]

\[\{ III_{AF} = V_{AF} \, IV_{AF} \} \]

Effective moments

\[m_F = (1-v)^{1/2} M_F \]

Volume fraction
Saturated effective magnetic moments in $(\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3$

Effective moments \(\left\{ \begin{array}{l} m_{AF} = \sqrt{\nu} M_{AF} \\ m_{F} = (1-\nu)^{1/2} M_{F} \end{array} \right. \) Volume fraction

"New" O-series

"Old" N-series

Metal \(\rightarrow \) insulator
What is the difference between two series? Crystal structure?

\((\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3, y=0.75\) from both N- and O-series

Pnma, single phase at 290K

SLS X-ray material beamline.
Ultra-high resolution. \(\lambda=0.9\text{A}\)

HRPT/SINQ diffraction pattern.
\(\lambda=1.9\text{A}, \text{HI-mode}\)

\(R_p=4\%\)

\(R_p=3.4\%, \chi^2=3\)
Comparison of lattice parameters

\[(\text{La}_{1-y}\text{Pr}_y)_{0.7}\text{Ca}_{0.3}\text{MnO}_3, \]

\(\text{Pnma} \)

\[r = \frac{200(a-c)}{(a+c)} \]

\(T = 290 \text{K} \)

O-series, "new"

40bar O\(_2\)

O-series, as prep

Ref [4] Radaelli

\(\text{Radaelli et al} \)

\(\text{N-series} \) ref [2,3]

\(\text{micro-LPCM ISIS, } r = 0.32 \)

\(y-\text{Pr} \)

\(a \)

\(b/\sqrt{2} \)

\(c \)

\(\text{Pnma} \)

\(\text{La}_{1-y}\text{Pr}_y\text{MnO}_3 \)
Bragg peak widths. Synchrotron X-ray, HRPT

Pseudo-cubic metrics:
Strong peak overlap

O-series
Deconvolution of the Bragg-peak widths. Comparison of HRPT and synchrotron

\[
I_{\text{exp}}(2\theta) = \int_{-\infty}^{\infty} \int PV_{\text{sample}}(2\theta - \xi) PV_{\text{instrument}}(\xi) d\xi
\]

Lorenzian \otimes Gaussian

- **O-series**
 - $\delta a/a = 0.22(1)\%$
 - $L = 1800(60)\text{Å}$

- **N-series**
 - $\delta a/a = 0.15(1)\%$
 - $L = 4400(400)\text{Å}$

HRPT, High Intensity
- $\lambda = 1.9\text{Å}$

Synchrotron, Ultrahigh Resolution
- $\lambda = 0.9\text{Å}$
Thermal cycling through T_C

Data: Data13_MDCemu
Model: ExpDec1
Equation: $y = A1 \times \exp(-x/t1) + y0$
Weighting: y

Chi2/DoF = 0.01685
R2 = 0.93356

$y0$ = 0.00407 ± 0.00008
A1 = 0.00034 ± 0.00015
t1 = 2.70818 ± 2.81979

Latte parameters (Å):
- O-18
- O-16
- O-16/O-18
- a
- b'
- c

of cycles

0 2 4 6 8 10
y=0.75
DMC pattern

\[\sim 1 \mu_B \]