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“Electron correlation” is a dominant theme in condensed matter science, manifesting 
itself in, e.g., “metal-insulator transitions” (MIT), “high-temperature superconductivity” 
(HTS) and “colossal magneto-resistance” (CMR). On the microscopic scale, one speaks of 
the charge (C), spin (S) and orbital (O) degrees of freedom, each of which may show 
short- or long-range order, and each of which may exchange energy with the others and 
with the crystal lattice (L) (see Fig. V.1). Important correlation effects can occur in sys-
tems with partially-filled electron shells, such as those of 3d-transition metal ions, with 
anisotropic,  quasi-localized character. Vast amounts of experimental and theoretical work 
have been published on electron correlation, triggered largely by the discovery of HTS in 

and numerous theories of the microscopic charge-spin-orbital-lattice interactions have 
been proposed. Much has been achieved, but much is still unclear. There is increasing 
 evidence of the  importance of nanoscale inhomogeneities and fast fluctuations in corre-
lated electron materials – indicating the important role that the SwissFEL will play. 
 Furthermore, it has been suggested that the chicken-or-egg problem, of determining the 
cause and effect relationships among the C, S, O and L subsystems, may best be 
approached with pump-probe time-resolved spectroscopy: one pumps energy into a partic-
ular degree of freedom and measures the time required for a response to appear in the 
others.
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Fig. V.1. a) Three macroscopic manifestations of correlated elec-
trons, with strong potential for important applications. b) The 
Charge-Spin-Orbital-Lattice “Chimera” of correlated electron sci-
ence [1], which emphasizers the interrelated degrees of freedom. 
The Chimera is a beast from Greek mythology.
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Multiferroic materials

Fig. V.i1. The multiferroic material RbFe(MoO4)2.

Order parameters that can be switched between and 

“up” and “down” states are called ferroic. If a mate-

rial has simultaneously two ferroic order paramaters, 

then it is called multiferroic. This definition has been 

somewhat relaxed in the past few years, and it has 

now customary to call any material multiferroic that 

shows spontaneous magnetic order and ferroelectric-

ity [24]. An example is when a material has a spon-

taneous dipole moment and antiferromagnetic order. 

Because multiple order parameters are almost always 

coupled, multiferroic materials hold the promise that 

the electric dipole moment can be manipulated mag-

netically, or that ferromagnetic magnetization can be 

manipulated electrically, with exciting possibilities for 

novel device applications involving ultrafast switching. 

There are different mechanisms that can lead to 

the simultaneous presence of ferroelectricy and mag-

netic order. One of the simplest is when ferroelectric-

ity emerges directly from magnetic order. This can 

happen when magnetic order breaks the symmetry in 

such a way that a switchable electric polarization oc-

curs. There are other mechanisms, such as geomet-

ric ferroelectrics and lone-pair ferroelectrics, which 

are as yet not fully understood. The most interesting 

and promising cases are materials in which ferroelec-

tricity arises from charge frustration which is coupled 

with magnetism (see Fig. V.i1). This can lead to a 

large electric polarization and strong coupling effects 

at high temperature. There are only few such elec-

tronic ferroelectrics known to date, and their physics 

is presently under intense investigation. 
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Correlated electron phases
A prominent class of correlated electron materials are 

transition-metal oxides (TMO), based on the perovskite 

crystal structure, with transition-metal ions in octahedral 

environments. Figure V.2 indicates, using the example 

of Mn3+ and Mn4+, the splitting of the 3d-electron energy 

levels caused by the octahedral crystal-field and the 

Jahn-Teller distortion (see also Chapters I and II).  Note 

that a large correlation energy causes both ions to be 

in the Hund’s rule “high-spin” state. 

Fig. V.2. a) The undistorted ABO3 perovskite structure, showing 
the green transition-metal ions (B) at the center of O2- octahedra. 
b) Energy splitting of the 3d-electron states in an octahedral crys-
tal field (Mn4+) and due to the Jahn-Teller effect (Mn3+).

TMO materials show ordered phases of the charge, spin 

and orbital degrees of freedom; Figure V.3 indicates the 

different unit cells which occur in the MnO2 planes of 

the manganite La0.5Sr1.5MnO4 [3]. 

An example of the variety of phases which arise in TMOs 

is that of the manganite La1-xCaxMnO3 (LCMO) (see Fig. 

V.4 a) [4]. As the electron concentration is increased by 

Ca doping, the stable low-temperature phase changes 

from antiferromagnetic insulator (AFI), to ferromagnetic 

insulator (FMI), to ferromagnetic metal (FMM) and  finally 

to a charge-orbitally ordered state (CE). In the FMM phase 

of LCMO, colossal magnetoresistivity is associated with 

the formation of nanoscale polarons that develop at 

elevated temperature, which, around x ≈ 0.3, show cor-

relations with a wave-vector ≈ (¼, ¼, 0) [3]. These cor-

relations develop into long-range order at x ≈ 0.5, where 

equal numbers of Mn3+ and Mn4+ form a charge- and 

orbitally-ordered structure known as “CE”. Above the 

magnetic ordering temperature, a correlated polaron 

glass phase is formed, with a weakly temperature-de-

pendent correlation length in the nanometer range. At 

still higher temperature, these static polarons become 

purely dynamic in character, as evidenced by inelastic 

neutron scattering (see Fig. V.4 b).  

Fig. V.3. The unit cells in the MnO2 planes of the layered material 
La0.5Sr1.5MnO4 [3]. The small dots are O2-, and the large black and 
blue dots represent Mn3+ and Mn4+ ions, respectively. One distin-
guishes the I4/mmm crystallographic (dots), the charge (small 
dashes), the orbital (solid) and the magnetic (large dashes) unit 
cells.

Another famous example of correlated-electron TMOs 

are the cuprates showing high-temperature supercon-

ductivity. The crystal structure and (schematic) phase 

diagram for YBa2Cu3O7-x, a hole-doped superconductor, 

are shown in Figure V.5. CuO2 planes in the layered, 

oxygen-deficient perovskite structure are responsible for 

superconductivity. Besides the superconducting phase 

(SC), of particular interest in the “underdoped” regime, 

are the spin-glass (SG) and pseudo-gap regions. Here 

there is evidence that static and dynamic “stripes” occur, 

with characteristic arrangements of Cu-ion charge and 

spin on the nanometer scale [5]. 
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Fig. V.4. a) The phase diagram of La1-xCaxMnO3, as a function of the electron doping x [4]. The antiferromagnetic insulator 
(AFI) and the ferromagnetic insulator (FMI) and metal (FMM) phases show magnetic order. Charge and orbital order occur 
in the FMM and CE phases, while orbital order is also found near x = 0 above 140 K. Disordered polarons of the CE-type oc-
cur above the magnetic ordering temperatures, with spatial correlations on the nanometer scale. b) In the “dynamic” re-
gion, inelastic neutron scattering shows the polarons to be fluctuating on the ps time-scale, as evidenced by the inelastic 
shoulder at the right of the E = 0 elastic scattering peak.

Fig. V.5. a) The layered perovskite structure of YBa2Cu3O7-x, with the superconducting CuO2 planes perpendicular to the 
plane of the figure. b) The schematic phase diagram of hole-doped high-temperature superconductors with, among others, 
the antiferromagnetic (AF), spin-glass (SG) and superconducting (SC) phases.
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X-ray methods in correlated electron 
 science

The relevance for correlated-electron materials of ps 

dynamics at the nanoscale, together with strong interac-

tion of X-ray photons with all four of the C-S-O-L degrees 

of freedom, promises important applications of the 

SwissFEL. To begin the discussion of relevant X-ray 

techniques, we consider the Hamiltonian describing an 

X-ray photon field interacting with the electrons in the 

sample [6, 7]. For the moment, we treat a single free 

electron, without spin:
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The interaction Hamiltonian, Hinteraction, is responsible for 

producing transitions from an initial state i � to a final 

state f � of the combined system of X-rays and sample. 

According to Fermi’s Golden Rule, the transition rate is 

given by:
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Here we are interested in “photon-in” (k) to “photon-out” 

(k’) transitions – thus we include only those terms which 

are quadratic in the vector potential A. We disregard the 

linear terms, which are responsible for photoemission. 

The transition rate is proportional to the square of the 

“scattering factor”, w ∝��  S
��
Q ,
( ) 2

�, which, in turn, is a 

function of the momentum and energy transfers ��
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Consider now the following cases:

Hard X-ray diffraction

If the photon energy ��  �
k � is much larger than the excita-

tion energies En-E0 of the system, we need only con-

sider the first matrix element in the expression for w:
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where 0 � is the ground-state of the system, and where 

we now sum over all the electrons, with coordinates��
��
r j �. 

For a crystalline sample, the scattering factor ��F
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written
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i.e., as a lattice sum over the unit cells and a “structure-

factor” sum over the I atoms per unit cell. The quantity 
fi

��
Q ( )� is known as the atomic scattering factor. For a 

perfect crystal, the lattice sum dictates that F is non-

zero only if ��
��

Q =
��

G hkl �, a reciprocal lattice vector. This is 

the condition for Bragg scattering, which, using the rela-

tions 
  
Q =

4� sin�

�
� and 
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2�

d
�, can be expressed as Bragg’s 

law:   � = 2d sin��. We thus see that diffraction at the Bragg 

angle θ is possible when the X-ray wavelength λ is 

shorter than twice the lattice-plane spacing (2d). The 

scattered intensity at the Bragg condition is propor-

tional to ��F
��

Q ( ) 2
�. The sensitivity of the Bragg condition 

to the lattice parameters implies that the diffraction of 

short X-ray pulses can be used to directly observe lattice 

phonons.

Soft X-ray resonant diffraction

If the incoming photon energy lies close to an atomic 

absorption edge, it is the second-order contribution from 

H2 which dominates the scattering rate. The case of 

elastic scattering, ωk’ – ωk = 0, is treated via an energy-

dependent correction to the atomic scattering factor:
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We see that the scattering is sensitive to the electronic 

structure of the ground- and intermediate states and to 

the polarization of the incoming and outgoing photons 

(see Fig. V.6 a). The existence of a “core-hole” in the 

intermediate state is responsible for introducing the 

linewidth parameter Γ, representing the lifetime of the 

state  n>.

≡−
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a)

b)

Fig. V.6. a) The resonant elastic scattering process, indicating a 
vir tual transition from an occupied core state (blue) to an unoccu-
pied intermediate valence state (red) [8]. b) A charge-dependent 
shift in the core-level energy shifts the energy-dependent scatter-
ing profile, providing contrast for charge-ordering [9]. 

For soft X-rays, where the photon wave-vector k is sig-

nificantly larger than the atomic dimensions, one can 

expand the exponentials into dipole, quadrupole and 

octupole terms:
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The product of two such matrix elements yields a hier-

archy of tensorial terms: dipole-dipole (rank 2), dipole-

quadrupole (rank 3), quadrupole-quadrupole (rank 4), 

etc. These tensorial components can be enhanced by a 

suitable choice of polarizations and scattering vector.

In TMOs, interesting resonances are the L2 and L3 

transition-metal edges, which connect filled 2p and un-

filled 3d states. The corresponding photon wavelength, 

approximately one nm, allows the observation of reso-

nant soft-X-ray diffraction, and the dependence of the 

matrix elements on valence-band electronic structure 

produces superstructure Bragg reflections, correspond-

ing, for example, to orbital-ordering in the correlated-

electron material. And when circularly-polarized X-rays 

are used, XMCD-contrast (see Chapter I) makes mag-

netic order visible. Finally, a charge-dependent shift of 

the initial core level shifts the energy-dependent resonant 

scattering profile (see Fig. V.6 b), providing a charge-

order contrast. 

One should note that soft-X-ray resonant diffraction is 

not easy: it requires scanning of the incoming photon 

energy, a multi-axis diffractometer in vacuum, and per-

haps polarization-analysis of the scattered beam.

With the SwissFEL, a pump-probe resonant diffraction 

experiment can follow, for example, the melting of or-

bital order by a laser pump pulse and its recovery at 

later times. Its short pulses and flexible energy tuning, 

particularly near 1 nm wavelength, make the SwissFEL 

an ideal source for such investigations of TMO corre-

lated electron materials. A particularly interesting ap-

plication of pump-probe resonant elastic scattering at 

the SwissFEL would be the time-resolved study, at the 

nanometer scale, of so-called “orbitons”, wave-like ex-

citations of the orbitally-ordered phase, in manganites 

(see Fig. V.7).

Fig. V.7. The proposed structure of an “orbiton”, a wave-like exci-
tation of the orbitally-ordered state in manganites. Optical pump-
probe experiments provide evidence of its existence, with an os-
cillation period in the range of 10–50 ps [10]; resonant diffraction 
at the SwissFEL would allow its detailed study at the nanoscale.

Resonant inelastic X-ray scattering (RIXS)

We now lift the restriction to elastic scattering, by allow-

ing ω = ωk’ – ωk to be non-zero, requiring, in general, 

energy analysis of the scattered photons. A schematic 

of the RIXS process is shown in Figure V.8.

Fig. V.8. A schematic of the resonant inelastic X-ray scattering 
(RIXS) process.
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The scattering rate is now given by:
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Note the following features: a) The sensitivity to photon 

polarization and valence electronic states seen in reso-

nant elastic scattering is also present for RIXS. b) Al-

though there exists a (virtual) core-hole in the intermedi-

ate state, evidenced by the Γ-term in the denominator, 

because there is no hole in the final state, the ωκ’ reso-

lution of RIXS can in principle be infinitely good – as 

evidenced by the energy δ-function. c) Low-energy col-

lective excitations, such as phonons, plasmons, spin-

waves, etc., of the sample are accessible with RIXS, 

since what is measured is the energy difference between 

the incoming and outgoing photons. And since two pho-

tons are involved, the dipole selection rule Δ�=±1 does 

not apply, such that a d→d transition can be observed 

(see Fig. V.9 a). d) Although performed at resonance, 

RIXS is a low-efficiency process: In resonant elastic
 
a)
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Fig. V.9. a) A d→d transition observable with RIXS, without restric-
tions from dipole selection rules. In this way, for example, the 
crystal-field or Jahn-Teller splitting of the d -orbitals of a 3d-transi-
tion-metal ion can be measured. b) Experimental RIXS spectra for 
Sr14Cu24O41, taken at the oxygen K-edge and at the Cu L3-edge 
[11], showing structures due to the transfer of charge between 
 atoms, the Cu crystal-field splitting and collective spin-flip excita-
tions.

A single-shot RIXS spectrometer

When performing resonant inelastic X-ray scattering 

(RIXS), the scattered intensity as a function of outgo-

ing photon energy Eout = �
k’ is normally acquired for 

particular settings of the incoming energy E in = �
k 

by the monochromator. This is a procedure which is 

incompatible with single-shot operation at the Swiss-

FEL. One would like to instantaneously obtain a two-

dimensional plot of the scattered intensity as a 

function of Ein, Eout.

A method of performing single-shot RIXS has been 

proposed by V. Strocov [25] (see Fig. V.i2). The Swiss-

FEL pulse is dispersed vertically by a monochromator 

(upper right in the figure) and brought to a line focus 

on the (homogeneous) sample. Scattered light cor-

responding to the various incoming photon energies 

is then focused to a vertical line and dispersed in Eout 

horizontally onto a CCD detector. The result is the 

desired two-dimensional plot.

Fig. V.i2. Proposal for a doubly-dispersive RIXS spectrometer, 
suitable for use at the SwissFEL [25]. Advantages of this de-
sign include higher efficiency and compatibility with single-shot 
operation. The “VLS grating” has variable line spacing.
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scattering, the excitation of each of the N scattering 

atoms can be coherently added, since there is a unique 

final state. This results in a scattering intensity propor-

tional to N2. For RIXS, because the virtual excitation of 

different atoms leads to different final states, the con-

tributions add incoherently, resulting in an intensity 

proportional to N [7].

Performing RIXS is an extremely challenging undertaking, 

due to the low scattered intensity and because of the 

necessity of performing an energy (and scattering-angle) 

analysis of the scattered radiation. For pump-probe RIXS 

experiments at the SwissFEL, it would therefore be 

particularly interesting to realize a single-shot mode of 

measuring, either in the frequency (see Infobox) or in 

the time (ditto) domains. 

The intermediate scattering function

At the beginning of this Section, we saw how the transi-

tion rate for X-ray photon scattering, with momentum 

transfer �
��
Q � and energy transfer ��  �
 �, is related to the 

scatter ing function ��  S
��

Q ,
( )�. This function shows peaks 

as a function of ω corresponding, for example, to long-

lived oscillations (quasiparticles), such as phonons, 

spin-waves, etc. But finite lifetime effects will broaden 

these quasiparticle peaks, and in the limit of strong 

damping, it may be advantageous to observe the time-

dependent fluctuations of the system directly – i.e., to 

measure instead the so-called time-domain or intermedi-

ate scattering function [12]:

S(Q→
,t) = �

∞

−∞
S(Q→

,ω)eiωtdω.

The intermediate scattering function basically provides 

the correlation time (over which S(Q,t) decays to the 

value 1/e) for the equilibrium fluctuations of a system, 

as a function of the fluctuation length scale 1/Q. By 

monitoring the scattered intensity I(θ,t) at a particular 

scattering angle 2θ (related to the momentum-transfer 

by Q = 4π sinθ/λ), one has access to S(Q,t) via the in-

tensity correlation function g2(θ,t) and the “Siegert rela-

tion” [13]:

  g2 �, t( ) �

 

≡
 ��  

I �, t( )I �, t + �( )
I �, t( ) 2

= 1+ S
��
Q , t( ) 2

�.

A measurement of I(θ,t) on the ultrafast time scale, 

pertinent to correlated electron materials, would require 

reading out a detector at an impossible rate of GHz -THz. 

Two realistic alternatives, however, which are well-suited 

to the characteristics of the SwissFEL, are provided by 

the “split-pulse” and “Mössbauer filter foil” techniques 

and are described in Infoboxes.

RIXS in the time-domain

A principal drawback of conventional RIXS measure-

ments is the necessity of a fine energy-analysis of the 

scattered radiation, resulting in a significant loss of 

intensity. It has been suggested [26] that the ul-

trashort pulses of the SwissFEL could be used to 

effectively perform RIXS in the time-, instead of the 

energy domain. 

If a suitable non-linear (NL) optical medium for soft 

X-rays could be developed, one could imagine perform-

ing X-ray heterodyne spectroscopy: A SwissFEL pulse 

is split into two pulses. One of these is scattered by 

the sample, causing the creation, by inelastic scat-

tering, of multiple frequency components. This multi-

frequency pulse is then recombined with the unscat-

tered reference pulse in the NL-medium, where sum 

and difference frequencies are generated. The differ-

ence frequencies appear at the detector as slow 

oscillations, corresponding to the inelastic energy 

loss or gain in the sample. 

Heterodyne spectroscopy is routinely performed with 

optical pulses, using the frequency-resolved optical 

gating (FROG) technique (see Fig. V.i3). Realization of 

an X-ray FROG will require the transform-limited 

pulses which a seeded SwissFEL will provide.

Fig. V.i3. A FROG device, using two-photon ionization in He gas 
as a NL mixer, which operates at a photon energy of 28 eV 
[27].



84 PSI – SwissFEL Science Case V. Time-Resolved Spectroscopy of Correlated Electron Materials

The Mössbauer filter-foil technique

The Mössbauer filter-foil technique provides an alter-

nate method for measuring the intermediate scatter-

ing function [30]. Foils containing a stable Möss-

bauer isotope are placed in front of and behind the 

scattering sample and, at time t=0, a resonant Swiss-

FEL pulse excites the isotope. The subsequent decay 

is then monitored by the total transmitted counting 

rate, measured in the forward direction (see Fig. V.i5).

 

Fig. V.i5. The Mössbauer filter-foil method for measuring the 
 intermediate scattering function S(Q,t) [30].

Denoting by ρ(Q,t) the spatial Fourier transform of the 

electron density in the sample at the time t, the in-

termediate scattering function is given by S(Q,t) = 

〈ρ(Q,0)ρ∗(Q,t)〉. Further, we let |g(t)|2 denote the decay 

probability of the Mössbauer isotope a time t after 

excitation.

The signal I(t) at the detector is the square of the 

coherent sum of the probability amplitudes for a) 

radiation scattered by the sample at time zero and 

emitted by the nuclei of the second foil at time t and 

b) emitted by the first foil at time t and directly scat-

tered into the detector:

I (t) = 〈|ρ(Q,0)g(t) + g(t) ρ(Q,t)|2〉

 = 2|g(t)|2 [|ρ(Q,0)|2 + Re S(Q,t)]

From this expression, the intermediate scattering 

function can be extracted.

By far the most popular Mössbauer isotope is 57Fe, 

with a resonant energy of 14.4 keV and an excited 

state lifetime of 141 ns. An upgrade option for the 

SwissFEL will make this photon energy accessible 

with the fundamental undulator radiation, as well as 

still higher energies using XFEL harmonics [31].

Advantages of the filter-foil method in combination 

with the SwissFEL are: a) extremely intense X-ray 

pulses with zero background during the nuclear decay, 

and b) measurements of S(Q,t) for times far longer 

than those accessible with the split-pulse XPCS 

method. (The maximum feasible split-pulse delay will 

be ns for hard X-rays and tens of ps for soft X-rays.)

Split-pulse XPCS

X-ray photon correlation spectroscopy measures the 

time-correlation function of the coherently-scattered 

radiation intensity from a fluctuating sample:

g2 �( ) =
I t( )I t + �( )

I t( ) 2
�.

Since this requires a detector bandwidth which ex-

ceeds that of the fluctuations, one is generally limited 

to times τ longer than 10 nsec.

The use the SwissFEL to probe ps-dynamics will re-

quire a different approach – “split-pulse XPCS” (see 

Fig. V.i4) [11]. Here a single SwissFEL pulse is split 

and delayed, producing a pair of pulses with tunable 

separation τ. The 2d-detector then registers a double-

exposure speckle pattern, and the speckle contrast 

will decrease when τ exceeds the fluctuation correla-

tion time τc. 

Fig. V.i4. A conceptual “split-and-delay” unit for XPCS at the 
SwissFEL [28].

That one indeed can measure g2(τ) with split-pulse 

XPCS has been demonstrated by Gutt et al. [29]: 

The double exposure delivers the intensity 

  S �( ) = I t( ) + I t + �( ) �, and the speckle contrast is 

given by the variance:

 c2 �( ) �≡

  

S 2 �( ) – S �( ) 2

S �( ) 2
�

We note that:

  

S 2 �( ) = 2 I 2 + 2 I t( )I t + �( )
S �( ) 2

= 4 I
2

�

and that, for a fully coherent beam, 

I 2 – I
2

= I
2
�.

We thus obtain:

  

c2 �( ) =
I t( )I t + �( )

2 I
2

=
g2 �( )

2
�.
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Origin of the metal-insulator transition  
in TaS2

A signature feature of correlated electron materials is 

the occurrence of metallic and insulating phases, and 

of transitions between them. These metal-insulator 

transitions (MIT), can be caused by temperature, pres-

sure, doping, or by other external influences. Two pos-

sible mechanisms for such an MIT are a) the Peierls 

instability and b) the Mott-Hubbard transition.

The Peierls instability

The Peierls instability [14] causes a metal to become 

an insulator by the action of a lattice distortion which 

doubles the crystal unit cell (see Fig. V.10). The energy 

cost incurred by the elastic distortion is more than 

compensated by a lowering of the electronic energy, due 

to the opening of a Peierls gap at the electronic Fermi 

level. Note that the situation is similar to that for the 

spin Peierls effect, discussed in Chapter I, where it is 

the lowered magnetic energy for spin dimers which drives 

the lattice distortion. Both the charge Peierls instability 

and the spin Peierls effect are intimately connected to 

the motion of lattice atoms, hence the relevant time 

scale will be that of lattice vibrations (i.e., 10–100 fs).

2a
E

-kF 0 kF = π/2a
k

gap EFermi

Fig. V.10. The Peierls instability [14]. Under special circum-
stances, it may become energetically favorable for a metallic crys-
tal to undergo a spontaneous lattice distortion, forming atomic 
dimers, and doubling the crystal unit cell. In reciprocal space, the 
Brillouin zone is halved, and a gap opens at the Fermi level, caus-
ing a lowering of the electronic energy, which more than compen-
sates for the cost in elastic energy. The presence of the gap caus-
es the material to become insulating.

The Mott-Hubbard transition

A purely electronic mechanism for producing a metal-

insulator transition results from the correlation physics 

described by the Hubbard model (see Infobox). In this 

model, the motion of electrons among lattice sites is 

governed by the two parameters  and . The on-site 

Coulomb repulsion  is the energy cost incurred when 

a lattice site is simultaneously occupied by two electrons. 

The bandwidth  measures the tendency of electrons 

to minimize their kinetic energy by delocalizing among 

the lattice sites. As shown in the Infobox, a large /  

ratio favors electron localization and hence the insulat-

ing state, while a small value for this ratio causes the 

electrons to become itinerant and the material to become 

a conductor. Therefore, at some intermediate value of 

/ , an originally half-filled conduction band will split 

into two bands, by the creation of a Hubbard correlation 

gap (of order ) in the electron density of states (see 

Fig. V.11). Since no atomic motion is involved, the rel-

evant time scale of the Mott-Hubbard transition is that 

of the electronic motion, i.e., 10 fs and faster.

E

EF UW

DOS

Metal Mott-Hubbard insulator

E

UHB

LHB

Fig. V.11. The Mott-Hubbard metal-insulator transition, as predict-
ed by the Hubbard model, is a purely electronic effect, which 
opens a gap at the Fermi level, splitting the half-filled valence 
band into a filled “lower Hubbard band” (LHB) and an unfilled “up-
per Hubbard band” (UHB).

The characteristic time scales of the “slow” Peierls in-

stability and the “fast” Mott-Hubbard transition are 

compared with electronic and lattice motions in Figure 

V.12. 

Linewidth (eV)

Time scale (fs)

1 0.1 0.01 0.001

10.1 10 100 1000

screening

dephasing of
coherent excitations

e – correlation

electronic dynamics

e – e scattering

e – phonon scattering

molecular motions

nuclear motions

Peierls type

Mott-Hubbard type

Fig. V.12. Characteristic time scales involved in metal-insulator 
transitions of the Peierls and Mott-Hubbard types. A Mott-Hubbard 
transition, being purely electronic in nature, is inherently faster 
than a Peierls transition, which is tied to the slower motion of the 
lattice atoms [15].
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The Hubbard Model

The Hubbard Model [32] is the simplest model of in-

teracting particles in a lattice and the starting point of 

many descriptions of correlated electron systems. It is 

based on the “Hubbard Hamiltonian”:

H = –W ∑
ij �

cj�
† ci� + U ∑

i
ni ni ��� ��

Where the operators c†
jσ and ciσ are electron creation 

and annihilation operators, n = c†c is the number op-

erator, and the sums run over the spin directions σ = 

� and ! and the N lattice sites of the model. <ij> implies 

neighboring lattice sites. The principal parameters of 

the model are  and , the on-site Coulomb repulsion 

and the electron bandwidth (or hopping rate), respec-

tively. Let us consider two limiting cases [33]:

a) Static electrons (  = 0)

It is now enough to take into account a single site, and 

the possible states are {|0〉,|�〉,|!〉,|�!〉}, i.e., empty, a 

single spin up, a single spin down, or doubly-occupied. 

We calculate the partition function Z and the thermally-

averaged site occupancy <n>:

 

Z = ∑
�

� e�� H �n( ) � = 1+ e�� + e�� + e��U +2��

n = 1

Z
∑
�

� n + n( )e�� H ��n( ) � = 1

Z
0 + e�� + e�� + 2e��U +2��[ ]

=
2 e�� + e��U +2 ��( )

1+ 2e�� + e��U +2 ��

�� ��

where β = 1/kBT, and μ " 
��
�E

� n
�is the chemical potential. 

Plotting <n> as a function of μ (Fig. V.i6) we find that 

at the condition for half-filling, <n> = 1, the energy 

required to add an electron to the system changes by 

. It is this “Hubbard gap” which implies an insulating 

behavior.

Fig. V.i6. Average site occupancy <n> vs. the chemical potential 
μ, for the Hubbard model without electron hopping ( = 0). The 
jump in μ by the value  at half-filling implies the existence of an 
energy gap, and hence insulating behavior.

b) Non-interacting electrons ( = 0)

In this case, it is convenient to use the reciprocal-space 

representation of the electron operators:

  
ck�

† = 1

N
∑
l

eik lcl�
†

�,

where k takes the values kn = 2πn/N, assuming peri-

odic boundary conditions in one dimension. The Hub-

bard Hamiltonian now has the form:

,

where the last expression follows from performing the 

lattice sums. The energy levels of this Hamiltonian 

show a “band” behavior (see Fig. V.i7). As N goes to 

infinity, we obtain a (gapless) continuum of states, with 

bandwidth 4 , which, at half-filling, implies metallic 

behavior.

Fig. V.i7. Energy eigenvalues for the Hubbard Hamiltonian for 
non-interacting electrons (  = 0). The points are for a model with 
N = 8 lattice sites. Half-filling of such a continuous band implies 
conducting behaviour.

We thus find that the Hubbard Hamiltonian describes 

an insulator, in the case = 0, and a metal, for = 

0. Between these two limits, i.e., for intermediate / , 

there must occur a metal-insulator transition: the Mott 

transition.
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A particularly interesting material in which to investigate 

the nature of MIT is the 1T phase of the dichalcogenide 

tantalum disulfide [16]. 1T-TaS2 consists of S-Ta-S layers 

which are weakly coupled to one another and which, at 

room temperature, show an incommensurate charge-

density wave (CDW) modulation which serves to split 

the Ta d-electron states into three bands. Since the up-

permost of these is half-filled, the material is metallic. 

Below 180 K, the CDW locks to the lattice, and the re-

sistivity increases by a factor 10. In order to investigate 

the nature of the MIT in this material, Perfetti et al. 

performed a pump-probe experiment on an insulating 

sample at T = 30 K. A 1.5 eV laser pump pulse, with a 

duration of 80 fs, excites hot electrons in the material, 

and at a variable time later, the time-resolved band 

structure is probed with angle-resolved photoemision, 

using 6 eV incoming photons. 

Without a pump signal, or with a long (4.5 ps) pump-probe 

delay, the photoelectron spectra (see Fig. V.13 a), show 

a pronounced “lower Hubbard band” (LHB), correspond-

ing to the insulating phase. But shortly after the pump,  

the LHB intensity collapses, and a tail appears, extend-

ing far above the Fermi level, demonstrating short-lived 

metallic behavior. The time-dependent LHB peak height 

(Fig. V.13 b) shows the ultrafast (fs) nature of the col-

lapse and a continuous recovery of the insulating state. 

Both these observations argue strongly for a predomi-

nantly Mott-Hubbard nature of the MIT in 1T-TaS2.

Pump-probe photoelectron spectroscopy is not a tech-

nique which is particularly well-suited to the SwissFEL, 

due to the degraded energy resolution from the space-

charge felt among the many low-energy photoelectrons 

which are simultaneously emitted from the sample. But 

other powerful X-ray methods, in particular photon-in-

photon-out techniques, such as X-ray absorption near-

edge spectroscopy (XANES) (see Chapter II) and resonant 

inelastic X-ray scattering (RIXS), can provide similar in-

formation pertinent to electronic band structure effects. 

These can be performed in a pump-probe arrangement, 

perhaps even in a single-shot mode (see Infobox), at the 

SwissFEL. 

a)

b)

Fig. V.13. Time-resolved pump-probe photoelectron spectroscopy 
spectra for insulating 1T-TaS2, showing the ultrafast collapse of 
the lower Hubbard band and its continuous recovery, with a 680 
fs time constant. These observations confirm the Mott-Hubbard 
nature of the metal-insulator transition in this material [16].
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Ultrafast investigations of the electron- 
phonon interaction

Two of the most important aspects of the correlated 

electron chimera (Fig. V.1 b) are the electron and lattice 

degrees of freedom. One example of the electron-lattice 

interaction is the Peierls instability, discussed in the 

previous Section. Another is the phonon-mediated mech-

anism responsible for the creation of Cooper pairs in 

the BCS theory of (conventional) superconductivity. As 

evidenced by the following two examples, insight into 

this important interaction can be won through the use 

of ultrafast time-resolved measurement techniques.  

Electron pump – lattice probe

Let us feed the electron part of the chimera and see 

how the lattice part reacts. A convenient system for such 

studies is elemental bismuth, with its interesting crystal 

structure and lattice dynamics, together with a high 

atomic number, suitable for hard X-ray scattering. The 

Bi lattice structure is shown in Figure V.14, where the 

pair of atoms in each unit cell is indicated, with a sepa-

ration along the c3 axis described by the coordinates x 

= (0.5±0.0332) a0, where a0 is the rhombohedral lattice 

constant. The deviation of these values from a0/2 is due 

to the Peierls instability discussed earlier. The atoms of 

a pair vibrate against one another in the A1g optical 

phonon mode, with a frequency of 2.9 THz.

Fig. V.14. The rhombohedral crystal structure of bismuth, show-
ing the positions of the two atoms per unit cell along the three-fold 
c3 axis.

An ultrafast laser pulse excites the electronic system in 

Bi, altering its electronic state and, via the electron-

phonon interaction, causes a sudden (i.e., on the elec-

tronic time-scale) weakening of the interatomic potential 

– due to the partial occupation of normally unoccupied 

anti-bonding orbitals (see Fig. V.15 a). As a result, the 

(slowly-moving) atoms no longer find themselves at po-

tential minima, and they begin to oscillate coherently in 

the A1g phonon mode. This displacive excitation oscilla-

tion has been directly observed with pump-probe hard-

X-ray diffraction at the laser-sliced FEMTO beamline at 

the SLS synchrotron (see Fig. V.15 b) [17]. The depend-

ence of the interatomic potential on the degree of elec-

tronic excitation was determined in this experiment by 

observing a linear drop in the phonon frequency with 

increasing pulse fluence (inset in Fig. V.15 b), in excel-

lent quantitative agreement with density functional 

theory calculations (see Fig. V.16 a) [18, 19].

a)

b)

Fig. V.15. a) Displacive excitation of coherent phonons. Upon opti-
cal excitation, the interatomic potential becomes shifted and soft-
er (blue dashed → blue solid), causing the equilibrium atomic dis-
tribution (red) to adapt accordingly. b) The displacive excitation of 
A1g optical phonons in Bi is per formed with a laser pump pulse 
and probed with hard X-ray diffraction at the FEMTO beamline of 
the SLS synchrotron [17]. With increasing levels of excitation, a 
mode softening is observed due to the electron-phonon interac-
tion.



V. Time-Resolved Spectroscopy of Correlated Electron Materials PSI – SwissFEL Science Case 89

Fig. V.16. The density functional theory prediction of the intera-
tomic potential for the A1g optical phonon mode in Bi, as a func-
tion of the atomic coordinates x and the percentage of excited va-
lence electrons n [18]. Note the softening (and symmetrization) 
which occurs upon increasing excitation.

With the extremely low flux at the laser-sliced FEMTO 

beamline (see Chapter II), each point in Figure V.15 b 

requires typically one minute of measurement time; with 

a more weakly scattering system than bismuth, this time 

increases by orders of magnitude. The ultra-high peak 

brightness of the SwissFEL, together with its 100–400 

Hz repetition rate and the virtually continuous tuning of 

the pump-probe delay, will allow detailed investigations 

of subtle diffraction features from technologically inter-

esting but weakly scattering materials. 

Lattice pump – electron probe

We have seen how pumping the electron part of the 

correlated electron chimera influences the lattice. Can 

we also perform the inverse? In a purely optical experi-

ment, Rini et al. have excited a particular phonon mode 

in a perovskite manganite and recorded the effect on 

the electron system [20]. 

With the replacement of Pr by the smaller Ca ion, the 

crystal structure of PrMnO3 undergoes a local tilt of the 

MnO6 octahedra, in the form of an orthorhombic distor-

tion (see Fig. V.17). The electron hopping from Mn to Mn 

proceeds via an oxygen-mediated super-transfer mecha-

nism, which depends on the orbital overlap between 

neighboring sites, and this overlap is sensitive to the 

octahedron tilt. Hence the distortion causes a decrease 

in the Hubbard model bandwidth parameter , therefore 

giving rise to an insulating phase. Indeed, orthorhombic 

Pr1-xCaxMnO3 is insulating over a wide range of composi-

tions and temperatures.

Fig. V.17. Ca-doping causes Pr1-xCaxMnO3 to ortho-
rhombically distort, resulting in reduced orbital over-
lap (~ ) and hence in insulating behavior [20].

At a phonon energy of 71 meV (ν = 17.2 THz, in the 

mid-IR), the Mn-O distance in Pr0.7Ca0.3MnO3 undergoes 

a periodic modulation, implying also a modulation in the 

Hubbard bandwidth : one can hence envisage a dy-

namic metal-insulator transition. Rini et al. searched for 

this effect by performing an IR-pump/visible-probe ex-

periment [20], using the reflectivity of visible light to 

query the electron system. Their results are shown in 

Figure V.18. Note that IR-excitation leaves the system 

in its electronic ground-state.

Fig. V.18. The ultrafast change in reflectivity (at 800 nm wave-
length) observed after excitation of an IR phonon mode in 
Pr0.7Ca0.3MnO3 [20]. The effect is very similar to that produced by 
a visible laser pump (dotted curve), demonstrating that it indeed 
represents a transient change to a metallic state. 
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Using the visible reflectivity as a probe of electronic 

structure implies that one is sensitive only to changes 

in the immediate vicinity of the Fermi energy. A more 

complete probe of local and cooperative electronic ef-

fects is possible using soft-X-ray spectroscopies such 

as XANES and RIXS. Hence an IR-pump / soft-X-ray probe 

experiment at the SwissFEL has great potential for de-

livering a detailed picture of this type of dynamic MIT.

A multitude of further possibilities exist for SwissFEL-

based pump-probe investigations of the correlated-

electron chimera. We have seen that resonant soft-X-ray 

diffraction and inelastic scattering are sensitive to 

charge-, magnetic-, and even orbital-order, and the sug-

gestion has been made that with a suitable pump pulse, 

one can melt the order and monitor its recovery. One 

could also excite and detect cooperative excitations of 

these ordered phases, such as orbitons [10], with reso-

nant frequencies in the THz regime, accessible to the 

SwissFEL. Another possibility [21] is to use photo-exci-

tation to effectively change the filling number, i.e., 

“photo-doping” the correlated electron system, and to  

use the SwissFEL to detect the resulting effects on the 

lattice and electronic systems.

Complexity in correlated electron materials

In a much cited paper, Dagotto [22] discusses the con-

cept of complexity in connection with correlated electron 

materials. The essential point is that the competition 

between the charge-spin-orbital-lattice degrees of free-

dom can lead to the coexistence of different phases 

which are virtually degenerate in energy, and hence to 

inhomogeneities and glassy dynamics on a wide range 

of length and time scales. 

A hallmark of such “complex matter”, which exists “at 

the edge of chaos”, is a non-linear “giant” response to 

a small perturbation. For example, charge transport in 

manganite TMOs is different from that in simple metals: 

an isolated charge may strongly perturb its local environ-

ment, inducing the creation of a polaron, which may then 

attract other polarons to form larger, long-range struc-

tures. The manganite phase diagram was shown in 

Figure V.4 a, with the close juxtaposition of ferromag-

netic metal (FM) and antiferromagnetic insulator (AFI) 

phases. The complexity view of the magnetic-field-induced 

metal-insulator transition in this material is that a ground 

state exists with quenched disorder, arising perhaps 

from lattice distortion accompanying chemical doping 

(see Fig. V.19 a), with a glassy intermixture of FM and 

AFI phases (see Fig. V.19 b). A small applied magnetic 

field is then sufficient to tip the energy balance in favor 

of the FM phase, causing a giant, percolative change in 

the bulk conductivity.

Fig. V.19 a) Lattice strain, e.g., arising from fluctuations in chemi-
cal doping, produces a slight local preference for a particular 
phase [23]. b) On a coarser scale, a small external perturbation, 
such as an applied magnetic field, can cause a non-linear, “giant” 
percolative change in the macroscopic conductivity [22].

Also the cuprate superconductors show a variety of 

nanoscale inhomogenieties (see Fig. V.20), including the 

charge-spin stripes mentioned at the beginning of this 

Chapter (see Fig. V.5 b). Although the importance of 

stripes to the mechanism of high-temperature supercon-

ductivity is in question, also these materials appear to 

exhibit a giant response: A S–N–S (superconductor – 
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Fig. 20. Examples of nanoscale inhomogeneity in highly-correlated cuprate TMOs [22]. a) Idealized charge/spin stripes in cuprate super-
conductors, b) variations in the d-wave superconducting gap, detected in Bi2Sr2CaCu2O8+δ using scanning tunneling microscopy, c)  a 
checkerboard charge-ordered state in a Na-doped cuprate.

a) b) c)

normal conductor – superconductor) junction made of 

cuprate materials, whose N-layer thickness exceeds 100 

coherence lengths, behaves as if it were a S-S Josephson 

junction, implying that the presence of neighboring su-

perconducting material tips the balance in the thick N-

layer to superconducting behavior [22]. 

In his paper, Dagotto draws parallels between correlated-

electron materials and other forms of complex matter, 

such as polymers, liquid crystals and even bio-material. 

Just as groups of atoms in these soft materials form 

local solid patterns (i.e., molecules), which, when con-

sidered globally, exhibit complex, fluid behavior, so can, 

for example, Jahn-Teller-ordered regions in manganites 

lead to a complex electron liquid-crystal behavior, inter-

mediate between an electron solid and an electron liquid. 

The analogy with biochemical systems (see Chapter IV) 

is striking: a large number of nearly degenerate states, 

with the corresponding entropic barriers, move on a 

rugged energy landscape. But a peculiarity of the elec-

tron-based complexity is that it is inherently quantum-

mechanical [22].

The importance of the SwissFEL for investigating the 

spatial and temporal characteristics of such complex 

electron matter is twofold. Despite decades of work by 

a generation of scientists, a theoretical understanding 

of these materials is lacking. Fundamental approaches, 

like the Hubbard model (see Infobox), may be close to 

explaining microscopic features, such as the supercon-

ducting pairing mechanism, but they reach their limits 

when considering long-range interactions such as Cou-

lomb and electron-lattice effects. Time-resolved struc-

tural and spectroscopic information from the SwissFEL 

may provide the experimental foundation for a new level 

of description of these materials, connecting microscos-

pic mechanisms with macroscopic phenomenology, in 

the form of large-scale, numerical simulations. The 

second major SwissFEL contribution could be the devel-

opment of practical applications of these fascinating 

materials: particularly relevant are dynamic effects such 

as non-linear switching between states of high and low 

conductivity, the coupling of magnetic and electric effects 

in the so-called “multiferroics” (see Infobox), dielectric 

effects in relaxor ferroelectrics and the development of 

oxide electronics, including TMO field-effect transistors 

and novel spintronic devices.
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Summary

degrees of freedom of correlated electron 
materials lead to the inhomogeneous and 
dynamic coexistence of material phases 

the dynamic polarons in manganites and 
the charge-spin stripes in cuprates, have 
characteristic time and length scales (ps 
and nm) which are well-suited to be studied 
with the SwissFEL.

X-ray techniques of elastic diffraction and 
inelastic scattering provide high sensitivity 
to charge, spin, orbital and lattice degrees 
of freedom, in wavelength ranges covered 
by the SwissFEL. Furthermore, the 
SwissFEL will provide excellent access to 
the sub-ps dynamics of these degrees of 
freedom, either using laser-pump/X-ray 
probe experiments or by sampling 
equilibrium fluctuations via the 
intermediate scattering function S(Q,t).

technique for static studies of correlated 
electron materials in the laboratory and at 
synchrotrons, is poorly suited to time-
resolved measurements at the SwissFEL, 
due to resolution degradation by electron 
space-charge effects. However, the 
sensitivity to electronic structure provided 
by the photon-in/photon-out X-ray absorp-
tion and resonant scattering techniques 
make them highly promising alternatives, 
particularly in single-shot mode.

correlated-electron materials can be 
elegantly determined by time-resolved 
pump-probe experiments. In this way, the 
metal-insulator transition in 1T-TaS2 is 
shown, by its ultrafast character (i.e., much 
faster than typical lattice vibratons), to be 
due to the electronic Mott-Hubbard 
transition, and not to the lattice-related 

directly studied in time-resolved pump-
probe experiments. Examples are the 
creation via hot electrons of coherent 
phonons in bismuth and the triggering of  
a dynamic metal-insulator transition by the 
IR-excitation of a particular phonon mode  

0.7Ca0.3MnO3.

materials exhibit electronic complexity, 
characterized by glassy dynamics and giant 
responses to small external perturbations. 
This complexity is reminiscent of that of 
molecular systems, such as liquid crystals 
and even biological macromolecules. The 
ability of the SwissFEL to provide novel 
information over a large range of time and 
length scales makes it an ideal tool to 
establish an experimental foundation for a 
unification in the theory of correlated 
electrons at the micro- and macro-scales.
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