
Development of a Lensless

Microscopy Technique for

Imaging Cellular Structures

Diploma Thesis

in

Physics

at

Ulm University

by

Martin Dierolf

October 22, 2007



Supervisors at Ulm University:

Prof. Dr. sc. nat. ETH Zürich Othmar Marti
(Institute of Experimental Physics)

Prof. Dr. Ute Kaiser
(Electron Microscopy Group of Material Science)

Supervisor at the Paul Scherrer Institut, Villigen:

Prof. Dr. Franz Pfei�er
(Swiss Light Source & École Polytechnique Fédérale de Lausanne)



Contents

1 Introduction 4

2 Theory 6
2.1 The Fourier transform and its properties . . . . . . . . . . . . 6

2.1.1 De�nition and properties . . . . . . . . . . . . . . . . . 6
2.1.2 Fourier-Bessel transform for functions with circular sym-

metry . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Discrete Fourier transform . . . . . . . . . . . . . . . . 8
2.1.4 The sampling theorem . . . . . . . . . . . . . . . . . . 9

2.2 Coherent electromagnetic radiation . . . . . . . . . . . . . . . 10
2.2.1 The scalar wave equation . . . . . . . . . . . . . . . . . 10
2.2.2 Scalar di�raction theory . . . . . . . . . . . . . . . . . 11
2.2.3 Refractive index for x-rays . . . . . . . . . . . . . . . . 14
2.2.4 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Phase retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 The phase problem . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Sampling requirements . . . . . . . . . . . . . . . . . . 18
2.3.3 Phase retrieval with iterative algorithms . . . . . . . . 21
2.3.4 The Ptychographical Iterative Engine (PIE) . . . . . . 26

3 Simulations 32
3.1 In�uence of the overlap parameter on the convergence of PIE . 33

3.1.1 The overlap parameter . . . . . . . . . . . . . . . . . . 33
3.1.2 Error metric . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Simulating di�raction data for di�erent overlaps . . . . 34
3.1.4 Simulation results . . . . . . . . . . . . . . . . . . . . . 35

4 Experiments with visible laser light 38
4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Data acquisition for di�ractive imaging . . . . . . . . . . . . . 39
4.3 Processing of experimental data . . . . . . . . . . . . . . . . . 41

2



4.3.1 Determination of the illumination function . . . . . . . 41
4.3.2 PIE processing . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Pixel size in reconstructed images . . . . . . . . . . . . 44

4.4 Reconstructions with di�erent overlap parameters . . . . . . . 45
4.5 Toward routine lensless imaging applications . . . . . . . . . . 48

5 Di�ractive imaging with hard x-rays 51
5.1 Synchrotron radiation . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Radiation from a circular arc . . . . . . . . . . . . . . 51
5.1.2 Insertion devices . . . . . . . . . . . . . . . . . . . . . 53

5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Investigated samples . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Fresnel zone plate . . . . . . . . . . . . . . . . . . . . . 59
5.4.2 PSI logo . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusions and outlook 64

Bibliography 67

List of Figures 73

A Matlab code for a basic PIE simulation 75

Erklärung 78

Acknowledgements 79



Chapter 1

Introduction

If an object is illuminated with coherent electromagnetic radiation, either
visible laser light or x-rays, a di�raction pattern is formed in the far-�eld that
is related via a Fourier transform to the projection of the complex refractive
index of the object. But as only intensities can be detected, the phases of
the complex Fourier coe�cients are lost. Thus a direct reconstruction of the
object is not possible.

In the beginning of the 1970's, �rst iterative phase retrieval algorithms
were proposed to solve this problem. The pioneering work of Gerchberg and
Saxton [27] was further developed by Fienup [18, 19] to the widely used hy-
brid input-output algorithm. However, the �rst reconstruction from a x-ray
di�raction pattern was not achieved until 1999 [47]. Since then, the research
activities within the x-ray community in the �eld of `lensless imaging' have
strongly increased. This is due to the fact, that for hard x-rays today's mi-
croscopy methods are limited by the availability of high resolution optical
elements. Even state-of-the-art nano-structuring techniques are not capable
of producing optical elements that can achieve di�raction-limited resolution.
An increase of the resolution beyond the nano-structuring limit using lensless
imaging schemes is therefore of particular interest and would have signi�cant
applications in, e.g., biology and material science [62].

However, the imaging techniques based on the Fienup-type algorithms are
limited to a small �eld of view or isolated objects of �nite size and often su�er
from physical constraints, convergence problems, or defocus ambiguities.

A new approach called Ptychographical Iterative Engine (PIE) combines
ptychography [31] and the said standard phase retrieval algorithms. It over-
comes convergence limitations and ambiguities of the latter by employing
complementary di�raction data from overlapping illumination.

Within this thesis the principles of coherent di�raction microscopy are
discussed with an particular focus on the PIE algorithm and its experimen-
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tal realization. In chapter 2 the mathematical (section 2.1) and physical
prerequisites (section 2.2) are reviewed. The general concepts of iterative
phase retrieval are presented in 2.3 to provide the necessary basis for the de-
scription of the PIE algorithm. Studies on the optimization of an important
parameter (overlap) by means of model calculations are reported in chapter
3. Chapter 4 discusses the experiments that were carried out with visible
laser light. After a short introduction on synchrotron radiation, chapter 5
presents results of a realization of the technique with x-rays. It includes a
discussion of the particular limitations experienced in practice.

Alongside with the conclusions in chapter 6 an outlook on future appli-
cations is given.

Parts of the results presented in this thesis have been included in the
following publication:
O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfei�er. In�u-
ence of the overlap parameter on the convergence of the ptychographical iter-
ative engine. Ultramicroscopy, in print, doi:10.1016/j.ultramic.2007.08.003,
2007.
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Chapter 2

Theory

2.1 The Fourier transform and its properties

All of the following de�nitions are given in one-dimensional notation. Gen-
eralization to more dimensions is straightforward. For functions in direct or
real space the usual notation r = (x, y, z) is used for the coordinates. For the
Fourier transforms located in Fourier or reciprocal space, the Fourier space
coordinates are written as q = (qx, qy, qz). For one-dimensional notation the
index may be omitted.

2.1.1 De�nition and properties

The complex Fourier transform f̃(q) of a square-integrable function f(x) in
its continuous form is de�ned as [6]

f̃(q) = F {f(x)} =

∫ ∞
−∞

f(x) e−iqx dx , (2.1a)

with the corresponding inverse transform

f(x) = F−1
{
f̃(q)

}
=

1

2π

∫ ∞
−∞

f̃(q) eiqx dq . (2.1b)

Instead of a transformation between real and reciprocal space, the Fourier
transform also describes the transformation between the time t and the an-
gular frequency ω. From the de�nitions in (2.1), several useful relations can
be derived [9, 28]:

1. Similarity theorem:

F {f(ax)} =
1

|a|
f̃
(q
a

)
. (2.2)
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A coordinate �stretching� in direct space causes a contraction of the
corresponding Fourier space coordinates.

2. Shift theorem:
F {f(x± a)} = e±iqa f̃(q) . (2.3)

A translation in direct space results in a linear phase ramp or phase tilt
superimposed on the Fourier transform of the unshifted function.

3. Parseval's theorem:∫ ∞
−∞
|f(x)|2dx =

1

2π

∫ ∞
−∞
|f̃(q)|2dq . (2.4)

Apart from a constant prefactor, the integral over the modulus squared
in real and reciprocal space has the same value.

4. Convolution theorem:

F {f ∗ g} = F
{∫ ∞
−∞

f(x′)g(x− x′)dx′
}

= F {f}F {g} . (2.5)

A convolution of two functions transforms to the product of their
Fourier transforms.

5. Cross-correlation:

F {f ? g} = F
{∫ ∞
−∞

f(x′)g∗(x′ − x)dx′
}

= F {f} (F {g})∗ , (2.6)

with the important special case of the autocorrelation

F {f ? f} = |F {f}|2 . (2.7)

6. Fourier transform of a real-valued function f(x) = f ∗(x):

f̃(q) = f̃ ∗(−q) , (2.8)

which is also known as Friedel's law in di�raction physics [1].

7. Fourier transform of derivatives:

F
{

dn

dxn
f(x)

}
= (iq)nf̃(q) . (2.9)

7



2.1.2 Fourier-Bessel transform for functions with circu-
lar symmetry

Optical setups often show circular symmetry with respect to the optical axis.
This can be used to reduce two-dimensional problems involving Fourier trans-
forms to one dimension by using the Fourier-Bessel transform which is also
known as Hankel transform of zero order [9]:

H0 {g(r)} = 2π

∫ ∞
0

rg(r) J0(rq)dr , (2.10)

where J0 is the zeroth-order Bessel function of the �rst kind. Discrete versions
of this transform utilize roots of the Bessel functions as sampling points.
Details can be found in [29, 68].

2.1.3 Discrete Fourier transform

Analysis of experimental data with computers requires discretization of both
the data sets and the mathematical operations (transforms). The one-dimen-
sional discrete Fourier transform (DFT) maps an complex-valued vector f of
N elements to another vector space with the same dimension N . The n-th
element of the transformed vector is given by [8]

f̃n = (F {f})n =
1

N

N−1∑
m=0

fm e−2πinm/N , 0 ≤ n ≤ N − 1. (2.11)

Then the corresponding inverse transform is

fn =
(
F−1

{
f̃
})

n
=

N−1∑
m=0

f̃m e2πinm/N , 0 ≤ n ≤ N − 1. (2.12)

The theorems introduced in section 2.1.1 for the continuous case are also valid
for the DFT, see, e.g., [6, 8, 46] for more details. One important additional
property is the perodicity of the DFT so that for all n ∈ [0, N − 1]

fn+kN = fn , ∀ k ∈ Z , (2.13a)

f̃m+kN = f̃m , ∀ k ∈ Z . (2.13b)

In practice all discrete Fourier transforms are ususally calculated using the
fast Fourier transform (FFT) [12], which uses certain symmetries so that the
computing time scales only with N log(N) rather than N2 as for a standard
DFT.
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2.1.4 The sampling theorem

In practice it is important to determine the sampling intervals that have
been used to sample a continous function on a discrete, �nite grid. The DFT
relates the sampling step size ∆q in Fourier space to the direct space step
size ∆x and the total number of sampling points N by

∆x∆q =
2π

N
. (2.14)

The highest Fourier space component qN contained in the Fourier transform
is

qN =
N

2
∆q =

π

∆x
. (2.15)

When a function in direct space is sampled with too large intervals, spatial
frequencies higher than qN are wrapped in Fourier space and show up as
lower frequencies due to the periodicity of the DFT (see eq. (2.13)). This
phenomenon is known as aliasing. However, if a continuous function f(x) is
bandwidth-limited, that is

f̃(q) = 0 for |q| > qNyq , (2.16)

and for this maximum spatial frequency qNyq,

qNyq < qN (2.17)

is ful�lled, aliasing does not occur. This qNyq is called the Nyquist frequency
or sometimes also cut-o� frequency. Condition (2.17) translates with (2.15)
to

∆x <
2π

2qNyq
. (2.18)

As a consequence the function has to be sampled at intervals inversely pro-
portional to twice the Nyquist-frequency (occurrence of the factor 2π depends
on the choice of the Fourier space variable). In this case, the function f(x)
is completely determined by its sampled version fm ≡ f(m∆x) [8]:

f(x) =
∞∑

m=−∞

fm
sin qNyq(x−m∆x)

qNyq(x−m∆x)
=

∞∑
m=−∞

fm sinc
π

∆x
(x−m∆x) . (2.19)

This form of the so called sampling theorem was �rst published by Shannon
[61].1 Shannon points out that a band-limited function cannot be perfectly
limited in direct space as well, but may be kept very small outside a certain
region. Then the in�nite sums in equation (2.19) can be replaced by a �nite
summation with m = 0, . . . , N − 1 running over all sampling points.

1Therefore it is often called the Shannon sampling theorem. As Shannon cites earlier
work by Nyquist and Whittaker in his article, also the terms Nyquist-Shannon sampling

theorem and Whittaker-Shannon sampling theorem are used.
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2.2 Coherent electromagnetic radiation

2.2.1 The scalar wave equation

Although the derivation of the (scalar) wave equation from Maxwell's equa-
tions can be found in standard textbooks on electrodynamics [38, 55] or optics
[5, 26], a quick overview is given here to point out the necessary assumptions
and approximations. When matter is present, Maxwell's equations read:

∇×H(r, t) = j(r, t) +
∂D(r, t)

∂t
, (2.20a)

∇× E(r, t) = −∂B(r, t)

∂t
, (2.20b)

∇ ·D(r, t) = ρ(r, t) , (2.20c)

∇ ·H(r, t) = 0 . (2.20d)

The state established in space by the presence of electric charges can be
described by as electromagnetic �eld represented by the electric �eld vector
E and the magnetic �eld vector H. To account for the presence of a medium a
second set of vectors is introduced: The electric current density j, the electric
displacement D and the magnetic induction B. ρ is the charge density.
Together with the materials equations

B(r, t) = µ0µH(r, t) , (2.21a)

D(r, t) = ε0εE(r, t) , (2.21b)

a unique determination of the �eld vectors from a given distribution of cur-
rents and charges is possible. The constant µ0 is the permeability of the
vacuum, ε0 its permittivity. The the medium's permittivity is ε = ε(r, ω)
and its permeability µ = µ(r, ω), respectively. In the general case these are
second order tensors. With the assumption, that the medium is isotropic
they become scalars.
For the further discussion, electrically neutral, nonconducting media are as-
sumed, i.e., ρ = 0, j = 0, so Maxwell's equations (2.20) reduce to the ho-
mogeneous case. Then the Fourier transform with respect to t is applied
on these equations and eliminates the time dependence, a common method
for solving partial di�erential equations of this type. The argument (r, ω) is
omitted in what follows.
Combining (2.21b) with (2.20c) yields

∇ · D̃ = ε0∇ · εẼ = ε0

(
Ẽ · (∇ε) + ε∇ · Ẽ

)
, (2.22)
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which shows the necessity of another approximation: The wave equation can
only be obtained if ∣∣∣Ẽ · ∇ε∣∣∣� ∣∣∣ε∇ · Ẽ∣∣∣ , (2.23)

that is the variation of the electric susceptibility ε can be neglected on the
length scale of the variation of the electric �eld. The same should be true
for the magnetic susceptibility µ, which can be seen from an analogous ar-
gumentation when combining equations (2.20d) and (2.21a).
For the wave equation, we �rst substitute B from the material equation
(2.21a) into the second Maxwell equation (2.20b) and take the curl of the
resulting equation:

∇× (∇× E) = −µ0µ∇×
∂

∂t
H . (2.24)

After the Fourier transform the temporal derivative is evaluated with relation
(2.9), and yields

∇×
(
∇× Ẽ

)
= −µ0µ iω∇× H̃ . (2.25)

In the �rst Maxwell equation (2.20a), the temporal derivative is evaluated in
the same way and used to substitute ∇× H̃, resulting in

∇×
(
∇× Ẽ

)
= ε0εµ0µω

2Ẽ . (2.26)

With the relation ∇× (∇× Ẽ) = ∇(∇ · Ẽ)−∇2Ẽ), and c = 1/
√
ε0µ0 for the

speed of light in vacuum and considering (2.23), we �nally get

∇2Ẽ +
εµ

c2
ω2Ẽ = 0 . (2.27)

For the magnetic �eld an analogous expression can be derived. Since in (2.27)
the Cartesian components are decoupled and since polarization is not taken
into account, it is su�cient to work only with the scalar Helmholtz equation

∇2Ũ(r, ω) + k2n2(r, ω)Ũ(r, ω) = 0 , (2.28)

with the refractive index n2 ≡ µε and the wavenumber k ≡ ω/c = 2π/λ.

2.2.2 Scalar di�raction theory

For the following discussion we now assume a monochromatic scalar wave
U(r, ω) e−iωt that only has one non-zero Fourier component. We can then
rewrite equation (2.28) in the form

∇2U(r, ω) + k2(r, ω)U(r, ω) = −4πF (r, ω)U(r, ω) , (2.29)
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introducing the scattering potential of the medium

F (r, ω) =
1

4π
k2
(
n2(r, ω)− 1

)
. (2.30)

The solution of this inhomogeneous partial di�erential equation can be found
in the framework of potential theory by using the Green's function of the
Helmholtz operator

G(r− r′, ω) =
eik|r−r′|

|r− r′|
, (2.31)

which solves the equation

(∇2 + k2)G(r− r′, ω) = −4πδ(3)(r− r′) , (2.32)

where δ(3)(r−r′) is the three-dimensional Dirac delta function. The physical
interpretation of equation (2.31) is that a point scatterer is the source of a
spherical wave. This is called the Huygens-Fresnel principle [5].

In principle, the �eld at any point can now be calculated as a superposi-
tion of the spherical wavelets from all points of a scattering object. A math-
ematical treatment involving Green's integral theorem leads to the Fresnel-
Kirchho� di�raction integral, which has an additional direction dependent
factor that can not be derived from the mere Huygens-Fresnel principle.
Based on such a description, the di�racted complex �eld E(X, Y ) formed by
a complex wave �eld ψ(x, y) (see section 2.2.3) is given by [40]

E(X, Y, Z) =
1

iλ

∫∫
ψ(x, y)

eikr

r
cos(n̂, r̂)dxdy , (2.33)

where (x, y) are object plane coordinates and (X, Y ) the corresponding di�rac-
tion plane coordinates. The distance r from a point in the object plane to
a point on the screen is given by r =

√
(x−X)2 + (y − Y )2 + Z2, where Z

is the distance from the screen to the object plane. Let R be the distance
from the origin of the object system to a point (X,Y,Z). cos(n̂, r̂) is the said
directional factor where n̂ is the unit vector of the object plane and r̂ the
unit vector along the connection of (x, y) and (X, Y ).

In the paraxial approximation, that is R, r � x, y,X, Y , we can set
cos(n̂, r̂) = 1, since all light travels almost parallel to the Z axis. There-
fore we can set 1/r = 1/R ≈ 1/Z By expanding r in the exponent around R
we get

r =
√

(x−X)2 + (y − Y )2 + Z2 ≈ R

√
1− 2xX + 2yY

R2
+
x2 + y2

R2

≈ R

(
1− xX + yY

R2
+
x2 + y2

2R2
+ · · ·

)
.
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With these approximations, the Fresnel approximation of the di�raction in-
tegral is obtained:

E(X, Y, Z) =
eikR

iλZ

∫∫
ψ(x, y) e−ik(xX+yY )/R e−ik(x

2+y2)/(2R) dxdy . (2.34)

For large distances from the object to the di�raction plane and for a �nite
size of the di�racting object, the quadratic phase factor can be neglected.
The mathematical condition for this is

k
x2 + y2

2R
� π , (2.35)

which can be rewritten for an object of size a (a ∼ max(x, y)) and yields the
so-called 'far-�eld condition'

R ≈ Z � a2

λ
. (2.36)

De�ning the dimensionless Fresnel number fn, we obtain as far-�eld condition

fn ≡
a2

λZ
� 1 . (2.37)

The electric �eld on the screen can then be expressed in the Fraunhofer
approximation

E(X, Y, Z) =
eikR

iλZ

∫∫
ψ(x, y)e−ik(xX+yY )/Rdxdy . (2.38)

This integral is proportional to the two-dimensional Fourier transform of the
complex exit wave ψ(x, y)

E(X, Y, Z) ∝ F{ψ}(KX , KY ) (2.39)

with (KX , KY ) = (kX/R, kY/R).
Using the Fourier representation (2.39) in (2.34), we can calculate the wave
�eld ψz = ψ(x, y, z) at distance z behind the object by multiplication with
the Fresnel propagator in Fourier space:

ψz = F−1

{
e−

izq2

2k F {ψ}
}
. (2.40)
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2.2.3 Refractive index for x-rays

For x-rays the refractive index is usually de�ned as

n = 1− δ + iβ , (2.41)

with
β =

µλ

4π
(2.42)

and
δ =

1

2π
reρeλ

2. (2.43)

Here µ is the photoelectric absorption coe�cient, re = 2.818 · 10−15 m is the
classical radius of the electron and ρe the electron density of the material.
As the real part of the refractive index in equation 2.41 is smaller than 1,
the phase velocity is greater than c, the speed of light in vacuum. Note that
the group velocity, which represents the speed of signal transport, is smaller
than c, so special relativity is not violated [1].

In case of negligible absorption, the complex exit wave can be represented
by a phase factor [66]

ψ(x, y) = eiφ(x,y) , (2.44)

where φ(x, y) is equal to the optical path length di�erence over the sample
thickness d(x, y) projected onto the (x, y) plane times the wavenumber k:

φ(x, y) =
2π

λ

∫ d(x,y)

0

δ(x, y)dz . (2.45)

Absorption can be taken into account by replacing δ(x, y) by δ(x, y)+iβ(x, y)
in the integrand. If the phase factor φ(x, y) is real and small, we have a weak
phase object and can expand the exponent in equation 2.44:

eiφ(x,y) ∼= 1 + iφ(x, y) . (2.46)

2.2.4 Coherence

If we consider a �eld formed by, e.g., the superposition of two monochromatic
harmonic waves with scalar amplitude vectors E0,1 and E0,2 with di�erent
phase factors ϕ1 and ϕ2

E(r, t) = E1(r, t) + E2(r, t) =
(
E0,1 eiϕ1 +E0,2 eiϕ2

)
ei(k · r−ωt) , (2.47)

the intensity pattern is given by

I ∝ 〈|E|2〉 = |E0,1|2 + |E0,2|2 + 2E0,1 ·E0,2 cos (ϕ1 − ϕ2) . (2.48)
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If polarization is assumed to be the same for both waves, the existence of
the interference term depends only on the phase di�erence ϕ1 − ϕ2. For a
random variation of this di�erence the cosine term would vanish in average
and there would be no interference. If a �xed relation for their phases exist,
the waves are said to be coherent.

The general description of coherence (for more details, see, e.g., [43]) is
based on evaluating the correlation of two wave �elds separated in both space
and time, de�ning it as the so-called mutual coherence function. Averaged
over a time interval T larger than the typical �uctuations of the �elds' sources
one speaks of the mutual intensity function [52]

J(r1, r2) = 〈E∗(r1, t)E(r2, t)〉T (2.49)

where r1 and r2 are coordinates in a plane perpendicular to the beam and the
E(ri, t) are the �eld values. Normalization leads to the complex coherence
factor

γ(r1, r2) =
J(r1, r2)√

J(r1, r1)J(r2, r2)
. (2.50)

The modulus |γ| gives the ratio of coherent intensity Icoh to total intensity
Itot. We have |γ| = 1 for full coherence and |γ| = 0 for total incoherence,
respectively. Thus partial coherence decreases the contrast of the interference
fringes. In the following the e�ects of partial coherence will not be discussed
in further detail. Instead a simple geometrical argumentation is used to get
su�ciently good estimates of the characteristic length scales, the so-called
coherence lengths. We distinguish between temporal coherence at one point,
which leads to a longitudinal coherence length, and spatial coherence between
two points, resulting in a transverse coherence length.

Transverse coherence length

To obtain an expression for the transverse coherence length of an extended
source in a plane perpendicular to the optical axis, we consider Young's
double-slit experiment with a one-dimensional source of height a (see �gure
2.1). Small slits of separation d are placed at a distance R from the source.
A screen at a distance L behind the slits is used to visualize the di�raction
patterns. We now de�ne the transverse coherence length ξt to be equal to
the slit separation, for which the minima of the di�raction pattern from a
element at the edge of the source coincide with the maxima of a di�raction
pattern from a central element. The angles of the extrema in the di�raction
pattern produced by such a central element are in small-angle approximation
given by α = nλ/d for the maxima and α = (n+ 1

2
)λ/d for the minima with
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n ∈ Z. For an element at the edge of the source, the extrema are shifted by
an angle a/2R. Maxima and minima of these two patterns coincide if the
condition 1

2
λ
d

= a
2R

is ful�lled and yield the transverse coherence length

ξt =
λR

a
. (2.51)

This result can be generalized to a two-dimensional source by introducing a
horizontal transverse coherence length ξh and a vertical transverse coherence
length ξv, respectively. For the more realistic case of a Gaussian intensity
distribution in the source plane, one gets

ξh =
λR

2πσh
ξv =

λR

2πσv
, (2.52)

where σh and σv are the sigma widths of the Gaussian source intensity dis-
tribution [66]. 2

Especially for x-rays the transverse coherence lengths are a severely lim-
iting factor for the size of samples in coherent di�raction experiments. For
1 Å wavelength and R = 40 m distance from the source, typical coherence
lengths are ξv ≈ 50− 100 µm and ξh ≈ 3− 10 µm [66].

Longitudinal coherence length

We consider two waves with wavelengths λ and λ+ ∆λ starting at the same
point in time and space. We de�ne the distance at which the waves are in
antiphase as the longitudinal coherence length ξl [66] as illustrated in �gure
2.2. If ξl corresponds to N oscillations of the �rst wave, i.e. ξl = Nλ, the
second wave must have made N − 1

2
oscillations. The obtained condition

Nλ = (N − 1
2
)(λ+ ∆λ) can be solved for N and then ξl = Nλ yields

ξl ≈
1

2

λ2

∆λ
. (2.53)

To observe interference, the path length di�erence of waves has to be smaller
than the longitudinal coherence length. For a object of size a, this gives
us a condition for the maximum observable di�raction angle and therefore
determines the possible resolution of a reconstruction. With equation (2.14)
we then obtain for the smallest samples ∆x in real space the condition [66]

∆x ≥ a
∆λ

λ
. (2.54)

2The result can also be obtained from the complex coherence factor introduced in
equation (2.50) because a Gaussian source results in a Gaussian modulus of the complex
coherence factor (propagation using the Fourier transform). This allows to de�ne the
transverse coherence lengths to be equal to the sigma values of that Gaussian [52].
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Figure 2.1: A Young's double-slit arrangement showing the interference patterns from
two narrow slits (separation d) illuminated from elements at the central part (solid line)
and the edge (dotted line) of the source (size a). The slit distance for which the patterns
are in antiphase corresponds to the transverse coherence length ξt = λR/a.

For a Si(111) crystal monochromator, the spectral bandwidth ∆λ/λ is about
1.4 · 10−4 [1, p.185]. If the size of the object is a = 10 µm (to match transverse
coherence lengths), one gets the condition ∆x ≥ 1.4 nm.

2.3 Phase retrieval

2.3.1 The phase problem

The intensity of an electromagnetic �eld described by the complex scalar
amplitudes E0 andH0 is given by the magnitude of its time averaged Pointing
vector

I = 〈|S|〉 =
1

2
E0H

∗
0 =

n

2

√
ε0
µ0

|E0|2 , (2.55)

where n is the refractive index of the medium. Since only intensities are
measured in a detector (by counting single photons or integrating the �ux
density), the phases of the waves are lost and have to be reconstructed. This
is referred to as the phase problem. The importance of the phases for the
reconstruction of an image from a di�raction pattern is illustrated in �gure
2.3.

Given the fact that with the phases mathematically half of the informa-
tion originally contained in the di�raction pattern is lost, additional con-
straints will be needed to make a unique reconstruction possible. For the
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l     Dl

x l= N ·

Figure 2.2: Two waves of wavelengths λ and λ+ ∆λ starting simultaneously at the same
point in time and space. At the longitudinal coherence length ξl the phase di�erence has
become π.

reconstruction itself, the actual phases are of minor interest. Thus our prob-
lem can be de�ned as to �nd the unique reconstruction which reproduces the
measured di�raction amplitudes and satis�es additional constraints. The
term `unique' is used despite the fact that certain ambiguities are inherent
to the problem, namely constant phase factors, shifts of the origin (caus-
ing phase gradients in Fourier space, see eq. (2.3)) and the so-called `twin
image' (complex conjugation and rotation by 180◦). As these are irresolv-
able without additional constraints, they are in the literature usually treated
as equivalent solutions [2]. Breaking certain symmetries can solve the twin
image ambiguity, see section 2.3.4.

2.3.2 Sampling requirements

Already in 1952, Sayre [60] published some implications regarding Shannon's
sampling theorem (see [61] and also section 2.1.4) and pointed out that a
su�ciently �ne sampling of the di�raction intensities might allow for solving
the phase problem. From Shannon's sampling theorem it can be derived,
that for a function which is non-zero only on a �nite interval of size a (i.e.,
a is here a direct space analog to twice the Nyquist frequency), its Fourier
transform has to be sampled at intervals 1/a to be completely determined.
This is also the typical length scale of modulations in the resulting coherent
di�raction pattern. However, this sampling according to Shannon is not su�-
cient for phase retrieval as shall now be further discussed for two-dimensional
di�ractive imaging applications.

For simplicity, let us assume that the two-dimensional di�raction patterns
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Figure 2.3: Illustration of the importance of Fourier phases for image reconstruction.
The middle rows show the Fourier transforms of the two grayscale images, the upper the
amplitude (logarithmic scale), the lower the phase. The bottom row shows the result of
inverse transforms after the Fourier phases have been exchanged.

are recorded with pixelated detectors. Given a detector with N = Nx ·Ny

pixels, the sampling intervals ∆qx and ∆qy are �xed by the detection geome-
try and determine the linear extent of the �eld of view in direct space along
each Cartesian axis:

Lx =
2π

∆qx
, Ly =

2π

∆qy
. (2.56)

As the number of grid points is the same for the direct space image, (2.56)
is obtained from equation (2.14) with the relations Lx = Nx∆x and Ly =
Ny∆y, ∆x and ∆y being the spatial sampling intervals.
We now look at an object in direct space characterized by a density function
f(x, y) with a �nite support S, that is

f(x, y) = 0, if(x, y) /∈ S . (2.57)

If the maximum size of the support along each axis is given by Sx and Sy,
the conditions for su�cient sampling of the object's Fourier transform are

∆qx ≤
2π

Sx
, ∆qy ≤

2π

Sy
. (2.58)

This already leads to the conclusions, that for a given size of the detector
samples, the object creating a di�raction pattern must not exceed a certain
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size to make a reconstruction possible. As pointed out in section 2.3.1, the
recorded di�raction pattern is an intensity pattern, which is proportional to
the square of the object's Fourier transform. According to equation (2.7),
the object's autocorrelation is obtained by a simple inverse Fourier transform
of this intensity pattern. The smallest rectangle containing this autocorrela-
tion's support has the size 2Sx×2Sy and we get the new sampling conditions

∆qx ≤
π

Sx
, ∆qy ≤

π

Sy
. (2.59)

With the sampling intervals satisfying these conditions, the intensity is sam-
pled in a way that no aliasing in the autocorrelation occurs. As the sampling
frequency is two times higher than in usual Shannon sampling, the di�raction
pattern is said to be linearly oversampled by a factor of two, resulting in an
oversampling factor of four when looking at the total number of sampling
points. For the two-dimensional case (and higher dimensions), this `almost
always' [2] guarantees that the phase problem is uniquely solvable.
Miao and coworkers [49] pointed out, that unique solutions are possible
with lower oversampling factors. We now consider a square image with an
even number of pixels N . Components of the position vectors are given by
qn,m = (n∆qx,m∆qy) for reciprocal space and rn,m = (n∆x,m∆y) for direct
space, respectively. The di�raction amplitude (square-root of the actually
measured intensity value) at each position qn,m is then related to the object
by a discrete Fourier transform (normalization constants set to 1):

∣∣∣f̃(qn,m)
∣∣∣ =

∣∣∣∣∣∣
N/2−1∑
ν,µ=0

f(rν,µ) ei2πνµ/N

∣∣∣∣∣∣ . (2.60)

This provides us with a total set of N equations to reconstruct the N pixels
of f(r). But if f(r) is real valued, Friedel's law (see equation (2.8)) states
that |f̃(q)| = |f̃ ∗(−q)|, i.e., the Fourier magnitude has only N/2 independent
values. Friedel's law breaks down for complex objects giving us N indepen-
dent equations, but then we also have to reconstruct 2N values, the real
and imaginary parts for each pixel. To allow a unique solution the number
of independent equations should match or exceed the number of unknowns.
The strategy for this is to get to know the values of enough pixels of f(r) to
reduce the number of unknowns su�ciently. This can be done by appropri-
ately oversampling the di�raction pattern of an object with a �nite support,
because all values of f(r) outside the support are then by de�nition known
to be zero. De�ning the oversampling ratio [48, 49] as

σ =
N

NS

, (2.61)

20



where NS is the amount of pixels in the support, we see that we will have
enough independent equations to solve uniquely for the unknown values if
σ ≥ 2 [49].

2.3.3 Phase retrieval with iterative algorithms

In the previous section 2.3.2 it was shown how a support constraint in direct
space in combination with di�raction pattern oversampling, is mandatory
for solving the phase problem. The support constraint gives us one possibil-
ity for an additional (direct space) constraint as mentioned in section 2.3.1.
Other common constraints are, e.g., non-negativity of a real-valued object
[19] or a known illumination [22, 53], which have some additional informa-
tion compared to the mere support. Given a proper direct space constraint,
the system of equations (2.60) is usually solved with iterative algorithms.
The most frequently used algorithms can be understood in the framework
of iterative projections onto constraint sets (see, e.g., [3, 13, 44]). Here
some basic ideas will be outlined to provide the fundamentals for the discus-
sion of the algorithm used for most of the work presented in this thesis, the
Ptychographical Iterative Engine (PIE), in section 2.3.4.

Phase retrieval as an optimization problem

Mathematically, a complex image of N pixels can be treated as a vector x
with complex components xν in anN -dimensional Euclidean vector space VN .
The Fourier transform changes the components of vectors but distances are
invariant due to Parsevals's theorem (2.4) (the transform is unitary because
it preserves the norm). Constraints can be represented by sets of points which
include all possible images that satisfy this particular constraint. Besides the
Fourier modulus constraint given by the measured di�raction intensities, we
use for the following discussion the support constraint introduced in section
2.3.2. Other constraints are, of course, possible. If the measured Fourier
amplitudes are represented by the vector m, the corresponding constraint
set is

CM = {y ∈ VN | |ỹν | = |mν | ,∀ ν ∈ [1, N ]} . (2.62)

The set CS for a support constraint is given by all the vectors (images) for
which the components have non-zero values for certain components ν ∈ S and
are zero for all others (ν /∈ S, i.e., outside the support S). Mathematically
this means that the dot products of a vector of the set with the basis vectors of
the outside components vanish. We now can reformulate the phase retrieval
problem as follows:

�nd x ∈ CS ∩ CM . (2.63)
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We see that �rstly the constraint sets have to overlap and that secondly the
intersection should ideally consist of one single point (image).

Projections

As a projection onto a given constraint set D ⊂ VN , we de�ne the operator
P (x) which maps every x ∈ VN to P (x) = y ∈ D so that the distance ‖x− y‖
is minimized, i.e., y is the closest point (image) to x that satis�es the given
constraint. Projectors are idempotent mappings, that is P (P (x)) = P (x).
The projection PS for the support constraint is

PS(xν) =

{
xν if ν ∈ S ,
0 otherwise .

(2.64)

The Fourier modulus projection PM is usually done in Fourier space, i.e. the
projection is replaced by

PM = F−1P̃MF , (2.65)

with the projection in Fourier space de�ned as

P̃M(x̃ν) =

{
mν

x̃ν
|x̃ν | if x̃ν 6= 0 ,

mν eiα otherwise .
(2.66)

Thus in the standard case for a non-zero component x̃ν = |x̃ν | eiφn the am-
plitude in Fourier space is replaced while the phase is kept. However, for
zero-valued pixels this projection is multivalued because no phase is de�ned
and any phase α will work. In practice often α = 0 is selected.

Iterative projection algorithms

All common phase retrieval algorithms are based on applying these (or sim-
ilar) projections onto constraint sets according to a certain scheme. If the
current guess of an image is given after n iterations by xn, then we obtain the
next iterate by applying a function GPS ,PM of the projectors to the current
guess:

xn+1 = GPS ,PM (xn) . (2.67)

The common algorithms mostly di�er in the choice of GPS ,PM , overviews are
given in [3] and [44]. If the iterates do not change any more, a �x-point of
f with x′ = GPS ,PM (x′) has been reached, and the algorithm has converged.

• Gerchberg-Saxton algorithm:

22



Figure 2.4: Schematic representation of the Gerchberg-Saxton or error-reduction al-
gorithm [18, 27]. One starts with an arbitrary guess and iterates between direct and
reciprocal space by means of the Fourier transform (FT) and its inverse (IFT), applying
after each transform the appropriate constraints.

The �rst phase retrieval algorithm used for di�ractive imaging was the
Gerchberg-Saxton algorithm [27]. It is mostly interesting as a precursor
of later work. In this algorithm the real space constraint was a second
intensity measurement, a direct image of the object (as can be easily
realized in a transmission electron microscope by switching between
imaging and di�raction mode).

• Error-reduction algorithm (ER):

Fienup generalized the algorithm of Gerchberg and Saxton by intro-
ducing the non-negativity and the support constraint and called this
the error-reduction algorithm3 [18, 19]. Of course, a direct space image
may also be regarded as a special way of de�ning a non-negativity or
support constraint, but for the further development it was important
to do this generalization step. It gives, e.g., the �exibility to start only
with a di�raction pattern and a guess of a relatively loose support,
usually obtained by looking at the autocorrelation of the di�raction
pattern [23]. This loose support is then re�ned during reconstruction
by thresholding techniques [45, 65] to get the tight support necessary
for a good reconstruction. Another suggestion is to use a too small
support in the beginning and enlarge it during reconstruction [19].
For the error-reduction algorithm the updating rule (2.67) takes the

3Often the di�erence of the direct space constraints is not accounted for and the terms
`error-reduction algorithm' and `Gerchberg-Saxton algorithm' are used as synonyms, as
already Fienup did.
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form
xn+1 = PS(PM(xn)) . (2.68)

The name error-reduction is based on the behavior of these alternat-
ing projections: Each projection always �nds the closest point on the
other constraint set, so the distance between the two sets is continu-
ously minimized. But this also means, that the algorithm easily gets
stuck in local minima of this distance.
In practice one usually starts with an arbitrary guess for the image in
direct space and calculates the next iteration according to (2.68). Tak-
ing into account that the PM projection includes one Fourier transform
and one inverse Fourier transform, the algorithm can be represented
as a cycle with four steps, as schematically shown in �gure 2.4. In
principle, the starting point can be any of these positions. Repeating
the algorithm several times with di�erent random starting images is a
common method to judge whether a reconstruction is unique.

• Input-output algorithms and further developments:

To avoid the stagnation problems of the error-reduction algorithm,
Fienup proposed so-called `input-output' algorithms [18, 19] as a fur-
ther generalization. Here `input' and `output' refer to the images before
and after applying the Fourier modulus projection. The new input is
now not just obtained by applying the object domain constraint on the
output. In fact the next input is constructed by using the di�erence
between the obtained output and the input which produced it in a feed-
back function. The idea is to minimize this di�erence and no longer the
di�erence between images satisfying the two constraints individually,
as it is done in the error-reduction algorithm. The input is usually no
longer an estimate of the object, so here the �xed point of the iterates
is usually not directly the solution of the phase retrieval problem. For
a certain choice of the update function, one gets the error-reduction
algorithm as a special case of an input-output algorithm.
Still widely used is the following formulation, Fienup's hybrid input-
output algorithm (HIO):

xn+1(ν) =

{
PM(xn(ν)) if ν ∈ S
xn(ν)− βPM(xn(ν)) if ν /∈ S ,

(2.69)

where ν are the pixel indices and S is the set of all pixels that satisfy
the real space constraint, e.g., lie inside a known support. The feedback
parameter β is typically chosen to be slightly smaller than unity, which
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gives the best performance of the algorithm [19]. Combining the two
cases of equation (2.69) by expressing them with the projector PS on
the support constraint, one gets

xn+1 = xn + (1 + β)PS(PM(xn))− PS(xn) + PM(xn) (2.70)

as an iteration rule.

The HIO algorithm is still the basis for many reconstructions done in
the �eld of di�ractive imaging. Of course, several other algorithms
have been developed in the past 25 years, for a comparison of the most
prominent see [44]. The most general projection-based algorithm in
use is probably the di�erence map [13]. The HIO algorithm turns
out to be just a special case of this more general approach. Besides
its application in di�ractive imaging [64, 65], the di�erence map can
be used for general optimization problems which can be formulated
in terms of two constraints, e.g., protein folding problems or Sudoku
puzzles [14].

Limitations of common algorithms

• Requirement for isolated sample:

For the algorithms discussed so far, the sample has to be isolated due to
the required oversampling (see section 2.3.2) and � in the case of x-rays
� the limited coherence of the illuminating �eld (see section 2.2.4). This
can make sample preparation extremely challenging, because already
small scattering signals from outside the support can cause signi�cant
e�ects (in [65], e.g., the e�ect of small dust particles next to the actual
sample (a yeast cell) is discussed).

Alternatively the direct space constraint of an isolated scattering ob-
ject can also be ful�lled by constraining the illumination appropriately
(`illumination pattern constraint', [22]), e.g. by using a pinhole in
front of the object. This would allow to move an extended object with
respect to the illumination, record di�raction patterns for several po-
sitions, reconstruct each pattern separately and combine the resulting
images. Considering that typically several thousand iterations are done
to get a su�ciently good reconstruction from an experimental di�rac-
tion pattern [11, 62], this seems not feasible for too many positions.

• Convergence issues:
The mentioned high number of required iterations may also be a limit-
ing factor for certain cases, in which fast �rst images are desired, e.g.,
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when imaging an unknown extended sample which only has a particu-
lar region that is of interest for a high resolution analysis.
The problems of stagnation or convergence to the twin image (or the
superposition of the `true' solution and the twin image) are quite com-
mon for symmetrical supports: Breaking the symmetry can solve these
problem [24], but may not be possible in all cases.

• Reconstruction of complex-valued objects:

If it comes to complex-valued objects, having both absorbing and phase-
shifting properties, the strong non-negativity constraint breaks down
and a extremely tight support, usually of a certain type (highly asym-
metric or consisting of several unconnected parts), is required to get
reasonable results [20].

• Defocus ambiguity:
The algorithms also show problems to settle at the right plane for recon-
struction within the depth of the illumination, so defocus ambiguities
are also likely in many cases [63].

• Experimental noise:

In the presence of noise an intersection of the constraint sets may no
longer be guaranteed, causing convergence problems that require some
special treatment.

Currently two main approaches are experimentally realized to overcome some
of these limitations: The �rst is the so-called Fresnel Coherent Di�ractive
Imaging (FCDI) method [51, 53, 67], which uses a well-de�ned illumination
with a curved wavefront to improve convergence and solve uniqueness prob-
lems. The second is the Ptychographical Iterative Engine (PIE) that will be
discussed in detail in the next section.

2.3.4 The Ptychographical Iterative Engine (PIE)

Ptychography

Few years before the Gerchberg-Saxton algorithm was published, Hoppe pro-
posed a direct (non-iterative) technique to retrieve phases for crystallographic
specimens in transmission electron di�raction microscopy [31]. The basic
idea is to use a �nite coherent illumination of the size of one unit cell. In the
di�raction pattern this results in a convolution of the illumination's Fourier
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transform with the crystal's Bragg peaks. If the size of the illumination
is chosen appropriately, the patterns from adjacent Bragg peaks start to
overlap. The interference in the overlap region can be used to determine
the relative phase. Hoppe showed that the remaining ambiguity between
the correct solution and its complex conjugate can be removed by recording
di�raction patterns at two slightly di�erent positions [31]. The technique
was later named ptychography [30], derived from the Greek word for `fold',
πτυξ, to refer to the convolution involved. Hoppe also discussed the ex-
tension to non-periodic objects, for instance with phase-shifting plates, and
to scanning transmission electron di�raction microscopy in two and three
dimensions [32]. Besides some proof-of-principle studies [50], the technique
has not been widely used (in 1982, Hoppe called it one of his two `nearly
forgotten ideas' [33]). The same is true for the related Wigner-distribution
deconvolution [10, 56], an extension to non-crystalline objects.

Ptychographical iterative phase retrieval

Figure 2.5: Simulation of PIE data collection for four overlapping probe positions. Il-
luminating the complex-valued object (a) with circular probes (indicated by the white
circles) yields the di�raction patterns (b)�(e). The real-valued Fourier magnitudes (b)�
(e) are plotted on a color-coded logarithmic scale. Image (a) codes phase and amplitude
information as brightness and hue according to the colorbars.

Faulkner and Rodenburg [16, 57] suggested to combine elements of ptychog-
raphy and iterative phase retrieval algorithms to a scheme they called Ptycho-
graphical Iterative Engine (PIE). The algorithm uses the redundant informa-
tion of di�raction patterns taken with overlapping illuminations at di�erent
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positions of the probe with respect to the sample. Figure 2.5 illustrates the
principle of the data collection. In practice this can be done by either ei-
ther scanning the illuminating probe (for example in electron microscopy) or
scanning the sample with respect to the probe, as it was done in our case.

The PIE algorithm overcomes most of the limitations mentioned in sec-
tion 2.3.3. The twin image problem is resolved by the broken symmetry of the
problem due to the knowledge that in the overlapping region the reconstruc-
tions from neighboring probe positions must be consistent. The data from
several sample positions with overlapping illuminations also leads to a solu-
tion at one well-de�ned defocus value (i.e., the plane of the object), solving
the focal plane ambiguity. The algorithm can routinely deal with complex-
valued objects and converges fast. The technique is therefore well-suited to
image extended objects without any prior knowledge on the objects.

The error tolerance of the algorithm has been investigated [17] and is
remarkable when it comes to experimental noise. But the algorithm turns
out to be very sensitive to errors in shape or positioning of the illumination,
so a good knowledge of these is mandatory.

Description of the algorithm

The PIE algorithm can be regarded as a special type of input-output algo-
rithm. The basic idea is not to process the di�raction patterns independently,
but let the algorithm run as loop over all probe positions, at each of which
an iteration similar to HIO is performed and passed further as input to over-
lapping positions.

For the mathematical description, we look at a complex-valued probe
function P (r) with r = (x, y, 0) (two dimensional images). P may be lim-
ited in bandwidth, with soft edges or even have an in�nite extent as long
as it is `substantially' localized [58], so that the oversampling condition is
still ful�lled. This probe is incident on the complex-valued object O(r), re-
sulting in a complex exit wave Ψ(r) = P (r)O(r). The measured di�raction
intensities I(q) are in the far-�eld proportional to the squared magnitude
of the exit �eld's Fourier transform: I(q) ∝ |F {Ψ(r)}|2. The momentum
transfer q = (qx, qy, 0) is given by the di�erence between the wave vectors
of the incident k0 and the scattered waves ks, i.e., q = ks − k0 with the
wave numbers |k0| = |ks| = k = 2π/λ (elastic scattering). The momentum
transfer qz along the beam is considered to be negligible (�at Ewald sphere).
The practical calculation can be done with Bragg's law,

|q| = 2k sin(θ) , (2.71)

using the wavelength λ and the angle 2θ between the incident (k0) and the
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Figure 2.6: Schematic representation of the PIE algorithm for data taken at four dif-
ferent illumination positions (see �gure 2.5). The outer circular arrows indicate the posi-
tion stepping within one iteration. The straight arrows inside indicate (inverse) Fourier
transforms. The four recorded di�raction patterns provide the usual Fourier magnitude
constraint, the real space constraint is given by the circular illumination. It is multiplied
with the object function O(r) at appropriate positions to get the exit waves Ψ(r) used in
the reconstruction, see text for more details. From [59].

scattered (ks) beam. The di�erent positions of the sample with overlapping
illumination are given by a vector Rl, that speci�es the shift of the lth sample
position with respect to the arbitrarily chosen origin.

The starting point for the �rst iteration n = 1, is an arbitrary guess for
the object function O(r), for example an image with random pixel values.
The updated object function, here On+1 after n + 1 iterations, is obtained
with the following steps [7, 17] (compare �gure 2.6).

1. Calculate the exit wave �eld from the known illumination and the cur-
rent guess of the object:

Ψn,l(r) = P (r)On(r−Rl) . (2.72)

2. Obtain amplitude and phase in reciprocal space using the Fourier trans-
form:

F {Ψn,l(r)} = An,l(q) eiφn,l(q) . (2.73)

3. Correct the amplitude to the measured values:

An,l,new(q) =
√
Il(q) . (2.74)
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4. The inverse Fourier transform yields an updated guess of the exit �eld:

Ψn,l,new(r) = F−1
{√

Il(q) eiφn,l(q)
}

= F−1
{
An,l,new(q) eiφn,l(q)

}
.

(2.75)

5. Update the object at the currently illuminated position:

On+1(r−Rl) = On(r−Rl) + βU(r) (Ψn,l,new(r)−Ψn,l(r)) , (2.76)

with the update function

U(r) ≡ |P (r)|
max(|P (r)|)

P ∗(r)

|P (r)|2 + α
. (2.77)

6. Move to the next position Rl+1, for which the illumination partly over-
laps with that of the previous position, and start the next cycle. The
overlap causes that On+1(r−Rl+1) in (2.72) will include also a contri-
bution from On+1(r−Rl) obtained in the previous cycle from (2.76).

7. Repeat the previous steps for all sample positions l and as many iter-
ations n as wanted. As a measure for convergence, e.g., the deviation
between the measured intensities and the ones calculated in (2.73) from
the current guess of the object can be used by de�ning a sum squared
error [42]

Sn =

∑(
Il − A2

n,l

)2∑
I2
l

. (2.78)

The summation runs over all sample positions l and all pixel intensities
at each of these positions resulting in a real-valued scalar. Another
common metric is based on monitoring the di�erence of the images
obtained at two consecutive iterations [19].

When looking in more detail at the updating procedure in equation (2.76),
we observe that one PIE iteration n→ n+1 consists of an entire pass over all
di�raction patterns, running the steps (1) to (5). In standard algorithms we
have only one use of the update function per iteration. This should be kept in
mind when comparing iteration numbers. The parameter β is closely related
to the feedback parameter in Fienup's HIO and is usually chosen to be in the
same range, i.e., β ∈ [0.9, 1.0]. The parameter α in the update function (2.77)
prevents a division-by-zero occurring if P (r) ∼ 0. For a probe normalized
to 1, for example a value of α = 0.001 may be used. The �rst expression
in the update function |P (r)|/max(|P (r)|), maximizes the update e�ect in
regions where |P (r)| is large. Thus strongly illuminated areas contribute
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more than weakly illuminated ones, attenuating errors that otherwise might
occur [17]. The second term P ∗(r)/(|P (r)|2 + α) removes the multiplication
with the probe function in equation (2.72) from the exit wave leaving the
object function.

From the input-output point of view, the input is the new exit wave
obtained by inserting the new object from (2.76) in (2.72) (which in combi-
nation would just give an update function for the exit wave). The output is
the new guess of the exit wave �eld according to (2.75).
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Chapter 3

Simulations

normalized amplitude
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Figure 3.1: Hue-brightness encoding of complex images: The normalized amplitude is
encoded as brightness according to the horizontal axis. The vertical phase axis may be
cyclically shifted as an arbitrary overall o�set remains undetermined in reconstructions.

Simulations have the advantage, that the original object is perfectly known
and so the quality of the reconstruction can be directly assessed with an
adequate error metric. Therefore the performance of algorithms can be easily
compared and evaluated for di�erent values of the important parameters. A
sample code for a PIE reconstruction from four simulated di�raction patterns
can be found in appendix A.

All simulations were done with Matlab (The Mathworks). As it has its
strengths in matrix-based operations, it is perfectly suited for simulating two-
dimensional imaging problems. Complex wave functions are represented as
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complex matrices and are usually visualized by either separately plotting the
amplitude and phase values or, as it is usually done in this thesis, by a color-
coded representation: The normalized amplitude determines the brightness
of the pixels, while the phase (modulo 2π) is coded as hue (see �gure 3.1). As
the reconstruction procedures are insensitive to constant global phase factors
eiγ (γ ∈ R), the phase axis may be cyclically shifted by subtracting a certain
phase o�set from the image.

3.1 In�uence of the overlap parameter on the

convergence of PIE

3.1.1 The overlap parameter

As pointed out in section 2.3.4, the advantages of the PIE technique are
mainly based on the huge amount of redundant information recorded from the
overlapping illuminations. The two limiting cases are full and no overlap: If
the illuminations do not overlap, the reconstruction for each sample position
becomes independent from the data recorded at other positions. Then the
PIE algorithm (section 2.3.4) becomes a standard input-output algorithm1 for
each position separately. For full overlap we have a standard phase retrieval
problem with only a single di�raction pattern and illumination constraint.
In what follows the term `overlap' will refer to linear distance overlap, not
an area overlap. For two circular illumination functions of radius r and
the center-to-center distance a ∈ [0, 2r], the absolute linear overlap is oabs =
2r−a. Normalization by the diameter of the circles gives the relative overlap

o = 1− a

2r
. (3.1)

The advantage of the linear overlap is that usually the directly related a, the
step size between adjacent positions, is the parameter needed to specify a PIE
scan. The change of the probe due to free-space propagation is neglected in
the calculation of the overlap, i.e., for r always the radius of the pinhole is
used.
For the �rst successful experiment with laser light an overlap of 37.5% has
been reported [58] and in a proof-of-principle study with x-rays [59], the
overlap was half the diameter of the pinhole, i.e., 50%. In principle, the
overlap should be as big as possible to maximize the redundancy in the data
without loosing the symmetry-breaking e�ects of the sample shifting. From

1The update function di�ers from the hybrid input-output (HIO) update function by
the weighting with the normalized modulus of the probe.
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a practical point of view this is not very useful: If one wants to scan a
certain area an increase of the overlap will not only increase the number of
scanning positions and thus the total acquisition time and amount of data.
For radiation sensitive samples this will also result in a much higher dose and
thereby degredation.

3.1.2 Error metric

The error metric should allow to quantify the deviations of the retrieved
complex-valued object On after n iterations of the algorithm from the true
solution O. One important prerequisite is invariance of the error metric
under global phase o�sets eiγ (γ ∈ R) which may occur in both standard
phase retrieval and PIE. Fienup has proposed error metrics [21], which are
invariant under all of the inherent ambiguities of standard phase retrieval
described in section 2.3.1. We explicitly did not use the additional terms
that make the error metric invariant under replacement of the image by the
its twin image: In the framework of PIE twin images are no longer an inherent
ambiguity due to the symmetry-breaking properties of the technique. So our
metric is de�ned as [21]:

E ≡
(∑
|On|2 +

∑
|O|2 − 2|

∑
OO∗n|∑

|O|2

)1/2

. (3.2)

The summations are over all pixels of the images.

3.1.3 Simulating di�raction data for di�erent overlaps

For the simulations the �uorescence image of a cell already shown in �gure
2.5(a), page 27, was used [37]. The illumination was de�ned by a circular
aperture of 200 µm diameter (represented by 40 pixels) that was in a distance
of z = 2.5 mm from the object. The probe Pz at the distance z behind the
pinhole was calculated from the modeled probe at the pinhole position P0 by
multiplication with the Fresnel propagator in Fourier space:

Pz = F−1

{
e−

izq2

2k F {P0}
}
, (3.3)

with k = 2π/(632.8 nm). The object had 201× 201 pixels corresponding to
5 µm × 5 µm each. The detector was assumed to be in the far-�eld, so the
di�raction plane was linked to the object plane by a discrete Fourier trans-
form. To assess the optimum overlap, the object was illuminated with 5× 5
object positions placed on a square grid. The overlap of these illumination
functions was changed in 41 steps from 0% to 100%.
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Figure 3.2: Reconstructions of simulated data for di�erent relative overlaps. Each image
has been retrieved in 30 PIE iterations over 5×5 object positions. The relative illumination
overlaps were 10% (a), 60% (b), and 100% (c).

3.1.4 Simulation results

The reconstructions were done with an implementation of the PIE algorithm
as introduced in section 2.3.4. Some exemplary reconstruction results for
three of the 41 di�erent simulated overlap positions are shown in �gure 3.2.
In �gure 3.2(a) the relative overlap is 10%. After 30 PIE iterations the
similarity to the original image (see �gure 2.5(a)) is hardly visible, but the
overall shape of the cell can already be seen. A closer look on the phase
shows, that in the single circles superpositions of the twin image and the
`real' image occur. When the relative overlap is increased to 60%, see �gure
3.2(b), it is not possible to distinguish by eye the retrieved image from the
original one. For full overlap, as shown in �gure 3.2(c), PIE reduces to a
conventional input-output algorithm. Taking into account, that the 30 PIE
iterations over 25 totally overlapping positions correspond to 750 iterations
at the central position, the quality of the retrieved image is rather poor.

To quantify the results the error metric introduced in equation (3.2) was
monitored as a function of the overlap of neighboring positions. The error
was calculated for the central disk of the 5 × 5 illuminations to avoid edge
e�ects and to neglect unilluminated areas. For each overlap positions, 30
PIE iterations were done with 25 di�erent random starting guesses. The
average error and its standard deviation are plotted in �gure 3.3(a) as a
function of the relative overlap and for di�erent numbers of PIE iterations.
Concerning the overlap, two major results are observed: (i) The best quality
of the reconstructed image is achieved for a very high overlap of about 85%.
Higher overlaps are inadvisible, as the gradual transition to a standard input-
output algorithm in the range from about 85% to 100% results in a rapid
increase of the error E. (ii) A su�cient relative overlap of at least 50% and as
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little as �ve PIE iterations may already yield an acceptable image quality for
fast overview scans. For only 30 PIE iterations the image quality is excellent,
showing only minor, barely measurable improvements.

For practical purposes it is of interest, what the optimum overlap is when
taking the total measurement time and the radiation dose on the sample
into account. The optimum overlap will clearly not any longer be about
85%. Its value will rather depend on various factors, e.g., the weight given
to acquisition time relative to image quality, whether the radiation damage
starts only after a certain minimum dose or evolves continuously from the
start and also the form of progression of the radiation damage. As these
factors highly depend on the speci�c experiment, we used a simple model
where we calculated the dose as the illumination hitting a pixel of the object.
The incident probe P was normalized to 1, so a dose of, e.g., 2.0 refered to
the corresponding pixel being fully illuminated twice. As a guide-line �gure
3.3(b) shows plots of the error multiplied with the dose. If one is interested
in an optimum trade-o� between total scanning time and image quality and
if the scanning time overhead is quanti�ed via unnecessary over-exposures,
then the same result would be obtained. The plots suggests an optimum
relative overlap of less than 60%. The minimum relative overlap for complete
coverage, in the case that the illumination positions are arranged on a square
grid and propagation e�ects are neglected, is 1− 2−1/2 ≈ 29%. This value is
consistent with the large decrease of the error seen in the plots around 30%.
Although the error at such small overlap values is signi�cantly higher than
under optimal conditions, it can still be of interest if radiation damage and
speed are a major concern.

The simulations were repeated with other test images and gave qualita-
tively the same error plots indicating some general validity. When placing
the illuminations on a hexagonal grid, the minimum overlap for which the
error started to decrease signi�cantly, reduced to a value where complete-
coverage in the hexagonal grid is reached. Apart from that, the principle
trend remained qualitatively the same. Due to the two-dimensionality of the
illumination function, it is also su�cient, if overlap is only present along one
dimension. This may be of interest for certain applications where only line
scans are required.

To summarize the results of the simulations: If one emphasizes the image
quality without completely neglecting the dose on the sample and the time
needed for the measurements, a relative overlap of 60% seems to be reason-
able. If dose is not an issue, the overlap should not exceed more than about
85% for optimum performance of the algorithm. For very fast overview scans
and highly radiation sensitive samples, relative overlaps of only 30% are rec-
ommendable.
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Figure 3.3: Error as a function of the relative overlap of the illuminated areas for dif-
ferent numbers of PIE iterations. In (a) the error E as a measure for the quality of the
reconstructed image is plotted. In (b) the dose on the sample is linearly taken into ac-
count by plotting E times the dose. The error bars give the standard deviation when
averaging the results of 25 simulation runs starting with di�erent random guesses. The
red dots mark relative overlaps of 10% (i), 60% (ii) and 100% (iii), corresponding to the
reconstructions in �gure 3.2.

Experimental results for di�erent amounts of overlap are discussed in section
4.4.
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Chapter 4

Experiments with visible laser

light

4.1 Experimental setup

The setup is schematically depicted in �gure 4.1, �gure 4.2 shows photos of
the practical realization. As a light source a helium-neon laser with a wave-
length of λ = 632 nm was used (Melles Griot 25 LHP 151-230, continous
wave, 5 mW, TEM00, random polarization). The illumination function inci-
dent on the sample was de�ned by a pinhole as close as geometrically possible
to the sample. Typical pinhole diameters were 200 µm or 300 µm and the
typical pinhole to sample distances were in the range of 1− 2.5 mm. The
diameter d of the exit aperture of the laser and the distance ρ from the laser
to the illuminating pinhole were chosen in a way, that d2/(ρλ)� 1. Then the
pinhole can be regarded as being illuminated with a plane wave. The sample
was motorized by stepper motor driven linear translation stages (Newport
MFA-PP), giving a translation range of 25 mm at a half-step size of approx-
imately 0.24 µm along each of the three Cartesian axis. Between sample
and detector various optical elements (Edmund Optics) could be mounted
for di�erent purposes: In some experiments, the property of a convex lens
to produce the Fourier transform of the incident �eld at its focal plane [28]
was used to record far-�eld di�raction patterns when the geometrical far-
�eld condition in terms of distance from the object to the detector was not
ful�lled. Various neutral density �lters and a narrow bandpass �lter could
be used to reduce the e�ect of stray light and to adapt the incoming in-
tensity to the detector's sensitivity. The detector, a charge coupled device
(CCD, Finger Lakes Instrumentation, IMG 1001E), was placed around 20 cm
downstream from the sample. The CCD chip of 16 bit dynamic range with
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Figure 4.1: Laser PIE setup. The probe is de�ned by a pinhole illuminated with a HeNe
laser. The sample can be scanned in a plane perpendicular to the propagation direction
of the incident beam. The di�raction pattern is recorded with a CCD detector. From [7].

1024× 1024 pixels of 24 µm× 24 µm was Peltier cooled to −25 ◦C to reduce
the number of dark counts. If the �lters were used they were connected to
the CCD by a light-tight tube of C-mount and T-mount elements (Edmund
optics). All components of the setup were placed on a rail (Linos) with hold-
ers (Ekspla) that allowed manual tilts and translations for adjustment. The
rail was mounted on an optical table. The control of sample positioning and
the detector were done with the software spec (Certi�ed Scienti�c Software).

4.2 Data acquisition for di�ractive imaging

Fourier components for high momentum transfers |q| correspond to small
structures in real space (see section 4.3.3 for more details). The accessible
q-range is determined by the dynamic range of the detector. To improve the
resolution of the reconstruction, multiple exposures with acquisition times
ranging from 50 ms to 1 min were combined, depending of course on the spe-
ci�c conditions like illumination, investigated sample and use of �lters.
Despite all �lters, the background counts from stray light were a severe prob-
lem in the beginning, especially for long exposure times. The quality of the
data improved signi�cantly in a completely darkened room were all possible
sources of unwanted light were carefully eliminated. In that con�guration
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(a) Arrangement of the compo-
nents along the laser beam.

(b) Detailed view of illumination-de�ning pinhole, 3D
sample translation stage and CCD camera.

Figure 4.2: Photos of the laser light setup used for lensless imaging with the PIE tech-
nique.

the recorded background became �nally independent of the acquisition time.
The �lters used before turned out to be sources of noise themselves, giving
rise to unwanted interferences and re�ections. One important factor in this
was the design of the CCD detector, which due to its cooling needs an addi-
tional glass window in front of the chip (to prevent condensation). Between
this glass window and the re�ecting surface of the chip interference e�ects
tended to form, disturbing the di�raction pattern. But as the reconstruction
did not seem to be too badly a�ected by this, there was no attempt done to
remove the glass window as this could have resulted in severe damage of the
CCD.

In a typical data acquisition for PIE, �rst the exposure times had to be
chosen appropriately to allow for a good `stitching' result when combining the
images. Besides background (dark) images also the far-�eld di�raction pat-
tern of the illumination was recorded, see �gure 4.3(a) for an example. The
di�raction data (�gure 4.3(b)) from the sample at overlapping illuminations
was collected in a step-by-step mesh scan of the sample with an appropriately
chosen step size between the points of the (usually square) grid. At each grid
point the desired amount of multiple exposures was taken before moving to
the next position. This was chosen above taking consecutive scans for the
di�erent exposure times to avoid repositioning errors. The whole mesh scan
including this multiple exposure feature was controlled by a self-developed
spec macro. Typical scans had 5 × 5 to 11 × 11 points. This depended on
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the desired �eld of view and the chosen step size between adjacent positions.
Typically a relative linear overlap of 50�75% was chosen. An overlap of ex-
actly 50% tended to produce artifacts in the reconstruction and also from a
geometrical point of view a overlap bigger than 50% seems advisable because
then also the next but one neighbours start to overlap.

(a) Pinhole di�raction pattern. (b) Di�raction pattern with sample.

Figure 4.3: Typical di�raction patterns (color-coded logarithmic scale) from (a) the
illuminating pinhole alone and (b) with sample (the dog �ea shown in �gure 4.5. While
for (a) four exposures ranging from 0.25 s to 20 s were used, for (b) additionally a �fth
exposure (30 s) was taken. The pattern (b) is o�-centered because the cover-glass on the
sample was tilted with respect to the slide below. There is no symmetry with respect to
the center indicating that the sample has a complex exit wave.

4.3 Processing of experimental data

The PIE algorithm has already been introduced in section 2.3.4. In this
section more details of the actual implementation for the reconstruction of
experimental data will be discussed.
Like the simulations, all the reconstructions were done with Matlab.

4.3.1 Determination of the illumination function

Recalling what the PIE algorithm uses as input information, we have to
provide an accurate knowledge of the complex-valued illumination function
and its positions relative to the sample, together with the recorded di�rac-
tion data for the Fourier magnitude constraints. The illumination function
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was usually obtained from a simple model: A disk, i.e. a circular top-hat
function, representing a perfect pinhole was created. A convolution with a
narrow Gaussian produced more physical smoothed edges. From this a simu-
lated di�raction pattern was calculated and by comparison with the measured
far-�eld data of the illumination, see �gure 4.3(a), the radius of the circular
top-hat and its amplitude were adjusted so that the di�raction intensities of
model and measurement matched. As the sample could not be placed di-
rectly in the pinhole plane, the probe at the sample position was calculated
by Fresnel propagating the probe at the pinhole plane to the appropriate
distance using equation 3.3. A di�erent approach uses standard phase re-
trieval techniques (the HIO algorithm, e.g., see section 2.3.3) to reconstruct
the illumination function. This is of special interest in cases where modeling
the illumination is not easily done [54], like if one wants to include devi-
ations caused by pinhole imperfections. This approach requires di�raction
patterns of the probe of rather high quality to get a reconstructed probe that
gives PIE reconstructions of quality comparable to the one obtained with a
modeled probe. The reason for this is, that the standard phase retrieval
algorithm attributes all noise in the probe di�raction pattern to deviations
of the pinhole or its illumination from the ideal case. Therefore too much
noise from other sources results in unphysical features in the reconstructed
probe function. The approach is thus not yet able to provide a way to run a
whole PIE reconstruction model independent with only di�raction patterns
as input.
A second idea is to improve the probe by feedback from the PIE reconstruc-
tion: As the roles of probe and object function can be easily exchanged in
the PIE algorithm, with di�raction data from a well-de�ned object an `in-
versed' PIE loop can be done. That means, leaving the object �xed and
updating only the probe using the redundant information from all positions
of the mesh to reconstruct it. When imaging a di�erent object with the same
illumination the retrieved probe can then be used for the reconstruction.
Combining both the modeling and the `inversed PIE', one can think of con-
structing a modi�ed algorithm with a feedback loop for probe re�nement,
see diagram in �gure 4.4: First a reconstruction of the object is done with a
modeled probe in a standard PIE loop. Then an `inversed' PIE loop follows,
giving an updated version of the probe that can be used to again reconstruct
a new object. It is not clear yet, if this approach will lead to converging
solutions for both the object and the probe. In �rst tests with experimental
data, the method seemed to reduce artifacts in the reconstructions though
this was not true for all data sets. Further studies will have to be carried out
to assess the usefulness of the idea.
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Figure 4.4: PIE algorithm with feedback loop for probe re�nement: The result of a �rst
reconstruction with a modeled probe is held �xed in an `inversed' PIE loop to reconstruct
the probe.

4.3.2 PIE processing

The di�raction patterns were imported into Matlab using a custom-made
reading routine for the data format produced by the CCD. The patterns
measured with di�erent exposure times were combined by successively sub-
stituting all pixels with values above a certain threshold by the corresponding
pixels from the next shorter exposure. The data was then cropped to the re-
gion where signal was present, because the background noise of pixels at high
momentum transfers made the reconstruction unstable. If the di�raction pat-
terns were not well centered within the selected region, compare �gure 4.3(b),
a linear phase ramp appeared in the reconstructed phase, see equation (2.3).
Figure 4.5 shows a rather extreme example for phase wrapping which occurs
for large phase ramps because the phase is only given modulo 2π. Such phase
ramps can then be used to precisely determine the center of the di�raction
patterns, assuming that the phase image should have a �at background.

The cropped and centered di�raction patterns were normalized (normal-
ization constant obtained from the modeling parameters of the probe) and
the Fourier magnitudes were calculated as the square roots of the intensity
values. If the oversampling ratio σ of the data is much higher than 2, the
data can be down-sampled (or (re-)binned) to images with less pixels which
reduces the computation time without loosing information. Of course, the
matrix containing the probe has to be corrected to the new size as well.

The size of the matrix representing the object has to be chosen in a way,
that it fully contains the probe matrix when the latter is centered over any of
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(a) Light microscope image of a dog �ea.

100 µm

(b) PIE reconstruction of framed area.

Figure 4.5: Image (a) shows a standard light microscope of a dog �ea (prepared slide
purchased from Euroslides). The yellow frame marks the area whose reconstruction from
a PIE scan is shown in (b). It is a good example for a huge phase ramp in the retrieved
phase as a result of translated di�raction patterns. The di�raction patterns (see �gure
4.3(b)) were too far o�-center to fully correct for it in the reconstruction by shifting the
origin.

the positions de�ned by the scanning mesh. The object is usually initialized
with random numbers as a �rst guess and then the PIE reconstruction starts
picking the appropriate part of the object array for each illumination position
and applying the algorithm as described in section 2.3.4.

4.3.3 Pixel size in reconstructed images

In what follows it is assumed that the di�raction patterns cover the full �eld-
of-view in the recorded (and probably cropped) images and that nothing
like zero-padding is done that would alter the pixel size in the retrieved
image but not increase the information content. If we de�ne the resolution
of the reconstructed image as the minimum distance for which we still can
distinguish two adjacent points of the object, we get twice the pixel size for
a pixel-based image. We now want to calculate the size of one pixel in the
reconstruction:
We have a square CCD chip with a side length D = Nd, where N is the
number of pixels in a row or column and d the size of the pixels. From the
object plane at distance Z from the chip, it is then seen under an angle
α ≈ D/Z (small angle approximation). With Bragg's law (2.71) in its small
angle form q = 2k/θ = k/(2α) we can relate this angle to a momentum
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transfer
Q = 2|qmax| =

2π

λ
α . (4.1)

From that the sampling interval in Fourier space ∆q = Q/N can be calcu-
lated, which is related to the (linear) pixel size ∆x in the reconstructed image
by equation (2.14). With (4.1) this results in

∆x =
2π

N∆q
=
λ

α
, (4.2)

directly showing that the pixel size ∆x in the reconstruction is inversely
proportional to the maximum angle covered by the detector. With the geo-
metrical values introduced above we get

∆x =
λZ

Nd
. (4.3)

As the direct measurement of the distance Z was not easily possible with the
required precision, the pixel size was usually determined as the ratio

∆x =
rreal
rmodel

, (4.4)

where rreal is the known radius (in meter) of the illumination-de�ning pinhole
and rmodel the radius in pixel used in the model. As this latter radius is
adjusted by comparison of calculated and measured di�raction patterns, no
knowledge of Z is needed to determine the pixel size. On the contrary, the
so determined ∆x can be used to calculate Z with (4.3).

Binning of the di�raction data does not change the resolution of the re-
constructed image, as the product Nd in equation (4.3) remains constant. As
long as the sampling condition is ful�lled, binning is equivalent to removing
some of the extra zeros around the support of the object.

4.4 Reconstructions with di�erent overlap pa-

rameters

Quantitative simulations to investigate the in�uence of the overlap parame-
ter can be found in section 3.1. The terminology de�ned there will be used
in what follows. As one cannot de�ne a reference for the quality of recon-
structions of an unknown sample, a similar quantitative assessment cannot
be done. We will therefore discuss the results only on a qualitative basis.

The experiments were carried out with a pinhole of 200 µm diameter at a
sample-to-detector distance of 20 cm. As test sample a �y wing was used. A
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light microscope image of it is shown in �gure 4.6(l). The sample was placed
1.5 mm behind the illumination-de�ning pinhole. The scans had 11 × 11
positions with relative overlaps ranging from 0% to 100%. The reconstructed
images are visualized as HSV false color plots in �gure 4.6(a)�(k), as usual
amplitude coded as brightness and phase as hue. For each of the images 30
PIE iterations were done. The reconstructed images were retrieved with an
arbitrary phase o�set. As mentioned before this is an inherent feature of
iterative phase retrieval techniques. This phase o�set has been adjusted in
the images in �gure 4.6(a)�(k) for ease of comparison.

In �gure 4.6(a), i.e., 0% nominal overlap, one sees some slight correlation
for the average phases of individual positions. Also some amplitude features
are visible. This is probably caused by the overlap of the weak tails of the
incident probe due to the free-space propagation from the pinhole to the
object plane. With increasing overlap the phase values of adjacent positions
become more and more correlated and larger patches start to form in �gure
4.6(c). Figure 4.6(d) shows the reconstruction for 30% overlap, the value
that was recommended in section 3.1 for fast overview scans and highly
radiation sensitive samples. At 60%, which we beforehand found to be the
preferable value, the highly absorbing lines of the wing are well de�ned and
artifacts in the background are further reduced, see �gure 4.6(g). Increasing
the overlap even more yields only little improvement of the image quality at
the expense of considerably large overhead in scanning time and higher dose
on the sample. When PIE degenerates to a standard iterative phase retrieval
algorithm at 100% overlap, �gure 4.6(k), an image of very low quality is
retrieved although 30 PIE iterations of the 11× 11 now equivalent positions
corresponds to 3630 total iterations for that central area. In summary, the
experimental data con�rm the results of the simulations discussed in section
3.1.
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Figure 4.6: Reconstructions from measured data sets for di�erent relative overlaps. The
relative overlap is increased in steps of 10% from 0% (a) to 100% (k). The white scale bar
represents 0.5 mm. The red frame in the light microscope image of the sample (l) marks
the region covered in a. Brigthness represents amplitude and hue codes phase according
to the colorbars in k.
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4.5 Toward routine lensless imaging applications

Figure 4.7: Standard light microsope images of three samples that were imaged with
the laser PIE setup: The insect antenna (a) and the wing (c) were taken from a dead
�y belonging to the family of chironomidae. (b) is a prepared slide (purchased from
Euroslides) with the stem tip of a hydrilla verticillata. The corresponding reconstructions
are shown in �gure 4.8 .

On a medium-term time scale it would be nice to run coherent di�raction
microscopy setups as standard user instruments at synchrotrons.1 For our
laser setup we gradually improved the degree of automation in the recon-
struction scripts and thus the user-friendliness. When the geometry of the
setup does not change, all that has to be provided are the basic parameters
of the scan, like the step size, the number of positions, the number of ex-
posures at each position, and some knowledge about the probe. In the case
of a modeled probe, only the radius has to be determined by comparison of
modeled and measured di�raction pattern, the normalization constant may
be directly obtained from the highest pixel value. In a next step, the scan
parameters could also be directly passed from the control software.
The data �les of the scan are identi�ed by one single scan number. If mul-
tiple exposures are used, the reading routine scales the data appropriately
and replaces overexposed pixels without any user interaction required. For
the PIE loop itself, one usually has to change only the number of desired
iterations.
Of course, too much automation always includes the risk of loosing the control
over certain parameters or relying too much on the automatically obtained
results. So it should �rstly be used to automate truely trivial things that
do not directly a�ect the reconstruction process. Only for a very stable and
reliable setup with good data one can do further steps toward automation,

1There may even be a small niche for lensless laser imaging in cases where standard
lens systems cannot be used.
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like retrieving the probe from its di�raction pattern.
To illustrate that our laser setup can be used for imaging in a routine way,

Figure 4.8: The labeled images (a)�(c) each show the reconstructions of the objects
which have the same label in 4.7. (d) is a high-resolution image of the �y wing in (c). The
white scale bar represents 0.25 mm. See text for more details.

reconstructions from the three samples shown in �gure 4.7 shall be discussed
as representatives. Each of the reconstructions (a)�(d) in �gure 4.8 was ob-
tained from a 11× 11 PIE mesh. For (a) and (d) only a single exposure (at
each position) was used, while for (b) and (c) multiple exposures of di�erent
lengths were combined. Already the images from single exposures are usually
of quite good quality. They can be improved further by multiple exposures
so that small details like the hairs at the edge of the wing in (c) become visi-
ble. While (a),(c) and (d) were reconstructed from samples that were in air,
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(b) is from a prepared slide, where the specimen is con�ned between a cover
glass and a standard microscopy slide. It is one example that showed that
the setup had no particular di�culties with the additional glass surfaces (as
long as they where parallel and did not introduce additional phase gradients
as in �gure 4.5(b)).
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Chapter 5

Di�ractive imaging with hard

x-rays

5.1 Synchrotron radiation

The di�ractive imaging x-ray experiments were carried out using synchrotron
radiation. A sketch of a synchrotron experiment is shown in �gure 5.1, to-
gether with some typical distances. The radiation is generated in the in-
sertion device (here an undulator) by oscillations of the electrons that are
orbiting in the storage ring. The crystal-monochromator uses Bragg re�ec-
tions to select a narrow spectral band. Often focusing devices are used before
the beam is delivered on the sample.
Some main aspects of the generation of synchrotron radiation will be pointed
out, more details and the derivations of the equations can be found in [1].
Di�erent types of x-ray sources can be characterized by their brilliance B

B =
photons / second

(mrad)2 (mm2source area) (0.1%bandwidth)
. (5.1)

The intensity of the beam in photons per second after a monochromator can
then be calculated as the product of brilliance, angular divergences set by the
horizontal and vertical apertures (in milli-radian), the source area (in mm2)
and the bandwidth of the monochromator relative to 0.1%. The �ux of the
source is de�ned as photons per second per unit area.

5.1.1 Radiation from a circular arc

Synchrotron radiation is produced when electrons at relativistic speed travel
along curved trajectories. In a synchrotron the electrons revolve in a storage

51



Synchrotron
storage ring

Undulator
Focusing

device

Spectrometer

Monochromator

300 m

5 m

30  m

2  m

10  m

Figure 5.1: Sketch of a x-ray experiment at a synchrotron showing major components
and the typical distances. From [1].

ring kept on their orbits by bending magnets. An electron of energy Ee,
moving on a circular trajectory at relativistic speed v, emits radiation into
a cone with an opening angle of γ−1 = mec

2/Ee (me is the electron mass,
c the vacuum-speed of light). The instantaneous axis of this cone is always
parallel to the instantaneous velocity of the electron. This bending magnet
radiation has certain properties:

• A very broad (far infrared to hard X-ray) spectrum with hard X-ray
cut-o� at frequencies of order γ3ω0 (ω0 = cyclic frequency of the orbiting
electron).

• On-axis polarization: linear in the horizontal plane.

• O�-axis polarization: right-handed circular above the orbit plane, left-
handed circular below.

• Radiation is pulsed with a pulse duration that equals length of electron
bunch divided by c.
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The radiated power from a section L along the electron path at a current I
in the storage ring is given by

P [kW] = 1.266 E2
e [GeV] B

2[T] L[m] I[A] . (5.2)

5.1.2 Insertion devices

At a modern `third generation' synchrotron source the storage ring has sev-
eral straight sections between the circular arc segments within the bending
magnets. In these straight sections so-called insertion devices can be oper-
ated, like the undulator depicted in �gure 5.1. Insertion devices consist of
two opposed arrays of magnets which produce a magnetic �eld alternating
from up to down along the path. The electrons oscillate several times and so
the radiation from several curved paths adds up. There are two main types of
insertion devices, wigglers and undulators. They can be characterized by the
maximum angular deviation K of the electrons from the axis of the device.
For undulators K is usually around 1, as for wigglers it has a value around
20.

Wigglers

The trajectory of electrons in a Wiggler can be viewed as a series of circular
arcs: The radiated intensities of all arcs add up and thus increase the total
intensity by a factor of two times the number of periods. The spectrum is
the same as for a bending magnet of the same magnetic �eld strength.

Undulators

Undulators are designed in a way that the radiation emitted by a certain
electron at one oscillation is in phase with the radiation from the following
oscillations. So the amplitudes of the radiated waves are �rst added and
then the sum is squared to obtain the total intensity. Undulator radiation
has a very small bandwidth because the coherent addition of amplitudes
is only valid at one particular wavelength and its harmonics. For higher
K values the intensity of the harmonics increases and they are shifted to
lower photon energies. As the K value is proportional to the peak magnetic
�eld, it changes when the gap between the two arrays of magnets is altered.
In an experiment the gap can be adjusted to give the best performance
for the wavelength selected by the monochromator. The intrinsic angular
divergence is much smaller than for wigglers or bending magnets. Undulators
can provide enough coherence to make di�ractive imaging possible.
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5.2 Experimental setup

AB
D

C

Figure 5.2: Overview of the experimental setup used for x-ray di�ractive imaging exper-
iments. The labeled components are: Slits (A), illumination-de�ning pinhole arrangement
and sample stage (B) (see also the close-up view in �gure 5.3), `x-ray eye' for alignment
(C) and the evacuated �ight-tube (D) leading towards the detector (not shown here). See
text for more details.

The experiment was carried out at the microXAS beamline of the Swiss
Light Source (SLS). The x-ray energy was set to 6.0 keV (λ = 0.207 nm)
with a liquid nitrogen cooled Si(111) double re�ection monochromator. The
undulator gap was adjusted to shift the third harmonic of the undulator
to this energy. The distance from the source to the sample was around 35
m. The size (FWHM) of the undulator source is approximately 202 µm in
horizontal and 18 µm in vertical direction . If we assume a Gaussian source
and calculate the sigma widths σ = FWHM/(2

√
2 ln 2) we can obtain an

estimate for the transverse coherence lengths with equation (2.52). With
the given values we get ξh ≈ 13.4 µm for the horizontal and ξv ≈ 150 µm.
The illumination on the sample was de�ned by a pinhole right in front of
it with a diameter of 10 µm. We infer that the illumination on the sample
was substantially, although not perfectly, spatially coherent. To get a well-
de�ned probe, the size of the beam was �rst reduced by a pair of slits, �gure
5.2 (A). Scattering from the slit blades was removed from the beam by a
100 µm pinhole (Linos) placed behind them, see �gure 5.3 (A). Pinhole (B)
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ABC

Figure 5.3: Illumination-de�ning pinholes (A,B) and sample stage (C) of the hard x-ray
setup. The third pinhole, which is not labeled separately, is as close as possible to the
sample. See text for more details.

in �gure 5.3 had a diameter of 20 µm. It was intended to block most of the
radiation coming through the 100 µm aperture, because we observed that still
a signi�cant part of the beam would otherwise penetrate through the material
around the following 10 µm aperture. The used pinholes were commercial
Pt/Ir apertures for electron microscopy (Plano). To be able to get as close
as possible to the sample, the pinholes where spot-welded on syringe needles
(visible in �gure 5.3, label (B)). Before the experiment several pinholes had
been inspected with a scanning electron microscope (SEM). For the best-
looking we then compared the x-ray di�raction patterns to choose the one
which produced the cleanest illumination. SEM image and di�raction pattern
of our �nal choice are shown in �gure 5.4. The pinholes were motorized with
di�erent kinds of stepper motors (Newport, Faulhaber) to allow for precise
and reproducible alignment.

The samples were mounted on a two-dimensional piezo-driven stage (PI
P-733.2DD) with 100 µm travel range along each axis. The piezo stage was
placed on a combination of stepper motor driven stages (Kohzu, Owis) to
allow larger movements. For a rough alignment of the beam de�ning compo-
nents a laser was adjusted to point along the x-ray beam path. Fine alignment
was done directly with the x-ray beam. For this a `x-ray eye' (�gure 5.2 (C))
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(a) SEM image. (b) X-ray di�raction pattern.

Figure 5.4: SEM image (a) and x-ray di�raction pattern (b) of the 10 µm pinhole used
in the x-ray experiment. The di�raction pattern is combined from two acquisitions with
exposure times of 0.5 s and 5 s. It is plotted on a color coded logarithmic scale.

was installed. It used a video camera with a microscope objective to image
a scintillator which converted the x-rays to visible light. The x-ray eye was
also used to �nd the samples on their supporting structures. Of course, this
is only possible if the samples show enough absorption contrast.

The di�raction patterns were recorded with a CCD with �ber-optical
scintillator input (Photonic Science Hystar), which had 2096 × 2048 pixels
with an e�ective size of 4.5 µm×4.5 µm each. To be able to work in the far-
�eld and to su�ciently oversample the di�raction pattern, the detector was
placed about 2.9 m downstream from the sample. For 2.5 m of this distance
the beam traveled through an evacuated �ight tube, �gure 5.2 (C), to avoid
absorption and scattering processes in air. The detector had to be connected
to an external shutter, so that there was no signal during readout of the
chip. The detector software was operated to wait for trigger signals (TTL
pulses) from the motor control software, which then caused acquisitions with
a prede�ned exposure time. To increase the dynamic range by combining
patterns from di�erent exposure times, several separate PIE scans were done.
However, this renders errors due to the potentially insu�cient repositioning
accuracy (e.g., due to thermal drift) more likely.
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(a) SEM image of Fresnel zone plate. (b) SEM image of PSI logo.

Figure 5.5: SEM images of the samples used in the x-ray PIE experiment. The Fresnel
zone plate in (a) has a diameter of 20 µm. The circles indicate the probe positions for
which the di�raction patterns in �gure 5.6 were recorded. The width of the PSI logo is
16 µm. Images courtesy of Konstantins Je�movs.

5.3 Investigated samples

We used two di�erent gold nanostructures, a Fresnel zone plate (FZP) and a
PSI logo, see �gure 5.5. They were fabricated by Konstantins Je�movs (X-ray
Optics and Applications Group, Laboratory for Micro- and Nanotechnology,
Paul Scherrer Institut) using electron beam lithography, a series of etching
steps and electroplating of gold. Technical details can be found in [39].

The zone plate shown in �gure 5.5(a), has a diameter of 20 µm and the
width of its outermost zones is 100 nm. The height of the gold structures is
around 1 µm. The substrate supporting the zone plate is a silicon membrane
of approximately 4 µm thickness. The gold balls outside the zone plate range
approximately from 250 to 1500 nm in diameter.

The logo of the Paul Scherrer Institut (PSI) in �gure 5.5(b) has a size
of 6 µm × 16 µm. It was specially produced for the experiment to have a
well-de�ned structure without the symmetries and periodicities of a zone
plate.

Besides these fabricated nanostructures, some tobacco mosaic viruses
were available on standard copper grids as used in transmission electron
microscopy.
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5.4 Results

a b c

d e f

g h i

Figure 5.6: Central regions of di�raction patterns from the PIE scan of the Fresnel zone
plate, plotted on a color-coded logarithmic scale. The exposure time was 1 s. As depicted
by the circles in �gure 5.5(a), in (a)�(f) the illumination function passes over the zone
plate creating a strongly directed di�raction signal that re�ects the average orientation of
the illuminated structures. In the patterns (g)�(i) from the random gold balls no preferred
orientation is visible and just the speckle in the central part change.

The reconstruction procedure was exactly the same as described in sec-
tion 4.3 for the laser data. The same Matlab scripts were used with just
some slight modi�cations of the loading procedures. With a modeled illumi-
nation function, good reconstructions were obtained, whereas the application
of phase retrieval on �gure 5.4(b) to reconstruct the probe turned out to be
di�cult.

As we observed repositioning errors between two scans that were identical
except for the exposure times, the reconstructions had to be done with single
exposures. This limits the accessible range in Fourier space dramatically,
because the acquisition time has to be short enough that the central pixels
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(b) Reconstructed phase

Figure 5.7: PIE reconstruction of a gold Fresnel zone plate of 20 µm diameter. The
normalized amplitude of the complex exit wave is shown in (a), the phase in (b). 20 PIE
iterations were done on the six-fold binned di�raction data.

do not saturate. For the reconstructions presented in this chapter, the data
was thus cropped to 768 × 768 pixels. With our geometry this results in a
pixel size of ∼ 180 nm in the reconstructed image. With this resolution, the
tobacco mosaic viruses could not be resolved. The discussion thus focuses on
the imaged nanostructures.

5.4.1 Fresnel zone plate

Data from the membrane with the Fresnel zone plate shown in �gure 5.5(a)
was taken at 15 × 15 positions with 3 µm step size. This corresponds to
a relative linear overlap of 70% that should � as far as the dependence on
the overlap is concerned � allow for a good reconstruction (see section 3.1).
Nine of the 225 di�raction patterns are shown in �gure 5.6 (compare also
to �gure 5.5(a)). When the probe illuminates the �rst zones, this results
in the di�raction pattern (a), revealing an average orientation of about 45◦

with respect to the Cartesian axes. At (c) the zones are mainly oriented
horizontally. The sixth pattern (f) shows that the zones now form an angle
of 90◦ with respect to the ones in (a).
The reconstructed complex exit wave of the object obtained from the full

data set is shown in �gure 5.7 separately for the phase and the amplitude.
The di�raction data was binned by a factor of six. The free-space propagation
from the pinhole to the sample was set to 0.5 mm. 20 PIE iterations were
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done.
We observe that the higher sensitivity of the phase shift results in a

better contrast. For example, the gold balls at the rim of the zone plate are
barely visible in the amplitude image. The other gold balls also do not show
much absorption apart from an edge enhancement e�ect that makes them
visible at all. The horizontal and vertical lines in the amplitude image are
reconstruction artifacts, which appear not so pronounced in the phase.

Figure 5.8 shows a close-up view of the SEM image of the zone plate
together with the corresponding region from the reconstructed phase. The
achieved resolution seems only to be limited by the pixel size, there are no
other e�ects visible that spoil it. As only comparably small regions of the
di�raction patterns could be used, the resolution can still be signi�cantly
improved if data of su�cient quality is recorded at higher di�raction angles.
Despite of that, the potential of the technique can already be seen from
the results presented here. The intrinsic resolution of our the setup, if only
the transmitted intensity would have been monitored, is given by the 10 µm
diameter of our aperture. In our reconstruction we can see isolated objects
which are more than 50 times smaller (like the black ring from a collapsed
zone in the outer region of the zone plate, that is visible as such in both
the SEM image (�gure 5.8(a)) and the reconstructed phase (�gure 5.8(b)).
The central ring of the zone plate is distorted in the phase image, indicating
some imperfections in the model of the probe, and especially not correcting
for deviations of the probe positions from the ideal mesh.

5.4.2 PSI logo

From the membrane with the PSI logo (see SEM image in �gure 5.5(b))
di�raction patterns at 11 × 11 positions with a grid spacing of 3 µm were
taken. The exposure time was 0.7 s. For the PSI logo, the di�erence between
reconstructed amplitude (�gure 5.9(a)) and the retrieved phase (�gure 5.9(b))
is even more signi�cant than for the previously discussed zone plate. Yet it is
a good example, how a PIE scan can be used to �nd an object whose position
is not exactly known. Although the rough position was aligned with the x-
ray eye, it would not have been exact enough for conventional di�ractive
imaging. This is because in such a case the object has to be placed exactly
behind the coherence-de�ning aperture. For objects with low absorption this
is extremely di�cult. In our case, the rough positioning was enough to be
sure that the object would be totally inside the range of the scan. If already a
good enough model for the probe function exists, one can directly reconstruct
a certain scan to de�ne the scanning range for the next one. Especially when
one is only interested in certain regions of an extended specimen, the PIE
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(a) SEM of zone plate.
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(b) Reconstructed phase (close-up).

Figure 5.8: Detailed view of the zone plate's SEM image (a) and the corresponding
region (b) from the reconstructed phase image. The collapsed zone close to the rim is
clearly visible.

algorithm is usually robust enough to get a reasonable image from a fast
overview scan that allows to pick out the desired smaller area.

5.5 Limitations

Starting from the speci�c di�culties experienced during the x-ray experi-
ment, we want to discuss some general limitations of x-ray di�ractive imaging
and possible approaches to deal with them:

• Stability:
With the setup described in section 5.2, certain stability problems were
observed. Long overnight scans su�ered from a drift of sample and op-
tical components, most likely due to thermal expansions. On a shorter
time scale, vibrations of the syringe needles holding the pinholes were
identi�ed as the most likely reason for some errors. These vibrations
were probably caused by the air �owing down from the air conditioning
of the x-ray hutch, which was mounted at the ceiling.

In general, due to the small length scales, x-ray di�ractive imaging
experiments are very sensitive to instabilities of the setup, which should
be considered when designing an experiment. For our speci�c stability
issues, replacement of the needles by more stable pinhole mounts and
a more compact setup are strategies to cope with the problems.
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(b) Reconstructed phase

Figure 5.9: PIE reconstruction of a 6 µm × 16 µm PSI logo (gold nanostructure). The
amplitude is plotted in (a), the phase in (b). The reconstruction was obtained within 10
PIE iterations from the six-fold binned di�raction data.

• Quality of illumination-de�ning components:

Already small imperfections of the illumination-de�ning pinholes can
signi�cantly distort the probe function. Although the pinhole looks
nice in the SEM image in �gure 5.4(a), its di�raction pattern is far
from perfect, see �gure 5.4(b). The modeling of such imperfections
is usually quite challenging. Phase retrieval methods also tend to fail,
because they may, for example, wrongly attribute e�ects from radiation
transmitted through the surrounding material to the hole itself. So
it is advantageous to have good probe-de�ning components. Taking
di�raction patterns from various pinholes, we �nally made the best
experience with pinholes that had been produced or corrected with
a focused-ion beam (FIB). Pinholes produced in-house with standard
nano-structuring techniques usually had the problem that the material
was not opaque enough.

• High accuracy of positioning:

Usually the required positioning accuracy can be routinely realized with
piezo-driven devices. However, this limits the scan range and may proof
to be di�cult when a special sample environment has to be moved in
and out of the beam.

• Detection:
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In our case, the achieved resolution was limited by the dynamic range of
the detector, as we could not record su�cient data at higher di�raction
angles without saturating the central part of the CCD. One method,
which was used to record high-resolution data, is to block the central
part of the beam. However, the missing central data will probably
cause di�culties in the reconstruction process [64, 65]. If one has the
possibility to combine di�raction patterns of di�erent exposure times,
the blocked area can be replaced with data from a shorter exposure. In
our case, combining of multiple images was unfortunately not possible
due to misplacement problems with consecutive scans. Other methods
to increase the dynamic range would be the use of a semitransparent
beam stop or a detector with an increasing sensitivity for higher angles.
Besides a high dynamic range, the intrinsic noise level of the detector
should be low. Short readout times would allow for faster scans and
thus minimize the e�ects of long-term drifts. In our case the readout
time of the CCD was almost ten seconds and thus ten times longer
than the actual acquisition times.

• Radiation damage:

Biological samples are subject to radiation damage. Therefore the dose
a sample can sustain before undergoing signi�cant changes is a limiting
factor of the resolution that can be obtained [34]. Besides an appro-
priate choice of the scanning parameters, namely the overlap (section
3.1.4) and the exposure time, the sample preparation and handling are
also important. Cryo-cooling, for example, could be used to signi�-
cantly reduce the radiation damage [4].

• Coherence:
The degree of coherence of the x-ray beam from current synchrotron
sources limits the area that can be illuminated at once. Hence only a
small part of beam can be used. This limitation can be overcome with
energy recovery LINACs (ERL), linear accelerators that provide higher
coherence due to a smaller source size. For di�ractive imaging with
single di�raction patterns, the new generation of x-ray sources, the so-
called free-electron lasers (FEL) could be used in future. They provide
a fully coherent beam. Apart from the existing soft x-ray FEL FLASH
[25], hard x-ray machines are under construction, e.g., the Linac Co-
herent Light Source (LCLS) in Standford [41] and the European XFEL
in Hamburg [15].
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Chapter 6

Conclusions and outlook

With this work we have demonstrated the potential of the Ptychographi-
cal Iterative Engine (PIE) for lensless coherent imaging. The algorithm has
proven its theoretically predicted robustness and uniqueness in several exper-
iments with data sets of di�erent quality. In terms of applications the most
signi�cant advantage is the extension of the �eld of view. PIE provides the
possibility to overcome the other algorithm's limitation to isolated objects.
This simpli�es sample preparation and facilitates its use as a routine imaging
method in, e.g., biology and material science.

Our studies of the in�uence of the overlap parameter on the convergence of
the algorithm revealed that scans with smaller step sizes generally yield better
reconstructions. However, we found out that radiation sensitive samples
should be scanned with a relative linear overlap of ∼ 60% to achieve good
image quality without neglecting the dose delivered to the sample. The
convergence was observed to be fast, usually less than 50 PIE iterations are
su�cient.

The laser light experiments proved to be useful tools to test certain pa-
rameters of the method. The capabilities and the phase retrieval scripts were
gradually improved with the increasing needs for more sophisticated pro-
cessing schemes. However, phase retrieval techniques for reconstructing the
probe from measured data and thus making the method model-independent
did only work with very good data sets.

Due to experimental limitations the x-ray data could not provide ultimate
resolution. The reconstructions were nevertheless showing a considerable
amount of details. The limiting factors could be identi�ed and will allow to
improve the design of the setup for projected follow-up experiments in the
near future.

For the further development of the technique we also started to assess
combinations with other existing imaging methods. PIE was mentioned in
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section 2.3.3 to be one of two approaches to overcome certain limits of the
standard phase retrieval algorithms. The other approach, Fresnel Coherent
Di�ractive Imaging (FCDI, see [51, 53]), uses well-de�ned wavefront cur-
vatures to improve convergence and ensure uniqueness of solutions. With
our laser setup we recently implemented the possibility to �exibly illuminate
with either a (diverging) curved or a plane wave and to detect either in the
near or the far-�eld. A diverging wave is easily realized with a small pinhole
acting as a point source. The plane wave can then be constructed adding
a lens that parallelizes the light. A second lens behind the sample ensures
that a far-�eld pattern is detected. When the second lens is removed, we
record a near-�eld di�raction pattern. In the reconstruction code, the di�er-
ent cases are just characterized by two scalar numbers specifying the amount
of phase curvature. The four di�erent possible combinations of illumination
and detection schemes will be investigated in the near future.

In principle, such a curved wavefront approach can also be transferred
to the x-ray case. For example, Williams et al. [67] produced curved x-
ray wavefronts with Fresnel zone plate optics. Of course, this can also be
combined with PIE. In a very recent �rst test experiment, gold nanostruc-
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(b) Phase image.

Figure 6.1: Transmission (a) and phase (b) of a cytoskeleton specimen prepared from
human pancreatic cancer cells. Contrast was enhanced by staining with uranyl acetate
and osmium tetroxide. The images are preliminary results from a 200 × 200 mesh with
200 nm step size and 30 ms exposure time. Courtesy of Pierre Thibault.

tures and cytoskeleton-samples (prepared at the Institute of Experimental
Physics, Ulm University) could already be measured using this approach.
The �rst preliminary evaluation of the data is shown in �gure 6.1. It is no
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super-resolution yet, but has the intrinsic 200 nm pixel size from the points
of the PIE scan, calculated from looking at integral values of the recorded
frames. As the data was recorded with the new PILATUS 2M pixel detector,
which has 20 bit dynamic range, no dark counts and a read-out time as fast
as 10 ms [35, 36], also large scans of, e.g., 200 × 200 illumination positions
can be recorded in a reasonable amount of time. Fast overview scans, pro-
cessed to get standard transmission microscopy images, give new possibilities
of locating regions-of-interest.

Even without �nal reconstructions one can already tell from the recorded
di�raction data that this approach has a huge potential. A step towards
tomography may also be done in the near future.
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Appendix A

Matlab code for a basic PIE

simulation

In the code below a RGB image is translated to a complex matrix represen-
tation (using the usual hue-brightness coding scheme introduced in section
3). Di�raction patterns are calculated from four di�erent illumination po-
sitions with variable overlap and then the object is retrieved using the PIE
algorithm.

1 clear;

2

3 %% parameters

4

5 r = 40; %% radius of aperture

6 apshift = 10; %% half distance between the aperture positions

7 n = 30; %% number of pie loops

8 alpha = 0.0001;

9 beta = 1;

10 phiobjoffset= 0*pi;

11 dfpatterfignon = 1;

12

13 %% load image data

14 %% fluoresence image of cell, e.g. from www.invitrogen.com

15 %% or http://rsb.info.nih.gov/ij/images/FluorescentCells.jpg

16 %% Image resized to 201x201 pixel

17

18 fluo_cell = imread('cell2.tif');

19 fluo_cell_hsv = rgb2hsv(fluo_cell);

20 datamp = squeeze(fluo_cell_hsv(:,:,3));

21 datphase = 2*pi.*squeeze(fluo_cell_hsv(:,:,1))-pi;

22 dat = flipud(datamp.*exp(sqrt(-1)*datphase));
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23

24 %% define the 4 positions

25 [x,y] = meshgrid(1:201,1:201);

26 xp(1) = 100-apshift; xp(2) = 100-apshift;

27 xp(3) = 100+apshift; xp(4) = 100+apshift;

28 yp(1) = 100-apshift; yp(2) = 100+apshift;

29 yp(3) = 100+apshift; yp(4) = 100-apshift;

30

31 %% model illumination functions (pinhole)

32 for i = 1:4

33 probe(:,:,i) = sign(real(sqrt(r.^2-(x-xp(i)).^2-(y-yp(i)).^2)));

34 end

35

36 %% create diffraction patterns

37 for i = 1:4

38 sim(:,:,i) = (fft2(squeeze(probe(:,:,i)).*dat));

39 dp_exp(:,:,i) = abs(sim(:,:,i));

40 end

41

42 %% plot original data - hsv representation

43 figure(1); clf;

44 dathsv = zeros(size(dat,1),size(dat,2),3);

45 dathsv(:,:,1) = (angle(dat)+pi)./(2*pi);

46 dathsv(:,:,2) = ones(size(dat,1),size(dat,2));

47 dathsv(:,:,3) = abs(dat);

48 imshow(hsv2rgb(dathsv));

49 title('original object [hsv]');

50

51 %% initial guess for object

52 object = complex(rand(201),rand(201));

53

54 %% PIE loop

55 for i = 1:n

56

57 fprintf(['PIE iteration ' num2str(i,'%03d') ', error: ']);

58

59 %% loop over the 4 positions

60 for pos=1:4

61

62 obj = probe(:,:,pos).*object;

63 objnew = ifft2(dp_exp(:,:,pos).*exp(sqrt(-1).*angle(fft2(obj))));

64 update_function= conj(probe(:,:,pos)).*abs(probe(:,:,pos))./...

65 (conj(probe(:,:,pos)).*probe(:,:,pos)+alpha);
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66 object_new = object +update_function.*(objnew-obj);

67

68 object = object_new;

69

70 err(:,:,pos) = (dp_exp(:,:,pos).^2 - (abs(fft2(obj))).^2).^2./(201.^2);

71 fprintf([' ' num2str(sum(sum(err(:,:,pos))),'%0.2d')]);

72

73 %% plot retrieved object in hsv representation

74 figure(2);

75 objecthsv = zeros(size(object,1),size(dat,2),3);

76 objecthsv(:,:,1) = (angle(object.*exp(sqrt(-1).*1*pi))+pi)./(2*pi);

77 objecthsv(:,:,2) = ones(size(object,1),size(object,2));

78 objecthsv(:,:,3) = abs(object)- (0.5+0.5*sign(abs(object)-1)).*...

79 (abs(object)-1);

80 imagesc(hsv2rgb(objecthsv)); drawnow;

81 title('retrieved object [hsv]');

82 end

83

84 %% calculate average error

85 avg_err(i) = sum(sum(mean(err,3)));

86 fprintf(['\n average error is: ' num2str(avg_err(i),'%0.2d') '\n'])

87 end

88

89 %% plot error

90 figure(3);

91 plot(log10(avg_err));

92 title('log10 of average reciprocal space error')

93 xlabel('PIE iterations')
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