

WS 2017/2018

Elektrochemie Prof. Petr Novàk

Übung 7: Elektrochemische Kinetik (2. Teil) – Konzentrationsüberspannung

Assistant: Laura Höltschi (laura.hoeltschi@psi.ch)

Exercise 1

In a very diluted aqueous FeCl₃ solution of unknown concentration, Fe²⁺ ions are produced via reduction of Fe³⁺ ions. The solution also contains 1.5 M KCl as conducting salt. By applying an overpotential of -215mV and after reaching stationary conditions, the limiting, or maximum, current density of i_L of 14 μ A/cm² was measured. The following limiting current densities were obtained from several experiments with known concentration FeCl₃:

C (mM)	1.0	1.5	2.0	2.5
i _L (µA/cm²)	6.4	9.6	12.9	16

- a) Calculate the unknown concentration c(FeCl₃).
- b) Calculate the diffusion coefficient D(Fe³⁺) when the Nernst diffusion layer thickness is 0.3mm.

Exercise 2

Calculate the limiting current density for the deposition of Cu^{2+} at a cathode in a quiescent (unstirred) solution assuming that the diffusion layer thickness δ is 0.5 mm. The concentration of Cu^{2+} in the bulk is 10^{-2} M and the diffusion coefficient *D* in the unstirred solution is 10^{-5} cm² s⁻¹.

a) Provide the definition of the Nernst diffusion layer based on a graph of Cu²⁺ concentration (y-axis) vs. distance from the electrode (x-axis). Calculate the limiting current density.

- b) What happens to the current density if the concentration of Cu²⁺ in the bulk is increased to 10⁻¹ M?
- c) Determine the diffusion layer thickness for a rotating electrode at 60, 240 and 360 rpm. The kinematic viscosity and the diffusion coefficient are 10^{-2} cm² s⁻¹ and 10^{-5} cm² s⁻¹ respectively.

Tip: For a rotating electrode the diffusion layer thickness depends on the angular speed of rotation ω according to the following equation:

$$\delta = \frac{1.61 \, D^{1/3} v^{1/6}}{\omega^{1/2}}$$

To simplify the calculations consider N=1 rps (60rpm), N=4 rps (240), ecc.

d) Which consideration can be drawn from your results?

e) Calculate the limiting current density for the deposition of Cu^{2+} in the rotating electrode with a rotating speed of 300 rpm.

Remember that the current density depends on ω according to the following equation:

$$i_L = \frac{0.62 \, n \, F \, D^{2/3} c}{v^{1/6}} \, \sqrt{\omega}$$

Consider $c = 10^{-2}$ M, $D = 10^{-5}$ cm² s⁻¹ and $v = 10^{-5}$ cm² s⁻¹ and draw your conclusion comparing the i_L for the quiescent and stirred solutions.

Exercise 3

In lithium batteries technology, composite electrodes are often used. A negative electrode for lithium batteries is made of the following materials:

- 1. Active mass graphite: 9.5 g
- 2. Polymer binder: 0.5 g
- 3. Conductive Carbon: 1.2 g

The electrode is coated on a Cu current collector ($m_{Cu}=24$ mg, diameter $\Phi_{cu}=15$ mm, thickness 24 μ m).

a) Calculate the **porosity** of the electrode, if the total thickness of the electrode is 140 μ m and the total mass is 33.7 mg. Assume that the average density of the solid material (not porous) is 2.2 g/cm³.

- b) Calculate the charge which can be stored in the electrode in relation to the mass of the active material, if the theoretical capacity (=maximum stored charge) of graphite is 370 mAh/g. Do the same calculation per unit of volume of the electrode.
- c) If the electrode is pressed to half of the original thickness, how do the **porosity**, **gravimetric** and **volumetric capacities** change?
- d) Apply a current of +3.7 mA/mg of active material to the electrodes a) and
 c) cycled against Lithium as counter electrode. Consider that:

I. The equilibrium electrode potential $E_0 = 90 \text{ mV} \text{ vs. } \text{Li}^+/\text{Li}$

II. the working electrode potential is $E = 430 \text{ mV} \text{ vs. } \text{Li}^+/\text{Li}$ for electrode a) and $E = 471 \text{ mV} \text{ vs. } \text{Li}^+/\text{Li}$ for electrode c).

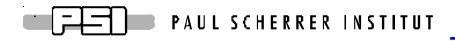
Calculate for both electrode a) and c).

(d.1) The **Ohmic overpotential** due to the electrolyte (consider the electrolyte layer 0.1 mm, the conductivity of the electrolyte κ = 9.8 10⁻¹ mS/cm) and the wire resistance of 0.08 Ω

(d.2) the **charge transfer overpotential** for the following electrode process:

$$Li_x C \rightarrow Li^+ + e^- + Li_y C$$

Consider α = 0.5, j= 7.0µA/cm² and a factor $R_f = \frac{A_{reaction}}{A_{geometry}} = 225$ for electrode a) and $R_f = 121$ for electrode c).


Tip: use Tafel equation

(d.3) the concentration overpotential for electrode a) and c)

Exercise 4

Oxygen gas sensors (lambda sensors) based on ZrO_2 doped with CaO or Y_2O_3 are used in the exhaust systems of automobiles with combustion engines to monitor and control the air-fuel mixture. ZrO_2 is a solid electrolyte and oxygen ion conductor. By determining the potential difference between the inner (air atmosphere) and the outer electrode (exhaust gas) (see Figure 1), the air/fuel ratio can then be computed. The sensor is made of the following composition:

P_{O2} (I) [inner electrode: atmosphere] [Pt |Solid electrolyte (doped ZrO₂)|Pt| P_{O2} (II) [outer electrode: exhaust gas]

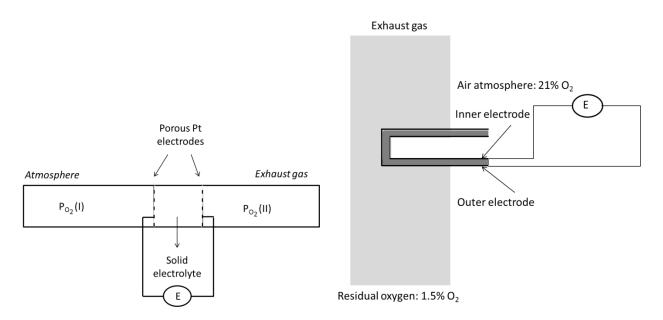


Figure 1. Schematics representing the O_2 sensor using zirconia oxide as solid electrolyte. Adapted from [1].

The electrochemical equilibrium can be achieved at temperatures higher than 650°C [1]:

 $1{\!\!\!}^{1}_{2} O_2 + 2 \ e^{-} \leftrightarrow O^{2-}$

- a) Compute the "measured" potential difference in case the oxygen content is 1.5% in volume (P_{exhaust gas}=101.3 kPa) and the temperature is 800°C. The concentration of O²⁻ can be considered as constant.
- b) Is the potential difference decreasing or increasing if the oxygen amount in the exhaust gas is lower than 1.5% (vol.)?

Other useful data:

The composition of the air (atmosphere): 21% (vol.) O₂

P°= 101.325 kPa

R = 8.3145 J/Kmol

F = 96485 C/mol

[1] http://www.ak-hoffmann.chemie.uni-mainz.de/

Exercise 5

To a first approximation, significant evolution of H₂ and O₂ occurs in electrolysis only if the overpotential exceeds about 0.6 V. To illustrate this criterion determine the effect that increasing the overpotential from 0.5 V to 0.6 V has on the current density in the electrolysis of 1.0 M NaOH (aq), which is 1.22 mA cm⁻² at 0.5 V and 25° C. Take α = 0.50.

a) What do you suggest to decrease the overpotential?

Remark: If possible, please provide solutions in English. Thanks a lot in advance.