

ELECTROCHEMISTRY LABORATORY

New composites for lithium-sulfur batteries

Claire Villevieille, Sigita Urbonaite and Petr Novák

Paul Scherrer Institute, Electrochemistry Laboratory, CH-5232 Villigen PSI, Switzerland claire.villevieille@psi.ch

Properties & Challenges

- Lithium-sulfur batteries, properties:

- Safe, low-cost, high energy density

- Insulating sulfur particles

- Theoretical specific charge 1675 mAh/g of sulfur
- Lithium-sulfur batteries, challenges:
 - Improve the conductivity
 - Suppress polysulfide shuttle

- Carbon fibres
- Sulfur refined (>70%)
- 24 h
- 125°C

Easy to synthesize

Small shift on delithiation $\rightarrow \beta$ -sulfur phase

Half of the specific charge loss in 3 months, storage in the air

Structure of β-sulfur phase

Phase	a (Å)	b (Å)	c (Å)	β (°)	Space group
α-Sulfur	10.48	12.92	24.55	/	Fddd
β-Sulfur	10.92	10.85	10.79	95.92	P2 ₁ /c

- β-Sulfur phase only stable at 95°C

- Density of the material 1.94 g/cm³

- 12% smaller than the α -sulfur phase

Conclusions

Sulfur/composite electrode:

- Easy and fast to synthetize
- Perfect conductive network around the particles
- Specific charge up to 1200 mAh/g
- β-Sulfur phase identified during cycling

The authors would like to express gratitude to all-round technical assistance from Mr. Hermann Kaiser and Mr. Christoph Junker, and experimental support and advice from members of the Battery Group at PSI.