Combined IR and Raman *In Situ* Microscopy on Single Particles – A New Tool for Interface Studies

Petr Novák and Patrick Lanz

Paul Scherrer Institute, Electrochemistry Laboratory, CH-5232 Villigen PSI, Switzerland

patrick.lanz@psi.ch, +41 56 310 24 74

In situ cell / Principle / Approach

- **Objective** (Raman or IR)
- **Window** (CaF₂)
- **Working electrode** (stainless steel mesh)
- **Separator** (glass fibre)
- **Counter/reference electrode** (Li)
- **Cell body** (stainless steel)
- **Current collector** (Ti in PEEK) (PEEK = polyether ether ketone)

Electronic states

<table>
<thead>
<tr>
<th>Potential (V)</th>
<th>Raman</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Virtual states

- **Vibrational states**
- **Ground state**

Combined in situ microscopic approach

- **Raman:** Particularly sensitive to structural changes in the electrode material
- **IR:** Particularly sensitive to the interface with the organic electrolyte
- **In situ:** Avids relaxation & determines the exact potential of electrochemical processes
- **Microscopy:** Allows lateral resolution
- **Automation:** Switches between Raman & IR

Positive electrodes (Raman microscopy)

- **Li₂MnO₃**
 - Component of HE-NCM (domains)
 - Activated during initial charging

Electrochemical activation of Li₂MnO₃ at 50 °C [3]

Observation: Shift of A₂ to higher wavenumbers starting at 4.4 V

In agreement with the potential plateau observed in HE-NCM

Comparison of stoichiometric and HE-NCM

- **Stoichiometric NCM**
- **HE-NCM**

Observation 1: Disappearance of A₁₂ (reversible, due to intercalation)

Observation 2: New band at 545 cm⁻¹ (more pronounced in HE-NCM)

New band at 545 cm⁻¹ possibly due to activation products (e.g. Li₃O) of Li₂MnO₃ integrated in the NCM structure

(Small amounts of Li₂MnO₃ may be present in stoichiometric NCM)

Negative electrodes (Combined microscopy)

- **Glassy carbon disc (GC)**
 - Model system with high reflectivity
 - No Li-intercalation

Electrochemical charging of glassy carbon [4]

Observation: No significant D and G shifts/splitting

Raman: Bipolar bands (separated by a few cm⁻¹) & positive band at 1650 cm⁻¹

IR: Increase in free and decrease in coord. EC/DMC & SEI formation

In situ Raman spectra

In situ IR difference spectra

Conclusions & Outlook

- **Li₂MnO₃** is activated at 4.4 V vs. Li⁺/Li when charged at 50 °C. Charging of NCM leads to the evolution of a new band at 545 cm⁻¹ (stronger in HE-NCM).
- Unlike GC, graphite intercalates Li. Strong solvation effects in both carbons. SEI products were detected on GC (band at 1650 cm⁻¹ due to EC reduction).
- Further *in situ* IR experiments to identify SEI products on polished graphite particles are planned.
- Combined *in situ* Raman and IR microscopy is a powerful method for the characterization of Li-ion batteries (electrode materials and electrolyte).

Acknowledgements

- Financial support from BASF SE is gratefully acknowledged.
- The authors are also grateful to Hermann Kaiser and Christoph Junker for technical assistance, for designing the *in situ* cells and for building the automation mechanism.

References