

ELECTROCHEMISTRY LABORATORY

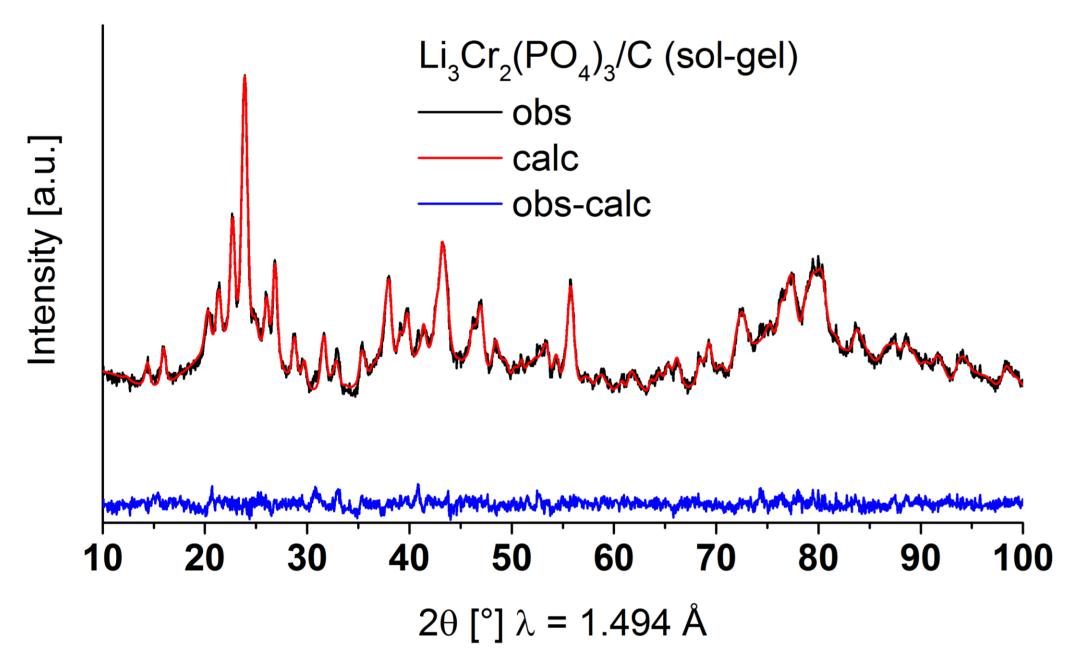
Lithium chromium phosphate $Li_3Cr_2(PO_4)_3$ as a cathode material for Li-ion batteries

<u>Martin Reichardt¹</u>, Denis Sheptyakov², Claire Villevieille¹, Petr Novák¹ and Sébastien Sallard¹ 1: Paul Scherrer Institut, Electrochemical Energy Storage Section, CH-5232 Villigen PSI, Switzerland 2: Paul Scherrer Institut, Laboratory of Neutron Scattering, CH-5232 Villigen PSI, Switzerland *martin.reichardt@psi.ch*

Motivation

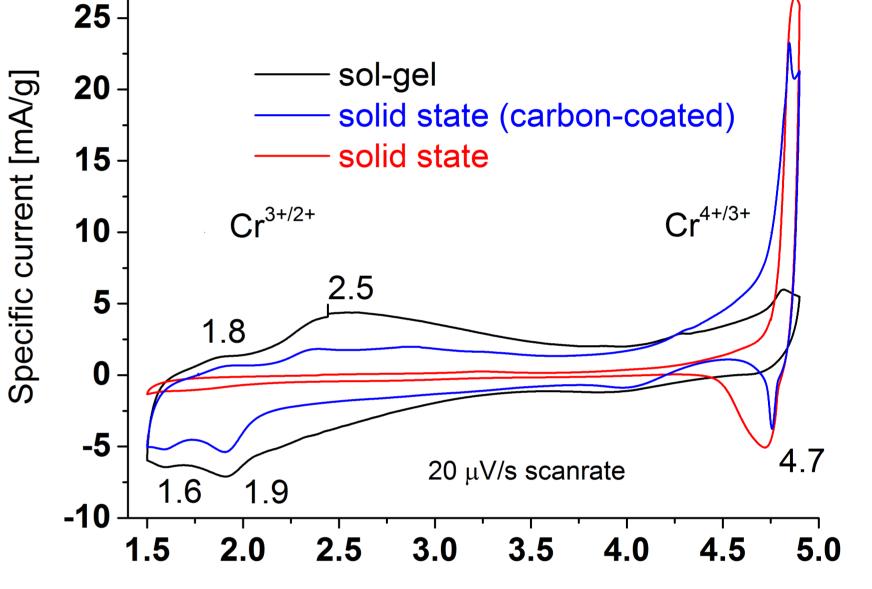
- Possibility of multiple redox reactions of phosphate based chromium polyanions^{1,2}
- Theoretical specific charge: 261.6 mAh/g (Cr^{4+/3+/2+})

Change of chromium oxidation state


+IV +III +II

$$Li_1Cr_2(PO_4)_3 \leftrightarrow Li_3Cr_2(PO_4)_3 \leftrightarrow Li_5Cr_2(PO_4)_3$$

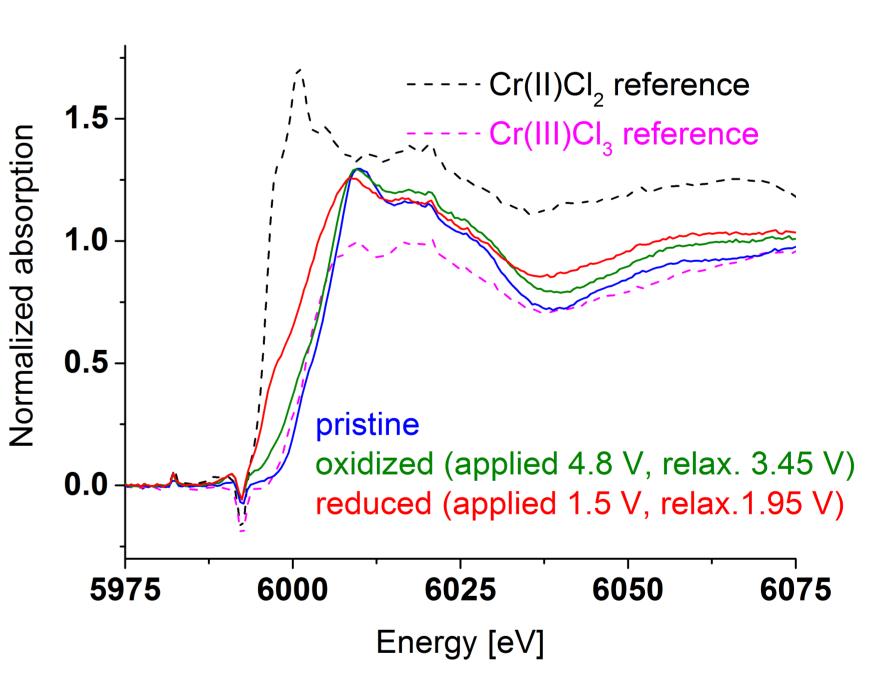
Neutron powder diffraction (NPD)


Conductivity

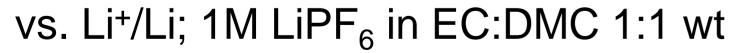
Cyclic voltammetry

Material	Conductivity [S/cm]	Standard deviation σ
Li ₃ Cr ₂ (PO ₄) ₃ (solid state)	2±0.5 · 10 ⁻⁸	2 · 10 ⁻⁹
Li ₃ Cr ₂ (PO ₄) ₃ /C (sol-gel)	4±4 · 10 ⁻⁷	2 · 10 ⁻⁷

Carbon coated material is ~10 times more


Successful refinement of $Li_3Cr_2(PO_4)_3/C(P2_1/c)$

Potential [V] vs. Li⁺/Li


Ex situ XANES

Specific charge evolution X-Ray diffraction ⊣ 70 70 -160 -Lithiation at C/10 60 -60 140 Specific charge [mAh/g] 120 50 -50 **100** · [u] **40** -**30** -40 드 80 -**30** Time **60** · sol-gel 40 solid state (carbon-coated) 20 -20 - solid state **20** · `<mark>▋</mark>╱[┫]╲<mark>┛</mark>╱<mark>┛</mark>╱<mark>┛</mark>╱<mark>┛</mark>╱<mark>┛</mark>╱<mark>┛</mark>╱<mark>┛</mark>╱ 10 -10 0 -20 0 Cycle

- 120 mAh/g stable specific charge for $Li_3Cr_2(PO_4)_3/C$ (sol-gel)
- Cycling conditions: C/10, 1.5 4.9 V ullet
- 20.75 21.00 21.25 3 4 2 Potential [V] vs. Li⁺/Li 2θ [°] Cu-K Operando XRD: • Continuous shift of the peak ($2\theta = \sim 21^{\circ}$) upon cycling

- Cycled material: $Li_3Cr_2(PO_4)_3/C$ (sol-gel)
- Change in oxidation state of chromium for reduced electrode

 \rightarrow insertion reaction mechanism

conductive

- Conditions: C/20, 1.5 4.9 V vs. Li⁺/Li; 1M LiPF₆ in EC:DMC 1:1 wt, $Li_3Cr_2(PO_4)_3/C$ (sol-gel).
- Oxidized and pristine electrode have similar white line (relaxation effect)

Conclusion / Outlook

Conclusion:

- Reversible electrochemical activity between 1.6 V and 2.5 V vs. Li⁺/Li attributed to Cr³⁺/Cr²⁺ redox couple
- Specific charge stable at approximately 120 mAh/g
- Cr^{4+/3+} redox couple expected at 4.7 V vs. Li⁺/Li

Outlook:

- Operando XAS of $Li_3Cr_2(PO_4)_3/C$ to investigate the Cr oxidation state(s) in the bulk
- Operando NPD to study insertion mechanism

