

ELECTROCHEMISTRY LABORATORY

Cycling-Related Electrolyte (De-)Composition in an EC/EMC Based Battery System

H.-J. Peng^{1,2}, S. Urbonaite¹, C. Villevieille¹, H. Wolf², K. Leitner², <u>P. Novák¹</u>

¹Paul Scherrer Institut, Electrochemistry Laboratory, CH-5232 Villigen PSI, Switzerland ²BASF SE, D-67056 Ludwigshafen, Germany

petr.novak@psi.ch

Motivation

Parameters affecting alkoxide-anion formation

Alkoxides

- \succ is one of the main reduction products of carbonate-based electrolytes
- \succ trigger multi-pathway electrolyte degradation^[1]
- **?** affects the electrochemical performance of the cells

Goal

- Clarify the parameters influencing the formation of alkoxide-anion
- Correlate the formation of alkoxide-anion to the cell performance

Anode passivation & cycling rate

Mechanism of the trans-esterification reaction of EMC^[1-3]

Experimental

WE and cycling protocols

Active Material	Composition	Nominal specific charge [mAh/g]	Potential Window [V vs. Li ^{+/} Li]	Cycling Protocol for C/2 rate	Cycling Protocol for C/10 rate
NCM111	Li _{1.05} (Ni _{0.33} Co _{0.33} Mn _{0.33}) _{0.95} O ₂	141	2.5 - 4.3	1 st 2 cycles: C/10 3 rd cycle onward: C/2	C/10
NCM523	Li _{1.03} (Ni _{0.50} Co _{0.20} Mn _{0.30}) _{0.97} O ₂	162	2.5 - 4.3	1 st 2 cycles: C/10 3 rd cycle onward: C/2	C/10
HE-NCM	Li _{1.17} (Ni _{0.22} Co _{0.12} Mn _{0.66}) _{0.83} O ₂	250	2.5 - 4.8	1 st cycle: C/15 2 nd cycle: C/10 3 rd cycle onward: C/2	

- **Electrolyte: 1 M LiPF₆ in EC: EMC = 3:7** (wt%)
- **Separator**: glass fiber (+ Celgard 2400, for SEM)
- **CE**: Li (half-cell) / graphite (full-cell)
- Electrolyte analysis:

extract electrolyte with 1 ml PC \rightarrow gas chromatography

Upper cut-off potential

Influence on the cell performance

Conclusion

- \succ is coming from poor anode passivation
- \succ is temporarily decreased at higher upper cut-off potentials
- \succ results in the instability of cathode/electrolyte interface and capacity fading

20 100 Cycle number

Cycle number

In half cell > higher overpotential

significantly more degradation products on the cathode surface > more pronounced performance decay

[1] G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.-M. Tarascon, S. Laruelle, Journal of Power Sources, 178 (2008) 409-421 [2] E.S. Takeuchi, H. Gan, M. Palazzo, R.A. Leising, S.M. Davis, Journal of The Electrochemical Society, 144 (1997) 1944-1948. [3] H. Kim, S. Grugeon, G. Gachot, M. Armand, L. Sannier, S. Laruelle, Electrochimica Acta, 136 (2014) 157-165.

Acknowledgments

Scan me!

100

30

The authors are grateful for financial support from BASF SE. Mr. R. Dietze, Mr. V. Schmitt, and Ms. M. Kimmel are acknowledged for the experimental support as well as Ms. V. Laschak for the gas chromatography measurements.

