PAUL SCHERRER INSTITUT

Operando Neutron Imaging for Next-Generation Solid State Batteries: A Direct Visualization of Li-ion **Transport in Sulfide Materials (IBAp-0226)**

Laura Höltschi¹, Magali Cochet¹, Pavel Trtik², Christian Jordy³, Claire Villevieille¹, Pierre Boillat^{1,2} ¹ Paul Scherrer Institut, Electrochemistry Laboratory, CH-5232 Villigen PSI – Switzerland ² Paul Scherrer Institut, Laboratory for Neutron Scattering & Imaging, CH-5232 Villigen PSI – Switzerland ³ SAFT, Direction de la Recherche, 111 Boulevard Alfred Daney, 33000 Bordeaux – France

Solid State Batteries

Motivation

Experimental Setup for Neutron Radiography

In-Li Counter

Electrode

Buffer Layer

⁶Li₃PS₄

Composite

Electrode

X-Rays vs. Neutrons

Natural Li: 93% Li⁷ + 7% Li⁶

 $\sigma Li^6 >>> \sigma Li^7$

⁶Li improves contrast

Gray levels

depend on:

Shape

Li isotope

concentrations

Beam hardening effect

-Working Electrode

Faraday's law

 $\boldsymbol{\delta}(\boldsymbol{r})$

Spatial Resolution

• X : 5.4 μm/pixel

Time Resolution

1 image every 30s

•

Y : 2.7 μm/pixel

⁶Li Concentration Profiles to Diagnose Li⁺ Transport Limitations

High-resolution neutron imaging for solid-state batteries:

Track Li⁺ transport hindrance & inhomogeneous (de-)lithiation

Causes for hindrance of Li⁺ transport:

- High **tortuosity** of composite electrode
- **Delamination** of **SE** and **active materials** and/or **cracks** in SE due to volume changes