Neutron Scattering in Condensed Matter Physics II

ETHZ 402-0544-00L, FS 2010

Dr. V. Pomjakushin and Prof. Dr. A. Zheludev

Series 3 - Representation analysis of Magnetic Structures

For the centrosymmetric and orthorhombic space group $\operatorname{Pbnm}\left(D_{2 h}^{16}\right)$ one finds eight different one-dimensional representations for a magnetic structure associated with the wave vector $\boldsymbol{k}=0$.

	e	$2 x$	$2{ }^{2}$	$2 z$	$\overline{1}$	$2{ }_{x} \mathrm{~T}$	$2{ }_{y} \bar{\top}$	$2{ }_{2} \mathrm{~T}$
$\Gamma_{1}=\Gamma_{19}$	1	1	1	1	1	1	1	
$\Gamma_{2}=\Gamma_{2 g}$	1	1	-1	-1	1	1	-1	
$\Gamma_{3}=\Gamma_{3 g}$	1	-1	1	-1	1	-1	1	-
$\Gamma_{4}=\Gamma_{4 g}$	1	-1	-1	1	1	-1	-1	
$\Gamma_{5}=\Gamma_{1 u}$	1	1	1	1	-1	-1	-1	-
$\Gamma_{6}=\Gamma_{2 u}$	1		-1	-1	-1	-1	1	
$\Gamma_{7}=\Gamma_{3 u}$	1	-1	,	-1	-1	1	-1	
$\Gamma_{8}=\Gamma_{4 u}$	1	-1	-1	1	-1	1	1	-

Assume four spins $S_{j}(j=1-4)$ at the four equivalent centres of symmetry (0 00), ($00^{1 / 2}$), (${ }^{1 / 2}{ }^{1 / 2} 2^{1 / 2}$) and ($1 / 2^{1 / 2} 0$). The $3 \cdot 4=12$ dimensional vector space can be decomposed using the irreducible representations $\Gamma_{j}(j=1-4)$:

$$
\Gamma^{12 D}=3 \Gamma_{1}+3 \Gamma_{2}+3 \Gamma_{3}+3 \Gamma_{4} .
$$

Applying a projection operation along the x direction one obtains the following basis functions:

$$
\begin{aligned}
A_{x} & =S_{1 x}-S_{2 x}-S_{3 x}+S_{4 x} \\
F_{x} & =S_{1 x}+S_{2 x}+S_{3 x}+S_{4 x} \\
C_{x} & =S_{1 x}+S_{2 x}-S_{3 x}-S_{4 x} \\
G_{x} & =S_{1 x}-S_{2 x}+S_{3 x}-S_{4 x}
\end{aligned}
$$

Find for each basis function the corresponding irreducible representation. Proceed as shown in the example during the lecture.

