Neutron Scattering in Condensed Matter Physics II ETHZ 402-0544-00L, FS 2010

Dr. V. Pomjakushin and Prof. Dr. A. Zheludev

Series 3 - Representation analysis of Magnetic Structures

For the centrosymmetric and orthorhombic space group Pbnm (D_{2h}^{16}) one finds eight different one-dimensional representations for a magnetic structure associated with the wave vector $\mathbf{k} = 0$.

	е	2_x	2_y	2_z	1	$2_x \overline{1}$	$2_y\overline{1}$	$2_z\overline{1}$
$\Gamma_1 = \Gamma_{1g}$	1	1	1	1	1	1	1	1
$\Gamma_2 = \Gamma_{2g}$	1	1	-1	-1	1	1	-1	-1
$\Gamma_3 = \Gamma_{3g}$	1	-1	1	-1	1	-1	1	-1
$\Gamma_4 = \Gamma_{4g}$	1	-1	1	1	1	-1	-1	1
$\Gamma_5 = \Gamma_1 u$	1	1	1	1	-1	-1	-1	-1
$\Gamma_6 = \Gamma_{2u}$	1	1	-1	-1	-1	-1	1	1
$\Gamma_7 = \Gamma_{3u}$	1	-1	1	-1	-1	1	-1	1
$\Gamma_8 = \Gamma_{4u}$	1	-1	-1	1	-1	1	1	-1

Assume four spins S_j (j = 1 - 4) at the four equivalent centres of symmetry $(0 \ 0 \ 0), (0 \ 0 \ 1/2), (1/2 \ 1/2 \ 1/2)$ and $(1/2 \ 1/2 \ 0)$. The $3 \cdot 4 = 12$ dimensional vector space can be decomposed using the irreducible representations Γ_j (j = 1 - 4):

$$\Gamma^{12D} = 3\Gamma_1 + 3\Gamma_2 + 3\Gamma_3 + 3\Gamma_4.$$

Applying a projection operation along the x direction one obtains the following basis functions:

$$A_{x} = S_{1x} - S_{2x} - S_{3x} + S_{4x}$$

$$F_{x} = S_{1x} + S_{2x} + S_{3x} + S_{4x}$$

$$C_{x} = S_{1x} + S_{2x} - S_{3x} - S_{4x}$$

$$G_{x} = S_{1x} - S_{2x} + S_{3x} - S_{4x}$$

Find for each basis function the corresponding irreducible representation. Proceed as shown in the example during the lecture.