Advanced magnetic structures: classification and determination by neutron diffraction

Vladimir Pomjakushin Laboratory for Neutron Scattering, ETHZ and PSI

Lecture course 402-0543-00L: Neutron Scattering in Condensed Matter Physics 24.03.10 Lecture 12: Advanced magnetic structures

Thursday, 25 March 2010

Purpose of this lecture

- I.You need to acquaint yourself with the classification of the magnetic structures that are used in the literature, such as Shubnikov (or black-white) groups and irreducible representation notations.
- 2. You need to be able to construct all possible symmetry adapted magnetic structures for a given crystal structure and a propagation vector (a point on the Brilloine zone) using representation (rep) analysis of magnetic structures. This way of description/construction is related to the Landau theory of second order phase transitions and applies not only to magnetic ordering, but generally to any type of phase transitions. For example, using the rep-analysis one can analyze displacive crystal structure transitions.

Overview of Lecture

- Long range magnetic order seen by ND. Two ways of magnetic structure classification: "Shubnikov" vs. "reps analysis" -- *introduction* 9
- Point groups. Intro to group representations (reps) 12
- Irreducible representations (irreps) 8
- Basic crystallography. Symmetry elements. Space groups (SG) 5
- Irreps of SG. Reciprocal lattice. Propagation k-vector of <magnetic> structure/Brillouine zone points 8
- Case study of magnetic structure determination using k-vector reps formalism for classifying symmetry adopted magnetic modes 12
- Magnetic Shubnikov groups. Comparison of two ways of magnetic structure classification/determination: "Shubnikov" vs. "reps analysis" 4

Literature on (magnetic) symmetry and magnetic neutron diffraction

All you need to know about magnetic neutron diffraction. Magnetic symmetry, representation analysis

Yu.A. Izyumov, V.E. Naish and R.P. Ozerov, "Neutron diffraction of magnetic materials", New York [etc.]: Consultants Bureau, 1991.

and

Groups, representation analysis, point groups and simple applications, e.g. molecular vibrations, crystal field theory.

J.P Elliott and P.G. Dawber "Symmetry in physics", vol. 1,1979 The Macmillan press LTD

Notes, papers, talks and computer programs, etc. on magnetic structures, (magnetic) symmetry and magnetic neutron diffraction

- Andrew S. Wills (UCL) <u>http://www.chem.ucl.ac.uk/people/wills/</u> <u>magnetic_structures/magnetic_structures.html</u>
- Juan Rodríguez-Carvajal (ILL) et al, <u>http://www.ill.fr/sites/fullprof/</u> program BasIreps
- Wiesława Sikora et al, <u>http://www.ftj.agh.edu.pl/~sikora/modyopis.htm</u>
- Bilbao Crystallographic Server is a web site with crystallographic programs and databases accessible via Internet
 bilbao crystallographic server
 <u>http://www.cryst.ehu.es</u>/

V. Pomjakushin, "Determination of the magnetic structure from powder neutron diffraction." Lecture given at the "Workshop on X-rays, Synchrotron Radiation and Neutron Diffraction Techniques, June 18-22, 2008, PSI, <u>http://sinq.web.psi.ch/sinq/instr/hrpt/praktikum</u>

Magnetic structure seen by ND

Magnetic interactions are described by QM Hamiltonian with quantum spin operators

$$\hat{H} = -\sum_{i,j} J_{ij}\hat{\mathbf{s}}_i \cdot \hat{\mathbf{s}}_j + \sum_i D_i\hat{s}_z^2 + \dots$$

In a diffraction experiment (coherent Bragg scattering), however, the problem is reduced and we observe only the following correlators. <> averaging over all initial states of the scatterer. i,j=1..N

$$\sim \sum ig\langle \hat{\mathbf{s}}_i ig
angle \cdot ig\langle \hat{\mathbf{s}}_j ig
angle$$
 = Fourier sum of **classical** axial vectors

Magnetic structure that we observe is an ordered set of **classical** axial vectors $\mathbf{s}_i = \langle \hat{\mathbf{s}}_i \rangle$ that can be directed at any angle with respect to crystal axes and field.

In the symmetry analysis we deal with the classical spins (no coreprs).

$$\mathbf{s}_i = \langle \hat{\mathbf{s}}_i \rangle = s_x \mathbf{e}_x + s_y \mathbf{e}_y + s_z \mathbf{e}_z$$

Interference between nuclear and magnetic scattering (slide skipped)

General note:

When the magnetic unit cell is larger than the nuclear one (propagation vector $k\neq 0$) the interference between nuclear and magnetic scattering is absent in any (un)polarized neutron diffraction experiment.

Reason: Magnetic Bragg peaks appear at different from nuclear peaks positions in reciprocal space

The phase Φ is not accessible and the magnetic moments on the atoms cannot be determined.

Example of complex magnetic structure

PHYSICAL REVIEW B 72, 134413 (2005)

Some legitimate questions

I. How do we describe/classify/predict magnetic symmetries and structures?2. How do we construct all symmetry allowed magnetic structures for a given crystal structure?

Description vs. determination/constructiveness

Two ways of description of magnetic structures

Magnetic structure is an axial vector function $S(\mathbf{r})$ defined on the discreet system of points (atoms), e.g. $S(\mathbf{r}) = \mathbf{s}(\mathbf{r}_1) \oplus \mathbf{s}(\mathbf{r}_2) \oplus \mathbf{s}(\mathbf{r}_3) \oplus \mathbf{s}(\mathbf{r}_4)$

1. $gS(\mathbf{r}) = S(\mathbf{r})$ to itself, where $g \in$ subgroup of $SG \otimes 1^{\prime}$, 1'=spin reversal, SG (space group)

or

2. gS(r) = S'(r) to different function defined on the same system of points, $g \in SG$

r) = S(r) to itself, Throger Sport description of magnetic 31', 1'=spin reversal, SG (space group) structures

 \mathbf{r}) = S'(\mathbf{r}) to different function defined on the le sy Megnefie on Shuberigov groups. Historically the first way of description. A group that leaves S(\mathbf{r}) invariant under a subgroup of G \otimes 1'. Identifying those symmetry elements that leave S(\mathbf{r}) invariant. Similar to the space groups (SG 230). Defining of all possible magnetic space groups MSG: a crystallographer dream. The

MSG symbol looks similar to SG one, e.g. Pn'ma

2. Representation analysis. How does S(r) transform under $g \in G$ (space group)?

S(**r**) that is transformed under $g \in G$ according to a single irreducible representation τ_i of *G*. Identifying/classifying all the functions **S**'(**r**) that appears under all symmetry operators of the space group G d^{kv}

Introduction to representation theory

Four group axioms

A set G of elements is G_1 , G_2 , G_3 , G_4 , ... said to form a group if a low of multiplication of the elements is defined that satisfies certain conditions

Closure

For all G_a , G_b in G, the result of the operation $G_a \cdot G_b$ is also in G. **Associativity** For all G_a , G_b and G_c in G, the equation $(G_a \cdot G_b) \cdot G_c = G_a \cdot (G_b \cdot G_c)$ holds. **Identity element** One element of the set E called identity must have the properties $G_a \cdot E = G_a$ and $E \cdot G_a = G_a$ **Inverse element**

For each G_a in G, there exists an element G_a^{-1} in G such that $G_a \bullet G_a^{-1} = G_a^{-1} \bullet G_a = E$

Example: point group 32

Point group Hermann–Mauguin symbol 32 (D₃ Schoenflies symbol) e.g Quartz

Multiplication table, isomorphism

Multiplication table, isomorphism

Point group 32 (D₃ Schoenflies symbol) e.g regular triangle

6 symmetry elements (rotations): R0=E, R₁= $2\pi/3$, R₂= $4\pi/3$ around z, R₃, R₄, R₅, = π around resp. axes in xy-plane hex $\rightarrow 1$ 3^1 3^2 2_u 2_y 2_x

Two groups are **isomorphous** if they have the same multiplication table Quartz $32 D_3$ Ammonia molecule $3m C_{3v}$

V. Pomjakushin, Advanced magnetic structures ETHZ '10

Uhex

Isomorphism. Abstract group. (slide skipped)

cyclic group of ordinary complex numbers

 $i^k \quad k=0, 1, 2, 3$

V. Pomjakushin, Advanced magnetic structures ETHZ 'IC

Linear vector spaces I. Vectors

Vector of dimension 3: position (or magnetic moment) of a particle in 3D:

Vector of dimension 3N:

positions (or magnetic moments) of N particles in 3D: s_{x1}

• • •

• • •

Linear vector spaces II. Basis

A set $r_1, r_2, ...$ is said to form a 'linear $r_i + r_i$ vector space L' if the sum of any two members produces another in the set and a multiplication by a complex number c also C Ii produces another in the set.

A set of vectors r_1 , r_2 , ... r_p is said to be 'linearly independent' if the members are not related by an equation:

$$\sum_{k=1}^{p} c_k \mathbf{r}_k = 0$$

The 'dimension' (*l*) of L = greatest number of vectors which form a linearly independent set.

In *l*-dimensional vector space *L* any set of o *l* linearly independent vectors are said to form a **'basis' e**_j.

any vector **r** in *l*-dimensional vector space *L* can be written as:

$$\mathbf{r} = \sum_{j=1}^{l} c_j \mathbf{e}_j$$

Linear vector spaces III. Basis. Examples

3-dimensional space of particle displacement (or magnetic moment)

$$\mathbf{s} = \sum_{j=x,y,z} s_j \mathbf{e}_j$$

 $\psi =$

3N-dimensional space of all possible displacements (or magnetic moments) Function $\psi = \mathbf{s}(s_{11}, s_{12, ...})$ is defined on N discreet points

$$\psi = \sum_{n=1}^{N} \sum_{j=x,y,z} s_{jn} \mathbf{e}_{jn}$$

V. Pomjakushin, Advanced magnetic structures ETHZ '10

Thursday, 25 March 2010

 $\begin{pmatrix} s_{x1} \\ s_{y1} \\ s_{z1} \\ s_{x2} \\ s_{y2} \\ s_{z2} \\ \dots \\ \dots \\ \dots \\ \dots \\ s_{xN} \\ s_{yN} \\ s_{zN} \end{pmatrix}$

6-dimensional function space

$$e_1 = x^2$$

$$e_2 = y^2$$

$$e_3 = z^2$$

$$e_4 = yz$$

$$e_5 = zx$$

$$e_6 = xy$$

23

Group representations (reps) I

		_							•	multi	plicatio	on table	
If we	e can fi	nd a s	et of s	quar	e mat	rices (in gen	eral			g1	g_2		g_n
linea corre same	ar opera espond e multij	tors) (to the plication	Γ(g _a) in eleme on tabl	n a ve nts ga e, i.e	ector : a of gr . T(ga	space L, whi oup G and ha) T(g _b)= T(g _a	ch ave the g_b)		g1	g ₁ ²	g 1g2		g_1g_n
then	this se	t of ma	atrices	is sai	id to f	orm a matrix			g_2	g28	1 g ₂	• • •	$g_2 g_n$
'rep	resenta	ation'	of the	grouj	o G in	space L.			3.43		•••		·
	\backslash								÷				:
									g_n	gn	g1 g _n g	32	g_n^3
	<i>n</i> 1	natrice	es <i>l</i> x <i>l</i> .	n is c	order	of G				1			
$T(g_1) =$	$\begin{pmatrix} t_{11}^{1} \\ t_{21}^{1} \\ \cdot \\ \cdot \\ \cdot \\ t_{l1}^{1} \end{pmatrix}$	$t_{12}^1 \\ t_{22}^1 \\ \cdot \\ \cdot \\ t_{l2}^1$	$t^{1}_{13} t^{1}_{23}$ t^{1}_{l3}	••••	t_{1l}^{1} t_{2l}^{1} \cdot \cdot t_{ll}^{1} Di din	$\left , T(g_2) = \right $ mension of r mension of th	$\begin{pmatrix} t_{11}^2 \\ t_{21}^2 \\ \vdots \\ \vdots \\ t_{l1}^2 \\ e \text{present} \\ \text{ne vector} \end{pmatrix}$	t_{12}^2 t_{22}^2 \cdot \cdot t_{l2}^2 tation t	$t_{13}^2 \\ t_{23}^2 \\ . \\ . \\ t_{l3}^2 \\ is equale$	 1 to tl	$ \begin{array}{c} t_{1l}^2 \\ t_{2l}^2 \\ \cdot \\ \cdot \\ t_{ll}^2 \end{array} \end{array} $	$,T(g_3)$) =

Reps II. Point groups. Real 3D space

3-dimensional vector space of $\mathbf{s} = \sum_{j=x,y,z} s_j \mathbf{e}_j$ \mathbf{e}_z , \mathbf{s}_j , \mathbf{e}_y , \mathbf

> Rotation matrices for point groups can be used to construct 3dimensional representations

$$\varphi_z \begin{pmatrix} \cos\varphi & -\sin\varphi & 0\\ \sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Reps II. Point groups. Real 3D space Example Point group 32

6 symmetry elements (rotations): R0=E, R₁= $2\pi/3$, R₂= $4\pi/3$ around z, R₃, R₄, R₅, = π around resp. axes in xy-plane

$$\varphi_z \begin{pmatrix} \cos\varphi & -\sin\varphi & 0\\ \sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

1. <u>3-</u>dimensional representation

$$\Gamma(\mathbf{R}_{1}) = \begin{pmatrix} -\frac{1}{2} & -\sqrt{\frac{3}{4}} & 0\\ \sqrt{\frac{3}{4}} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \quad T(\mathbf{R}_{2}) = \begin{pmatrix} -\frac{1}{2} & \sqrt{\frac{3}{4}} & 0\\ -\sqrt{\frac{3}{4}} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \quad T(\mathbf{R}_{3}) = \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix} \dots \text{ etc}$$

2. By taking the one dimensional space of vector \mathbf{e}_z alone we may generate very simple <u>one-</u>dimensional representation

$$T^{(2)}(R_1) = 1, T^{(2)}(R_2) = 1, T^{(2)}(R_3) = -1, T^{(2)}(R_4) = -1, T^{(2)}(R_5) = -1, T^{(2)}(E) = 1$$

representation with dim=6 for point group 32. Induced transformation of functions (skipped)

6-dimensional function space

$$\psi = \sum_{j=1}^{6} c_j \psi_j \qquad \begin{array}{l} & \psi_1 = x^2 \\ \psi_2 = y^2 \\ \psi_3 = z^2 \\ \psi_4 = yz \\ \psi_5 = zx \\ \psi_6 = xy \end{array} \qquad \begin{array}{l} \bar{x} = x \cos(-2\pi/3) + y \sin(-2\pi/3) = -(\frac{1}{2})x - (\frac{3}{4})^{1/2}y \\ T(R_1)\psi_1 = \bar{x}^2 = (\frac{1}{4})x^2 + (\frac{3}{4})^{1/2}xy + (\frac{3}{4})y^2 \\ T(R_1)\psi_1 = \bar{x}^2 = (\frac{1}{4})\psi_1 + (\frac{3}{4})^{1/2}\psi_6 + (\frac{3}{4})\psi_2 \end{array}$$

Reps III. Sites space. Example Point group 32

6 symmetry elements (rotations):

R0=E, R₁= $2\pi/3$, R₂= $4\pi/3$ around z, R₃, R₄, R₅, = π around resp. axes in xy-plar

3-dimensional vector space of particle sites. Note, not the xyz, but labeled sites.

element R₁ permutes the sites

$b \Rightarrow a$	0	1	0]	$\int c$	ι		$\int b$	
$c \Rightarrow b$	0	0	1	l)	=	c	
$a \Rightarrow c$	1	0	0		;			

permutation (n=3) representation of group 32

[]	L	0	0]	0	1	0]	0	0	1		0	1	0]	0	0	1]	1	0	0	
)	1	0		0	0	1		1	0	0		1	0	0		0	1	0		0	0	1	
)	0	1		1	0	0		0	1	0		0	0	1		1	0	0		0	1	0	

Product of two representations of group

Direct (tensor) matrix product $U \otimes V = \begin{bmatrix} u_{1,1}V & u_{1,2}V & \cdots \\ u_{2,1}V & u_{2,2}V \\ \vdots & \ddots \end{bmatrix} = \begin{bmatrix} u_{1,1}v_{1,1} & u_{1,1}v_{1,2} & \cdots & u_{1,2}v_{1,1} & u_{1,2}v_{1,2} & \cdots \\ u_{1,1}v_{2,1} & u_{1,1}v_{2,2} & & u_{1,2}v_{2,1} & u_{1,2}v_{2,2} & \cdots \\ u_{2,1}v_{1,1} & u_{2,1}v_{1,2} & & & & \\ u_{2,1}v_{2,1} & u_{2,1}v_{2,2} & & & & \\ \vdots & & & & & \\ T_{ij,kl}^{(\alpha \times \beta)}(\mathbf{G}_{a}) = T_{ik}^{(\alpha)}(\mathbf{G}_{a}) T_{jl}^{(\beta)}(\mathbf{G}_{a}). \quad \text{gives a new rep with dimension } \mathbf{m} \times \mathbf{n} \\ \text{and new vector space!} \end{bmatrix}$

 $\varphi_{z} \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 &$

= 9 by 9 matrices: 9 dimensional representation

V. Pomjakushin, Advanced magnetic structures ETHZ '10

Reducibility

A study of possible representations of even a simple group like D₃ seems to be a scaring task.

BUT!

For a finite group all representations can be built up from a finite number of 'distinct' irreducible representations

Reduction of any representation of group to block diagonal shape

 $S_{\tau 1}$

 $S_{\tau 2} \\ S_{\tau 3}$

Representation (dimension=n) of a group G in linear space L is reducible to a blockdiagonal shape that is a direct sum of irreducible square matrices τ_1 , τ_2 , ... For each element G_a the representation has the shape:

One can divide space L into the sum of subspaces L_i each of which is invariant and irreducible. $S_{\tau i}$ is a vector from L_i and is transformed by matrices $\tau_i(G_a)$.

 $\begin{aligned} \tau_i & \text{is irreducible if: It is impossible to find} \\ a & \text{new basis such that non-diagonal} \\ elements & \text{of any } \tau_i & \text{in the new basis are zero} \\ \text{for all elements } G_a \end{aligned}$

V. Pomjakushin, Advanced magnetic structures ETHZ '10

 $au_1 \oplus au_2 \oplus au_3 \oplus \dots$

Example: Irreducible representations (irreps) of point group 32 (D₃)

Characters of representations

Reduction formulae. Projection.

Example: 6-dimensional function space in point group D₃ (32) defines 6D-representation T decomposed to T = 2T¹ \oplus 2T² $\psi_1 = x^2$ $\psi_1 = x^2$ $\psi_2 = y^2$ $\psi_3 = z^2$ $\psi_4 = yz$ $\psi_5 = zx$ $\psi_6 = xy$

Character Table

D ₃ (32)	#	1	3	2	functions
Mult.	-	1	2	3	
A ₁	T ¹	1	1	1	x ² +y ² ,z ²
A ₂	T ²	1	1	-1	z,J _z
E	T ³	2	-1	0	$(x,y),(xz,yz),(x^2-y^2,xy),(J_x,J_y)$

basis functions: projection operator P technique

$$\psi_i = \hat{P}\varphi = \frac{1}{n(G)} \sum_{g \in G} T_{ij}^{*\nu}(g) T(g)\varphi$$

Symmetry in QM. Theorem.

 $\hat{H}(\mathbf{r})$, $\mathbf{r} = (r_1, r_2, r_3, ..., r_n)$, vector space with n degree of freedoms (dimension n) $\psi(\mathbf{r})$ arbitrary wave function

G - group of coordinate transformation, $T(G_a)$ - induced transformations in ψ -space $T(G_a)\psi(\mathbf{r}) = \psi'(\mathbf{r}) = \psi(G_a^{-1}\mathbf{r})$

 $T(G_a)HT^{-1}(G_a) = H'$ if H=H': G is called symmetry group of the Hamiltonian potential energy $V(\mathbf{r}) = V(G_a\mathbf{r})$

eigenvalues/functions

$$\hat{H}\psi_{v} = E_{v}\psi_{v} \implies E_{v}, \psi_{v}^{l}, \psi_{v}^{2}, \dots, \psi_{v}^{l_{v}}$$

$$\boxed{E_{v}, \psi_{v}^{l_{v}} \text{ can be classified by irreps } t_{ij}^{v}}_{\text{dimension of } t_{ij}^{v}} \equiv \text{degeneracy } l_{v}$$

$$\text{rep} \Rightarrow_{\Sigma_{\oplus}} \text{irreps: } T_{ij} = \sum_{\oplus} n_{\nu} T_{ij}^{\nu} \qquad \frac{T_{ij}^{1} \quad 0 \quad 0}{0 \quad T_{ij}^{1} \quad 0 \quad 0}}{\frac{0 \quad 0 \quad T_{ij}^{2} \quad 0}{0 \quad 0 \quad 0}}$$

Illustration. Single molecular "classical" magnet or molecular vibrations

$$H = \sum_{\mathbf{R},\mathbf{R}',\alpha,\beta} A_{\alpha,\beta}(\mathbf{R},\mathbf{R}')S_{\alpha}(\mathbf{R})S_{\beta}(\mathbf{R}') \quad (\alpha,\beta = x, y, z)$$

 $\hat{A}\mathbf{e}_j = \sum_{i=1}^{3N} A_{ji}\mathbf{e}_i \quad \begin{array}{l} \text{def of potential energy operator} \\ i \text{ runs on both } \alpha \text{ and } \mathbf{R} \end{array}$

$$H = (\psi \cdot \hat{A}\psi) = \sum_{i,j} s_i s_j (\mathbf{e}_i \cdot A\mathbf{e}_j) = \sum_{i,j} s_i s_j A_{ij}$$

The molecule has symmetry group $G \implies$

A must be invariant under symmetry elements of G

Representation of group G in 3N-dimensional space of spins

$$\mathbf{e}_i' = T(G_a)\mathbf{e}_i = \sum_j T_{ij}(G_a)\mathbf{e}_j$$

 $\operatorname{rep} \Rightarrow_{\Sigma_{\bigoplus}} \operatorname{irreps:}^{!}$ $T_{ij} = \sum_{\bigoplus} n_{\nu} T_{ij}^{\nu}$

 E_{v} , ψ_{v}^{lv} can be classified by irreps t_{ij}^{v} Normal modes ψ_{v}^{lv} can be found without diagonalization of *H*!

3N-dimensional space of spins. Function $\psi = \mathbf{s}(s_{11}, s_{12, \dots})$ is defined on N discreet points

Landau theory of phase transitions says that only one irrep (+c.c.) is becoming critical and is needed to describe the ordered structure

Great simplification!

PHYSICAL REVIEW B 72, 134413 (2005)

Zeroth cell contains **14** spins => 14*3=42 parameters.

one irrep Only 3 independent spins are needed!

Basic crystallography

32 crystallographic point groups

A *crystallographic* point group is a point group that maps a point lattice onto itself. Consequently, rotations and rotoinversions are restricted to the well known crystallographic cases 1, 2, 3, 4, 6 and $\overline{1}, \overline{2} = m, \overline{3}, \overline{4}, \overline{6}$

	Crystal system											
General symbol	Tric	linic	Monoclinic (top) Orthorhombic (botton	1)	Tetragonal		Trigona	ıl	Hexagonal		Cubic	
n	1	Cı	2	C2	4	C_4	3	C3	6	C ₆	23	Т
\overline{n}	ī	Ci	$m \equiv \overline{2}$	C,	4	S_4	3	C3i	$\overline{6} \equiv 3/m$	C _{3h}	-	-
n/m			2/m	C_{2h}	4/m	C_{4h}	-	-	6/m	C _{6h}	2/m3	T_h
n22			222	D_2	422	D_4	32	D_3	622	D ₆	432	0
nmm			<i>mm</i> 2	$C_{2\nu}$	4 <i>mm</i>	C_{4v}	3 <i>m</i>	C_{3v}	6 <i>mm</i>	Ca	-	-
<u>n</u> 2m			-	-	42m	D_{2d}	3 2/m	D_{3d}	<u>6</u> 2 <i>m</i>	D_{3h}	4 3m	T_d
n/m 2/m 2/m			2/m 2/m 2/m	D_{2h}	4/m 2/m 2/m	D_{4h}	-	-	6/m2/m2/m	D _{6h}	4/m 3 2/m	O_h

Hermann–Mauguin (left) and Schoenflies symbols (right).

3D Space* groups

Groups of transformations/motions of three dimensional homogeneous discreet space into itself

Two kinds of transformations/motions = 1. rotations (32 point groups)

2. translations $\mathbf{t} = n_1 \mathbf{t}_1 + n_2 \mathbf{t}_2 + n_3 \mathbf{t}_3$

* E.S. Fedorov (1890) A.Schoenflies (1890)

V. Pomjakushin, Advanced magnetic structures ETHZ '10

Thursday, 25 March 2010

14 Bravias* groups.

A full group of motions (of both kinds) that bring the lattice into self-coincidence, i.e., which contains both point symmetry operations and translations, is called a *Bravais group*, and an infinite lattice derived from one point by a Bravais group, a *Bravais lattice*.

V. Pomjakushin, Advanced magnetic structures ETHZ '10

*A. Bravias (1848)

230 space groups

Thursday, 25 March 2010

		Inter	national	Tables	
Pnm	a	$D_{^{2h}}^{^{16}}$	Schoenflie	s symbol mmm	Orthorhombic
No. 62		$P 2_1$	$/n 2_1/m 2_1/a$	l	Patterson symmetry Pmmm
Origin at 1 or	n 12, 1			Hermann–Maug	guin
Asymmetric	unit $0 \le x \le$	$\leq \frac{1}{2}; 0 \leq y \leq \frac{1}{4};$	$0 \le z \le 1$		
Symmetry o	perations				
(1) 1	(2) 2(0,0,	$(\frac{1}{2}) \frac{1}{4}, 0, z$	(3) $2(0,\frac{1}{2},0)$ 0,y,0	(4) $2(\frac{1}{2}, 0, 0) x, \frac{1}{4}, \frac{1}{4}$	zeroth block of SG
(5) 1 0,0,0	(6) a x,y	y, 1	(1) $m x, \frac{1}{4}, z$	(8) $n(0, \frac{1}{2}, \frac{1}{2}) = \frac{1}{4}, y, z$	Zeroin block of SU
(5) 1 0,0,0 Generators s Positions Multiplicity,	(6) a x,y	(1,0,0); <i>t</i> (0,1,0); Coordinate	t(0,0,1); (2); (3); (5)	$(3) n(0, \frac{1}{2}, \frac{1}{2}) \frac{1}{4}, y, z$	Reflection conditions
(5) 1 0,0,0 Generators s Positions Multiplicity, Wyckoff letter, Site symmetry	(6) a x,y	(1,0,0); <i>t</i> (0,1,0); Coordinate	$(1) m x, \frac{1}{4}, z$ t(0, 0, 1); (2); (3); (5	$(3) n(0, \frac{1}{2}, \frac{1}{2}) \frac{1}{4}, y, z$	Reflection conditions
 (5) 1 0,0,0 Generators s Positions Multiplicity, Wyckoff letter, Site symmetry 8 d 1 	(6) <i>a x</i> , y elected (1); <i>t</i> ((1) <i>x</i> , <i>y</i> , <i>z</i> (5) <i>x</i> , <i>y</i> , <i>z</i>	(1,0,0); $t(0,1,0)$; Coordinate (2) $\bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}, (6) x + \frac{1}{2}, y, \bar{z} + \frac{1}{2}, (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7$	(7) $m \ x, \frac{1}{4}, z$ t(0, 0, 1); (2); (3); (5) es $\frac{1}{2}$ (3) $\bar{x}, y + \frac{1}{2}, \bar{z}$ $\frac{1}{2}$ (7) $x, \bar{y} + \frac{1}{2}, z$	(8) $n(0, \frac{1}{2}, \frac{1}{2}) = \frac{1}{4}, y, z$ (4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	Reflection conditions general position: rotation matrix + translatio $\{h \boldsymbol{\tau}_h\}$
 (5) 1 0,0,0 Generators s Positions Multiplicity, Wyckoff letter, Site symmetry 8 d 1 	(6) <i>a x</i> , y eelected (1); <i>t</i> ((1) <i>x</i> , <i>y</i> , <i>z</i> (5) <i>x</i> , <i>y</i> , <i>z</i>	(1,0,0); $t(0,1,0)$; Coordinate (2) $\bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}, (6) x + \frac{1}{2}, y, \bar{z} + \frac{1}{2}, \bar{y}, \bar{z} + \frac{1}{2}, \bar{z}, \bar{z} + \frac{1}{2}, \bar{z}, \bar{z} + \frac{1}{2}, \bar{z}, \bar{z} + \frac{1}{2}, \bar{z} + \frac{1}{2$	(7) $m x, \frac{1}{4}, z$ t(0, 0, 1); (2); (3); (5) es $\frac{1}{2}$ (3) $\bar{x}, y + \frac{1}{2}, \bar{z}$ $\frac{1}{2}$ (7) $x, \bar{y} + \frac{1}{2}, z$	(8) $n(0, \frac{1}{2}, \frac{1}{2}) = \frac{1}{4}, y, z$ (4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	Reflection conditions general position: rotation matrix + translation $\{h \boldsymbol{\tau}_h\}$ 00l : l = 2n
 (5) 1 0,0,0 Generators s Positions Multiplicity, Wyckoff letter, Site symmetry 8 d 1 	(6) $a x, y$ elected (1); $t($ (1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$	(1,0,0); $t(0,1,0)$; Coordinate (2) $\bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}, (6) x + \frac{1}{2}, y, \bar{z} + \frac{1}{2}, \bar{y}, \bar{z} + \frac{1}{2}, \bar{z}, \bar{z} + \frac{1}{2}, \bar{z}, \bar{z} + \frac{1}{2}, \bar{z}, \bar{z} + \frac{1}{2}, \bar{z}, \bar{z} + \frac{1}{2}, \bar{z} + \frac{1}{2$	(7) $m x, \frac{1}{4}, z$ t(0, 0, 1); (2); (3); (5) es $\frac{1}{2}$ (3) $\bar{x}, y + \frac{1}{2}, \bar{z}$ $\frac{1}{2}$ (7) $x, \bar{y} + \frac{1}{2}, z$	(8) $n(0, \frac{1}{2}, \frac{1}{2}) = \frac{1}{4}, y, z$ (4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	Reflection conditions general position: rotation matrix + translation $\{h \tau_h \}$ 0l : l = 2n Special: as above, plus
 (5) Ī 0,0,0 Generators s Positions Multiplicity, Wyckoff letter, Site symmetry 8 d 1 4 c .m. 	(6) $a = x, y$ elected (1); $t($ (1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$ $x, \frac{1}{4}, z$	(1,0,0); t(0,1,0); Coordinate $(2) \bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{6}, x + \frac{1}{2}, y, \bar{z} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}, \bar{y}, z + \frac{1}{2}, \bar{y}, z + \frac{1}{2}, \bar{z}, z + \frac{1}{2}, z$	$(7) \ m \ x, \frac{1}{4}, z$ $t(0, 0, 1); \ (2); \ (3); \ (5)$ es $\frac{1}{2} \qquad (3) \ \bar{x}, y + \frac{1}{2}, \bar{z}$ $\frac{1}{2} \qquad (7) \ x, \bar{y} + \frac{1}{2}, z$ $\bar{x}, \frac{3}{4}, \bar{z} \qquad x + \frac{1}{2}, \frac{1}{4}, \bar{z}$	(8) $n(0, \frac{1}{2}, \frac{1}{2}) = \frac{1}{4}, y, z$ (4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$ (9) $x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	Reflection conditions general position: rotation matrix + translation $\{h \boldsymbol{\tau}_h\}$ 0l : l = 2n Special: as above, plus no extra conditions
 (5) Ī 0,0,0 Generators s Positions Multiplicity, Wyckoff letter, Site symmetry 8 d 1 4 c .m. 4 b Ī 	(6) $a = x, y$ elected (1); $t($ (1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$ $x, \frac{1}{4}, z$ $0, 0, \frac{1}{2}$	$(1,0,0); t(0,1,0);$ Coordinate $(2) \bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}, (6) x + \frac{1}{2}, y, \bar{z} + \frac{1}{2}, (7, 1), ($	$(7) \ m \ x, \frac{1}{4}, z$ $t(0, 0, 1); \ (2); \ (3); \ (5)$ es $\frac{1}{2} \qquad (3) \ \bar{x}, y + \frac{1}{2}, \bar{z}$ $\frac{1}{2} \qquad (7) \ x, \bar{y} + \frac{1}{2}, z$ $\bar{x}, \frac{3}{4}, \bar{z} \qquad x + \frac{1}{2}, \frac{1}{4}, \bar{z}$ $\frac{1}{2} \qquad \frac{1}{2}, \frac{1}{2}, 0$	(8) $n(0, \frac{1}{2}, \frac{1}{2}) = \frac{1}{4}, y, z$ (4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	Reflection conditions general position: rotation matrix + translation $\{h \boldsymbol{\tau}_h\}$ 0l : l = 2n Special: as above, plus no extra conditions hkl : h+l, k = 2n

irreps of SG

O. V. Kovalev, "*Representations of the Crystallographic Space Groups: irreducible representations, induced representations, and corepresentations*" (Gordon and Breach Science Publishers, 1993), 2nd ed.

Bloch waves, irreps of Bravias Lattice group

Bloch wave $\psi(\mathbf{r})$ is a solution of Hamiltonian having periodic symmetry of Bravias Lattice BL (\mathbf{t}_L), (e.g. $\psi(\mathbf{r})$ can describe magnetic structure)

$$\psi(\mathbf{r}) = u(\mathbf{r})e^{i\mathbf{k}\mathbf{r}}, \ u(\mathbf{r} + \mathbf{t}_L) = u(\mathbf{r})$$

Representation theory

Space group *G* contains translation (*t*) BL group *T*. $\mathbf{t} = n_1 \mathbf{t}_1 + n_2 \mathbf{t}_2 + n_3 \mathbf{t}_3$ What are irreps and basis functions (b.f) of *T*?

Two properties $T(\mathbf{t}) = T(\mathbf{t_1})^{n_1} T(\mathbf{t_2})^{n_2} T(\mathbf{t_3})^{n_3} = T(n_1 \mathbf{t_1} + n_2 \mathbf{t_2} + n_3 \mathbf{t_3})$ of T-elements: $T(\mathbf{t_j})^{N_j+1} = T(\mathbf{t_j}), j = 1, 2, 3$ Born-von Karman

1D matrixes

 $N=N_1 N_2 N_3$ irreps of *T* enumerated by ordinary numbers p_j

 $exp\left[-2\pi i\left(\frac{p_1n_1}{N_1} + \frac{p_2n_2}{N_2} + \frac{p_3n_3}{N_3}\right)\right], 0 \le p_j \le N_j - 1$

Bloch waves = basis functions

 $N_1 N_2 N_3 \text{ irreps of } T \text{ enumerated by ordinary} \quad exp\left[-2\pi i \left(\frac{p_1 n_1}{N_1} + \frac{p_2 n_2}{N_2} + \frac{p_3 n_3}{N_3}\right)\right], 0 \le p_j \le N_j - 1$ numbers p_j

Reciprocal lattice (**b**₁, **b**₂, **b**₃) allows us conveniently sort out/enumerate all irreps of $T \in G$ **b**_j**t**_k = $2\pi \delta_{jk}$

$$\mathbf{b} = p_1 \mathbf{b}_1 + p_2 \mathbf{b}_2 + p_3 \mathbf{b}_3$$

$$T(\mathbf{t}) \to \exp(-i\mathbf{kt})$$
wave vector or propagation vector $\mathbf{k} = \left(\frac{p_1}{N_1}\mathbf{b}_1 + \frac{p_2}{N_2}\mathbf{b}_2 + \frac{p_3}{N_3}\mathbf{b}_3\right)$

$$\mathbf{t} = n_1\mathbf{t}_1 + n_2\mathbf{t}_2 + n_3\mathbf{t}_3$$
Matrices of irrep number \mathbf{k} : $D^{\mathbf{k}}(\mathbf{t}) = \exp(-i\mathbf{kt})$
operator \mathbf{b} .f.
$$T(\mathbf{t})\psi^{\mathbf{k}}(\mathbf{r}) = \exp(-i\mathbf{kt})\psi^{\mathbf{k}}(\mathbf{r})$$
Most general basis function of the \mathbf{k} th irrep of translation group $T \in G$ is Bloch function $\psi^{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r})e^{i\mathbf{kr}}$
 $u_{\mathbf{k}}(\mathbf{r} + \mathbf{t}) = u_{\mathbf{k}}(\mathbf{r})$

Symmetry group of propagation vector, star {k}

Pnma	$D_{^{2h}}^{^{16}}$	mmm Orthorhombic	
No. 62	$P 2_1/n 2_1/m 2_1/a$	Patterson symmetry Pmmm	
Symmetry operat	tions		
${\begin{array}{cccc}(1) & 1\\(5) & \overline{1} & 0, 0, 0\end{array}}$	(2) $2(0,0,\frac{1}{2}) \frac{1}{4},0,z$ (6) $a x,y,\frac{1}{4}$	(3) $2(0,\frac{1}{2},0)$ 0,y,0 (7) $m x,\frac{1}{4},z$	$\begin{array}{rrrr} & (4) & 2(\frac{1}{2}, 0, 0) & x, \frac{1}{4}, \frac{1}{4} \\ & (8) & n(0, \frac{1}{2}, \frac{1}{2}) & \frac{1}{4}, y, z \end{array} + T(n_1 \mathbf{t}_1 + n_2 \mathbf{t}_2 + n_3 \mathbf{t}_3)$

How does b.f. $\psi^{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\mathbf{r}}$ transform under any element of SG T(g)?

*non-equivalent $h\mathbf{k} \neq \mathbf{k} + \mathbf{b}$

Thursday, 25 March 2010

V. Pomjakushin, Advanced magnetic structures ETHZ '10

Thursday, 25 March 2010

The k-vector types and Brillouin zones of the space groups

propagation vector = a point on/inside Brillouine zone Brillouine zone of Pmmm (Γ_0)

A.P. Cracknell, B.L. Davis, S.C. Miller and W.F. Love (1979) (abbreviated as **CDML**)

Kovalev O.V (1986) (1993) *Representations of the Crystallographic Space Groups* (London: Gordon and Breach)

k-v	Wyckoff position				
	CDML		ITA		
GM	0,0,0	1	а	mmm	
Х	1/2,0,0	1	b	mmm	
Z	0,0,1/2	1	С	mmm	
U	1/2,0,1/2	1	d	mmm	
Υ	0,1/2,0	1	е	mmm	
S	1/2,1/2,0	1	f	mmm	
Т	0,1/2,1/2	1	g	mmm	
R	1/2,1/2,1/2	1	h	mmm	
		_			
SM	u,0,0	2	i	2mm	
Α	u,0,1/2	2	j	2mm	
С	u,1/2,0	2	k	2mm	
E	u,1/2,1/2	2	I	2mm	
DT	0,u,0	2	m	m2m	
В	0,u,1/2	2	n	m2m	
D	1/2,u,0	2	0	m2m	
Ρ	1/2,u,1/2	2	р	m2m	
LD	0,0,u	2	q	mm2	
Н	0,1/2,u	2	r	mm2	
G	1/2,0,u	2	S	mm2	
Q	1/2,1/2,u	2	t	mm2	
		_			
Κ	0,u,v	4	u	m	
	GM X Z U Y S T R SM A C E D T B D P LD H G Q K	CDML GM 0,0,0 X 1/2,0,0 Z 0,0,1/2 U 1/2,0,1/2 Y 0,1/2,0 S 1/2,1/2,0 T 0,1/2,1/2 R 1/2,1/2,1/2 R 1/2,1/2,1/2 SM u,0,0 A u,0,1/2 C u,1/2,0 E u,1/2,1/2 D 0,u,0 B 0,u,1/2 D 1/2,u,0 P 1/2,u,0 R 1/2,0,u Q 1/2,0,u G 1/2,0,u K 0,u,v	K-vector label Wy CDML GM GM 0,0,0 1 X 1/2,0,0 1 Z 0,0,1/2 1 U 1/2,0,1/2 1 Y 0,1/2,0 1 S 1/2,1/2,0 1 T 0,1/2,1/2 1 R 1/2,1/2,0 1 R 1/2,1/2,1/2 1 R 1/2,1/2,1/2 1 SM u,0,0 2 A u,0,1/2 2 C u,1/2,0 2 D 0,u,0 2 B 0,u,1/2 2 D 1/2,u,0 2 P 1/2,u,0 2 P 1/2,u,1/2 2 LD 0,0,u 2 H 0,1/2,u 2 Q 1/2,0,u 2 Q 1/2,0,u 2 Q 1/2,0,u 2	k-vector label Wycko GM 0,0,0 1 a X 1/2,0,0 1 b Z 0,0,1/2 1 c U 1/2,0,1/2 1 d Y 0,1/2,0 1 e S 1/2,1/2,0 1 f T 0,1/2,1/2 1 g R 1/2,1/2,1/2 1 h S 1/2,1/2,1/2 1 h S 1/2,1/2,0 2 i A u,0,0 2 i A u,0,1/2 2 j C u,1/2,0 2 k E u,1/2,1/2 2 n D 1/2,u,0 2 o P 1/2,u,1/2 2 p LD 0,0,u 2 q H 0,1/2,u 2 r G 1/2,0,u 2 s Q	

Γ_c^f face centered cubic. Brillouine zone, {k}

Kovalev book (slide skipped)

Table C CHARACTERISTIC POINTS

T 0 (D: -)

Correspondence between letter symbols of [13] and number symbols of this book.

	Lattice C (Fig. 7): $A = \mathbf{k}_1, B = /5 \times \mathbf{k}_2, C = \mathbf{k}_3, J = /5 \times \mathbf{k}_3, \Sigma = \mathbf{k}_4, S = /5 \times \mathbf{k}_5, Z = /9 \times \mathbf{k}_6 = /16 \times \mathbf{k}_{14}, T = \mathbf{k}_7, \Delta = /5 \times \mathbf{k}_8, \Lambda = \mathbf{k}_9, X = /5 \times \mathbf{k}_{10}, M = \mathbf{k}_{11}, \Gamma = \mathbf{k}_{12}, R = \mathbf{k}_{13}.$
	Lattice Cf (Fig. 8): $A = k_1, B = /5 \times k_1 + b_1, C = k_2, J = /5 \times k_2, Q = /9 \times k_3, \Sigma = k_4, S = /5 \times k_4 - b_2, \Lambda = k_5, \Delta = /5 \times k_6, V = /9 \times k_7 + b_3 = k'_7, W = /9 \times k_8, L = k_9, X = /5 \times k_{10}, \Gamma = k_{11}.$
	Lattice Cv (Fig. 9): $A = \mathbf{k}_1, C = \mathbf{k}_2 = /27 \times \mathbf{k}_3 - \mathbf{b}_1, J = /5 \times \mathbf{k}_2 = /30 \times \mathbf{k}_3 - \mathbf{b}_1, B = \mathbf{k}_3 = /27 \times \mathbf{k}_2 + \mathbf{b}_2, \Sigma = \mathbf{k}_4, G = \mathbf{k}_5, D = \mathbf{k}_6, \Lambda = \mathbf{k}_7 = /16 \times \mathbf{k}_{13} - \mathbf{b}_3, \Delta = /5 \times \mathbf{k}_8, N = \mathbf{k}_9, P = \mathbf{k}_{10}, \Gamma = \mathbf{k}_{11}, H = /5 \times \mathbf{k}_{12}, F = /5 \times \mathbf{k}_{13} = /23 \times \mathbf{k}_7 + \mathbf{b}_2.$
	Lattice Q (Fig. 10): $D = k_1$, $E = k_2$, $B = k_3$, $F = k_4$, $C = k_5$, $Y = k_6$, $T = k_7$, $\Delta = k_8$, $U = k_9$, $\Sigma = k_{10}$, $S = k_{11}$, $W = k_{12}$, $\Lambda = k_{13}$, $V = k_{14}$, $X = k_{15}$, $R = k_{16}$, $\Gamma = k_{17}$, $M = k_{18}$, $Z = k_{19}$, $A = k_{20}$.
	Lattice Qv (Fig. 11): $B = k_1, C = k_2, A = k_3 = /27 \times k_4 - b_2, E = k_4$ = $/27 \times k_3 + b_2, Q = k_5, \Sigma = k_6, \Delta = k_7, Y = k_8, W = k_9, \Lambda = k_{10}, V = k_{10} - b_1 + b_3, N = k_{11}, P = k_{12} = /16 \times k_{16}, X = k_{13}, \Gamma = k_{14}, M = k_{15} - b_1 + b_3.$
Brillouine zone of <i>Pmmm</i> (Γ_0)	Lattice Qv (Fig. 12): $B = k_1, C = k_2, D = k_2 + b_1, A = k_3 = /27 \times k_4 - b_2, E = k_4 = /27 \times k_3 + b_2, Q = k_5, \Sigma = k_6, F = k_6 + b_1 - b_3, \Delta = k_7, Y = k_8, U = /14 \times k_8 + b_2, W = k_9, \Lambda = k_{10}, N = k_{11}, P = k_{12} = /16 \times k_{16}, X = k_{13}, \Gamma = k_{14}, M = k_{15}.$
	Lattice O (Fig. 13): $K = k_1, L = k_2, M = k_3, N = k_4, V = k_5, W = k_6, \Sigma = k_7, \Delta = k_8, \Lambda = k_9, C = k_{10}, E = k_{11}, A = k_{12}, D = k_{13}, P = k_{14}, B = k_{15}, G = k_{16}, Q = k_{17}, H = k_{18}, \Gamma = k_{19}, X = k_{20}, Y = k_{21}, Z = k_{22}, T = k_{23}, U = k_{24}, S = k_{25}, R = k_{26}.$
V. Pomjakushin, Advanced	Lattice Oc (Fig. 14): $K = k_1, M = k_2, N = k_2 - b_2, P = k_3, Q = k_4, D = k_5,$

Thursday, 25 March 2010

51

Kovalev book (slide skipped)

62, $D_{2h}^{16}I = Pnma$ MSSPC. 4, a, $\overline{1}$, (000). 4, b, $\overline{1}$, (001). 4, c, m, $(x\frac{1}{2}z)$. ELG. a-25. b-(002/25). c-(010/27). LIR, SICR. $k_{1-9(1,2/1+2)}$. $k_{2-33(1+2/2\times1,2\times2)}$. $k_{3-10(1,2/1+2)}$. $k4-34(1+2/2\times1,2\times2)$. k5-2(1,2/1+2). $k6-35(1+2/2\times1,2\times2)$. k7-30(1,2,2). 3,4/1B2). $k_{8-31}(1,2,3,4/1B2)$. $k_{9-11}(1,2,3,4/1B2)$. $k_{10-58}(1+2,3+4/1B2)$. $2 \times 1B4$). $k11-441(1+2,3+4/2\times 1B1)$. $k12-96(1+3,2+4/2\times 1B4)$. k13-37(1B4/1+3,2+4). $k14-40(1+2,3+4/2\times 1B1)$. k15-43(1B4/1+4,2+3). $k_{16-83(1+4,2+3/2\times 1B3)}$. $k_{17-84(2\times 1B2/2\times 1,2\times 2,2\times 3,2\times 4)}$. k_{18-44} (1B4/1+4,2+3). k19-32(1,2,3,4,5,6,7,8/1B2,2B2). k20-85(1B1,2B1/2)1+2). $k21-61(1B3,2B3/1+B1^{\dagger}2B1)$. $k22-98(1B4,2B4/1+B1^{\dagger}2B1)$ $k23-442(1B1,2B1/1+B1^{\dagger}2B1)$. $k24-443(1+5,2+6,3+7,4+8/2\times 1B4)$ k-vector Matrix is by table T85 for simple group or by P85 for double group, p.387 cross-ref LIR τ_1 , τ_2 SICR (coirreps) double G LIR π_1, π_2 matrixes constructed B-matrixes ir with B-matrixes as explained on pp. 26-28 V. Pomjakushin, Advanced magnetic structures ETHZ '10

In Chapter 2, the information on SICRs is written in lists entitled "LIR,SICR" in the parentheses which follow the LIR set number. If there are no parentheses, this means that variation I occurs. In parentheses, before a slanted line is given information on the SICRs of simple groups and after the slanted line information on SICRs of double groups.

The numbers indicated in the parentheses are SIR numbers according to the corresponding table of LIRs. If the SIR generates a type *a* ICR, then we will show the SIR number, and, immediately after it, the concrete form $(B_1, B_2, \text{ etc.})$ of the auxiliary matrix β . If this matrix is not shown, this means that it is equal to one. For example, "1, 2, 3B4" means that the one-dimensional SIRs δ^1 and δ^2 generate type *a* SICRs with $\beta = 1$, and the multi-dimensional SIR δ^3 generates a type *a* SICR with $\beta = B_4$ (denoted by B4).

If an SIR generates a type b SICR, then before the number of this SIR we write the number 2 with a multiplication sign. Then the auxiliary matrix β is shown, if it is different from unity. For example, "2×4, 2×5B2" means that SIR δ^4 generates a type b SICR with $\beta = 1$, and SIR δ^5 a type b SICR with $\beta = B_2$.

If SIRs $\delta = \delta^i$ and $\delta' = \delta^j$ together generate SICR d(i+j) of type c according to the rule of Eq. (26a) and with $\beta = \beta_m$, then " $i+Bm^{\dagger}jBm$ " is written. For example, the expression " $1+B3^{\dagger}2B3$ " means that the matrices for unitary elements have the form,

 $egin{pmatrix} \delta^1(g) & 0 \ 0 & B_3^\dagger \delta^2 B_3 \end{pmatrix}.$

Thus the equations in Chapter 2 give: (1) the connection between ICR matrices and SIR matrices, i.e., SICR matrices, and (2) the auxiliary matrices β needed for the construction of basis vectors. The β matrices are defined in Appendix 3.

In the beginning of the data relating to each Bravais lattice is shown how, in each case, the fixed antiunitary operator a_0 is chosen. It is important to keep in mind that the meaning of matrix β is defined by this operator. In replacing element a_0 with a different one, and also in changing the form of a SIR or LIR matrix, the β matrix, in general, changes.

Real SIRs are possible only under the condition that $\mathbf{k} = -\mathbf{k} + \mathbf{b}$. They generate type a SICRs d of group $G(\mathbf{k}) + KG(\mathbf{k})$, where K is the complex conjugate operator. SICR d reduces to the real form d_r with the help of unitary matrix S:

👑 Space group irreps 👑

Space group irreps, examples dimensions up to 6 (cf. 3 for point groups)

Constructing of vector space of magnetic structure and reducible magnetic representation

Case study of magnetic structure of multiferroic TbMnO₃

k-vector group

Group G: Pnma, no.62: 8 symmetry operators

Little group G_k , k=[0.45,0,0]=[q,0,0]

Little group of propagation vector G_k contains only the elements of G that do not change $P2_1 ma(Pmc2_1, 26)$

$$\begin{array}{cccc} \text{(1) } x, y, z & \text{(4) } x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} + \frac{1}{2} & \text{(7) } x, \bar{y} + \frac{1}{2}, z & \text{(6) } x + \frac{1}{2}, y, \bar{z} + \frac{1}{2} \\ \text{rotation+} & E \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} & 2_x \begin{pmatrix} 100 \\ 0\bar{1}0 \\ 00\bar{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & m_y \begin{pmatrix} 100 \\ 0\bar{1}0 \\ 001 \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \\ 01 \end{pmatrix} & m_z \begin{pmatrix} 100 \\ 010 \\ 00\bar{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \\ \end{array}$$

vector space and representation for an atom in position (0,0,1/2) for k-vector group

Permutation representation

V. Pomjakushin, Advanced magnetic structures ETHZ '10

in addition, element g_2 sometimes moves the atom outside of the zerocell. We have to return the atom back with $-\mathbf{a}_p$:

$$a \Rightarrow b (000)$$

$$b \Rightarrow a (-100)$$

$$c \Rightarrow d (000)$$

$$d \Rightarrow c (-100)$$

$$\psi^{k\nu}(\mathbf{r}) = u_{\mathbf{k}}^{\nu}(\mathbf{r})e^{2\pi i\mathbf{kr}}$$

Classifying possible magnetic structures Magnetic representation

Classifying possible magnetic structures Magnetic representation

group element	gı	g 2	g3	g4				
rotation+ translation	$E\begin{pmatrix}100\\010\\001\end{pmatrix}\begin{pmatrix}0\\0\\0\end{pmatrix}$	$2_x \begin{pmatrix} 100\\0\overline{1}0\\00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{pmatrix}$	$m_y \begin{pmatrix} 100\\0\overline{1}0\\001 \end{pmatrix} \begin{pmatrix} 0\\\frac{1}{2}\\0 \end{pmatrix}$	$m_y \begin{pmatrix} 100\\010\\00\overline{1} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\0\\\frac{1}{2} \end{pmatrix}$				
Mn-position	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, 0$				
position number	а	b	С	d				
•		Permutation representation						
4x4 matrices (P)	$\begin{pmatrix} 1000\\ 0100\\ 0010\\ 0001 \end{pmatrix}$	$\begin{pmatrix} 0100 \\ b000 \\ 0001 \\ 00b0 \end{pmatrix}$	$\begin{pmatrix} 0010\\ 0001\\ 1000\\ 0100 \end{pmatrix}$	$\begin{pmatrix} 0001\\ 00b0\\ 0100\\ b000 \end{pmatrix}$				
		Axial vector (spin)	representation					
$3x3$ matrices (A) $R(g_2)$	×det							
(R)	$\begin{pmatrix} 100\\010\\001 \end{pmatrix}$	$\begin{pmatrix} 100\\ 0\overline{1}0\\ 00\overline{1} \end{pmatrix}$	$\begin{pmatrix} \overline{1}00\\010\\00\overline{1} \end{pmatrix}$	$\begin{pmatrix} \overline{1}00\\ 0\overline{1}0\\ 001 \end{pmatrix}$				

Classifying possible magnetic structures Magnetic representation

Thursday, 25 March 2010

TmMnO₃: Classifying possible magnetic structures basis vectors/functions S_{T1} , S_{T2} , S_{T3} , ...

Pnma, k=[0.45,0,0] Mn in (4a)-position

12D magnetic representation is reduced to four one-dimensional irreps

$$d = \sum_{\bigoplus} n_{\nu} d^{\nu} = 3\tau_1 \oplus 3\tau_2 \oplus (3\tau_3) \oplus 3\tau_4$$
$$n_{\nu} = \frac{1}{n(G)} \sum_{g \in G} \chi(g) \chi^{*\nu}(g)$$

recap: irrep: 1D matrixes $d_{\tau}(g)$ that define how basis functions b.f. should be changed/ transformed under action of **abstract group** elements g_i . The permutations and spin rotations, *or whatever meaning of* g_i *is*, **are not** yet here!

Tm in (4c)-position (x,1/4,z)Different $1\tau_1 \oplus 2\tau_2 \oplus 2\tau_3 \oplus 1\tau_4$ decomposition!

Projection method: to find basis functions b.f. transforming according to a specific irrep τ

 $a = e^{\pi i k_x}$

Axial basis construction. Projection method.

Basis functions.

 $3\sigma_M N$ -dimention column

 $3\sigma_{\rm M}$ -dimention column in *zeroth*-cell.

$$\psi_{\lambda}^{\kappa\nu} = \sum_{n}^{\oplus} \sigma_{\lambda}^{\kappa\nu} \exp{(i\kappa t_n)},$$

$$\sigma_{\lambda}^{\kappa\nu} = \sum_{i=1}^{\sigma_{M}} S\begin{pmatrix} \kappa\nu\\ \lambda & i \end{pmatrix},$$

$$\mathbf{S}\begin{pmatrix} \mathbf{K}\mathbf{v} \\ \lambda \end{pmatrix} = \sum_{h \in G_{\mathbf{K}}^{0}} d_{\lambda}^{*\mathbf{K}\mathbf{v}}(\mathbf{g}) \exp\left[-i\mathbf{k}\mathbf{a}_{p}\left(g, j\right)\right] \delta_{i, g}\left[j\right] \delta_{h} \begin{pmatrix} R_{x}^{h}\left[\beta\right] \\ R_{y}^{h}\left[\beta\right] \\ R_{z}^{h}\left[\beta\right] \end{pmatrix}$$

[...] the values, that must be fixed, define a start for the basis function construction. Choosing different start values for "[...]" one obtains either different linear independent b.f. or zero

 $\overline{R_{\alpha\beta}}^{h}$ rotation matrix of rotational part of group element $\{h|\tau_{h}\}\$ $d_{\lambda\mu}{}^{\nu}$ matrix of irrep number ν $\mathbf{a}_{p}(g,j)$ returning translation after action of g on atom j

$$\delta_h = \det(R_{\alpha\beta}^h)$$

V. Pomjakushin, Advanced magnetic structures ETHZ '10

 $3\sigma_{\rm M}$ -dimension column in *zeroth*-cell. All components = 0, except the one for atom *j* and direction β

Verifying invariance of b.f. under irrep T3

Pnma, k=[0.45,0,0] Mn in (4a)-position

12D magnetic representation is reduced to four one-dimensional irreps

$$d = \sum_{\oplus} n_{\nu} d^{\nu} = 3\tau_1 \oplus 3\tau_2 \oplus (3\tau_3) \oplus 3\tau_4$$

recap: irrep: 1D matrixes $d_{\tau}(g)$ that define how basis functions b.f. should be changed/ transformed under action of **abstract** group elements g_i . The permutations and spin rotations, or whatever meaning of g_i is, are not yet here!

Projection method: to find basis functions b.f. transforming according to a specific irrep τ

$$0,0,\frac{1}{2} \qquad \frac{1}{2},\frac{1}{2},0 \qquad 0,\frac{1}{2},\frac{1}{2} \qquad \frac{1}{2},0,0$$
Mn-position 1 2 3 4
$$S'_{\tau 3} = +1\mathbf{e}_{1x} - a^*\mathbf{e}_{2x} - 1\mathbf{e}_{3x} + a^*\mathbf{e}_{4x}$$

$$S''_{\tau 3} = +1\mathbf{e}_{1y} + a^*\mathbf{e}_{2y} + 1\mathbf{e}_{3y} + a^*\mathbf{e}_{4y}$$

$$S'''_{\tau 3} = +1\mathbf{e}_{1z} + a^*\mathbf{e}_{2z} - 1\mathbf{e}_{3z} - a^*\mathbf{e}_{4z}$$

Example: ferromagnetic mode $S_{ au 3}^{\prime\prime}$. Element g_2 action of $g_2 = (\text{rotation } 2_x; \text{swap } 1 \Leftrightarrow 2, 3 \Leftrightarrow 4, \text{ phase } 2\pi i k_x \text{ for } 2 \Rightarrow 1, 4 \Rightarrow 3)$ $a^{*2} = e^{-2\pi i k_x}$ $2_x m_y$ m_{z} $S''_{\tau_3} \to g_2^{2_x} S''_{\tau_3} = -1\mathbf{e}_{1y} - a^* \mathbf{e}_{2y} - 1\mathbf{e}_{3y} - a^* \mathbf{e}_{4y}$: spin space $d(g_2)^{irrep \ \tau^3} S_{\tau^3}'' = -a \cdot S_{\tau^3}'' = +1\mathbf{e}_{1y} + a^* \mathbf{e}_{2y} + 1\mathbf{e}_{3y} + a^* \mathbf{e}_{4y}$

V. Pomjakushin, Advanced magnetic structures ETHZ '10

 $a = e^{\pi i k_x}$

E

Classifying possible magnetic structures Great simplification!

Pnma, k=[0.45,0,0] Mn in (4a)-position

12D magnetic representation is reduced to four one-dimensional irreps

$$0,0,\frac{1}{2} \qquad \frac{1}{2},\frac{1}{2},0 \qquad 0,\frac{1}{2},\frac{1}{2} \qquad \frac{1}{2},0,0$$
Mn-position 1 2 3 4

$$S'_{\tau 3} = +1\mathbf{e}_{1x} - a^*\mathbf{e}_{2x} - 1\mathbf{e}_{3x} + a^*\mathbf{e}_{4x}$$

$$S''_{\tau 3} = +1\mathbf{e}_{1y} + a^*\mathbf{e}_{2y} + 1\mathbf{e}_{3y} + a^*\mathbf{e}_{4y}$$

$$S'''_{\tau 3} = +1\mathbf{e}_{1z} + a^*\mathbf{e}_{2z} - 1\mathbf{e}_{3z} - a^*\mathbf{e}_{4z}$$

 $a = e^{\pi i k_x}$

Assuming that the phase transition goes according to one irreducible representation $\tau 3$ the spins of all four atoms are set only by 3 variables instead of 12!

$$C_1 S'_{\tau 3} + C_2 S''_{\tau 3} + C_3 S'''_{\tau 3}$$

Refinement of the data for T_3

$$\mathbf{S}(\mathbf{r}) = \frac{1}{2} (C_1 S'_{\tau 3} + C_2 S''_{\tau 3} + C_3 S'''_{\tau 3}) e^{2\pi i \mathbf{k} \mathbf{r}} + c.c.$$

Visualization of the magnetic structure

a cycloid structure propagating along x-direction

 $\mathbf{S}(\mathbf{r}) = Re\left[\left(C_1 S_{\tau 3}' + |C_3| \exp(i\varphi) S_{\tau 3}'''\right) \exp(2\pi i \mathbf{k} \mathbf{r})\right]$

Magnetic symmetry. 1651 3D-Shubnikov (Sh or Ш) space groups

antisymmetry: Heesh (1929), Shubnikov (1945). groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955) spin reversal: Landau and Lifschitz (1957) 67

V. Pomjakushin, Advanced magnetic structures ETHZ '10

Thursday, 25 March 2010

Isomorphism between Sh-groups and 1D irreps of SG. Niggli-Indenbom theorem

Examples of Sh groups

recap:

Disadvantages of Sh-group description

Sh groups do not give a constructive way of deducing all symmetry allowed magnetic modes.

 $S_1 = (uvw), S_2 = (-u-v-w)$

<u>*Reason 1:*</u> Sh group is not necessarily made from the parent G. Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations

Example 1: there are no cubic ferromagnetic Sh-groups. "problems" with cubic ferromagnets Fe, EuO, EuS, ...

Example 2: CrCl₂ space group: *Pnnm*. *Sh* groups: *Pnnm Pn'nm, Pnnm', Pn'n'm, Pnn'm', Pn'n'm'*

No one describes CrCl₂ magnetic structure Cr-atoms in 2(a)-position **k**=[0 1/2 1/2]

V. Pomjakushin, Advanced magnetic structures ETHZ '10

<u>Reason 2:</u> 3D Sh not describe modulated structures. No rotations on non-crystallographic angle - no helix. Linear orthogonal transformations preserve the spin size - no SDW

The End

further complications

- 1. several irreps involved, e.g. exchange multiplet
- 2. multi-k structures
- 3. spin domains, k-domains, chiral domains for single crystal data
Literature on (magnetic) neutron scattering

Neutron scattering (general)

Albert Furrer, Joel Mesot, and Thierry Strassle, "Neutron scattering in condensed matter physics". World Scientific, 2008

S.W. Lovesey, "Theory of Neutron Scattering from Condensed Matter", Oxford Univ. Press, 1987. Volume 2 for magnetic scattering. Definitive formal treatment

G.L. Squires, "Intro. to the Theory of Thermal Neutron Scattering", C.U.P., 1978, Republished by Dover, 1996. Simpler version of Lovesey.