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Purpose of this lecture

2

1.You need to acquaint  yourself with the classification of the 
magnetic structures that are used in the literature, such as 
Shubnikov (or black-white) groups and irreducible representation 
notations.

2.You need to be able to construct all possible symmetry adapted 
magnetic structures  for a given crystal structure and a 
propagation vector (a point on the Brilloine zone) using 
representation (rep) analysis of magnetic structures. This way of 
description/construction is related to the Landau theory of 
second order phase transitions and applies not only to magnetic 
ordering,  but generally to any type of phase transitions. For 
example, using the rep-analysis one can analyze displacive crystal 
structure transitions.  
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Overview of Lecture

• Long range magnetic order seen by ND.  Two ways of magnetic structure 
classification:  “Shubnikov” vs. “reps analysis” -- introduction 9

•  Point groups. Intro to group representations (reps) 12

• Irreducible representations (irreps) 8

• Basic crystallography.  Symmetry elements. Space groups (SG) 5

• Irreps of SG. Reciprocal lattice.  Propagation k-vector of <magnetic> 
structure/Brillouine zone points 8

• Case study of magnetic structure determination using k-vector reps 
formalism for classifying symmetry adopted magnetic modes 12

• Magnetic Shubnikov groups.  Comparison of two ways of magnetic 
structure classification/determination:  “Shubnikov” vs. “reps analysis” 4

3
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Literature on (magnetic) symmetry and 
magnetic neutron diffraction

All you need to know about magnetic neutron 
diffraction. Magnetic symmetry, representation 

analysis

 Yu. A. Izyumov, V. E. Naish and R. P. Ozerov, ”Neutron diffraction of magnetic 
materials”, New York [etc.]: Consultants Bureau, 1991. 

 and
Groups, representation analysis, point groups and 

simple applications, e.g. molecular vibrations, crystal 
field theory. 

J.P Elliott and P.G. Dawber “Symmetry in physics”,  vol. 1,1979 The 
Macmillan press LTD

4
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Notes, papers, talks and computer programs, etc. on 
magnetic structures, (magnetic) symmetry and 

magnetic neutron diffraction

• Andrew S.  Wills (UCL) http://www.chem.ucl.ac.uk/people/wills/
magnetic_structures/magnetic_structures.html

• Juan Rodríguez-Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/ 
program BasIreps

• Wiesława  Sikora et al, http://www.ftj.agh.edu.pl/~sikora/modyopis.htm

• Bilbao Crystallographic Server is a web site with crystallographic 
programs and databases accessible via Internet  
                                                  http://www.cryst.ehu.es/

5

V. Pomjakushin , "Determination of the magnetic structure from powder 
neutron diffraction." Lecture given at the "Workshop on X-rays, 
Synchrotron Radiation and Neutron Diffraction Techniques, June 
18-22, 2008, PSI, http://sinq.web.psi.ch/sinq/instr/hrpt/praktikum  
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Magnetic structure seen by ND

6

Magnetic interactions are described by QM Hamiltonian with quantum spin operators

si = �ŝi� = sxex + syey + szez �ŝz� ,
�
ŝ2

�

Magnetic structure that we observe is an ordered set of classical axial 
vectors                    that can be directed at any angle with respect to crystal 
axes and field.  
In the symmetry analysis we deal with the classical spins (no coreprs).

si = �ŝi�

In a diffraction experiment (coherent Bragg scattering), however, the problem is 
reduced and we observe only the following correlators. <> averaging over all initial 
states of the scatterer. i,j=1..N

= Fourier sum of classical axial vectors∼
�

�ŝi� · �ŝj�

Ĥ = −
�

i,j

Jij ŝi · ŝj +
�

i

Diŝ
2
z + ...
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Magnetic structure

7

Examples

0th cell

k=[0,0]
AFM

S01 = Sx + Sy

1

2

S02 = −S01

0th cell

k=[0,0]
FM

S01 = Sx + Sy

1
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Examples of magnetic structures. 
Propagation vector k≠0

S0 = Sxeiφx + Syeiφy + Sze
iφzAmplitude is complex

(one can not avoid this)

 k=[0,0,kz]

1
modulated (in)commensurate 

helix
SDW

cycloidal
spiral

S01 = Sx + iSy + Sze
iφz

S01 = Sx + Sye
iπ
2 = Sx + iSy

k=[1/2,1/2] AFM

1

S01 = Sy

Magnetic moment
is a real quantity

S(rj) =
1
2
(S0e

+2πirjk + S∗0e
−2πirjk)

Bloch waves

0th cell
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Interference between nuclear and magnetic 
scattering (slide skipped)

General note:

When the magnetic unit cell is larger than the nuclear one (propagation vector 
k≠0) the interference between nuclear and magnetic scattering is absent in any 
(un)polarized neutron diffraction experiment.

Reason: Magnetic Bragg peaks appear at different from nuclear peaks 
positions in reciprocal space

9
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Only amplitudes can be determined (slide skipped)

10

The phase Φ is not accessible and the magnetic moments on 
the atoms cannot be determined.

S = S0 cos(2πkz + φ), k =
3
4

I ∼ S2
0 + S0F cos(φ)

Spin/atom magnetic 
moment

Amplitude

φ = 7π/8

φ = π/2

Thursday, 25 March 2010



Example of complex magnetic structure

 

Zeroth cell contains 14 spins 
of Tb3+.
Conventional magnetic unit 
cell contains 126 spins of 
Tb3+!!

k-vector=[1/3, 1/3, 0]
P6/m

Antiferromagnetic three sub-lattice ordering in Tb14Au51

PHYSICAL REVIEW B 72, 134413 (2005) 
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Some legitimate questions

12

1. How do we describe/classify/predict magnetic symmetries and structures?
2. How do we construct all symmetry allowed magnetic structures for a given 
crystal structure?

Description vs. determination/constructiveness

Thursday, 25 March 2010
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1

Two ways of description of magnetic 
structures

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG

1

2

3

4

Magnetic structure is an axial vector function S(r) defined on the discreet 
system of points (atoms), e.g.  S(r) = s(r1) ⊕ s(r2) ⊕ s(r3) ⊕ s(r4)

Thursday, 25 March 2010
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Two ways of description of magnetic 
structures

14

1. Magnetic or Shubnikov groups. Historically the first way of 
description.  A group that leaves S(r) invariant under a subgroup 
of G⊗1’. Identifying those symmetry elements that leave S(r) 
invariant. 
Similar to the space groups (SG 230). Defining of all possible 
magnetic space groups MSG: a crystallographer dream. The 
MSG symbol looks similar to SG one, e.g.  Pn’ma

2. Representation analysis. How does S(r) transform 
under g ∈ G (space group)?

S(r) that is transformed under g ∈ G according to a single 
irreducible representation τi of G. Identifying/classifying 
all the functions S’(r) that appears under all symmetry 
operators of the space group G

SG

MSG

1        1       1       1        1        1       1 

dkν(g)

    g

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG

Thursday, 25 March 2010
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Introduction to representation theory

15
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Four group axioms 

16

Closure
For all Ga, Gb in G, the result of the operation Ga • Gb is also in G.
Associativity
For all Ga, Gb and Gc in G, the equation (Ga • Gb) • Gc = Ga • (Gb • Gc) holds.
Identity element
One element of the set E called identity must have the properties Ga • E = Ga and E • Ga = Ga
Inverse element
For each Ga in G, there exists an element Ga-1 in G such that Ga • Ga-1 = Ga-1 • Ga = E

A set G of elements is G1, G2, G3, G4, ... said to form a group if a low 
of multiplication of the elements is defined that satisfies certain 
conditions

Thursday, 25 March 2010
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Example: point group 32

17

Point group Hermann–Mauguin symbol 32  (D3 Schoenflies symbol)
e.g Quartz

or regular triangle

Thursday, 25 March 2010
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Multiplication table, isomorphism

18

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle
6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp.  

R1

xhex
yhex

uhex

1 31 32 2u 2y 2xhex

1

2 3

multiplication table

 axes in xy-plane

Thursday, 25 March 2010
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Multiplication table, isomorphism

19

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

R1

xhex
yhex

uhex

2x1 31 32 2u 2yhex

1 31 32 2u 2y 2xhex

Two groups are isomorphous if they have the same multiplication table
Quartz 32 D3

Ammonia molecule 3m C3v

Thursday, 25 March 2010
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Isomorphism. Abstract group. (slide skipped)

20

crystallographic point group C4

cyclic group of ordinary complex numbers

π/2 -π/2 π

π
π/2 
-π/2 

Thursday, 25 March 2010
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Linear vector spaces I. Vectors

21





sx1

sy1

sz1

sx2

sy2

sz2

...

...

...
sxN

syN

szN





positions (or magnetic 
moments) of N particles in 3D:

 Vector of dimension 3N:

position (or magnetic moment) 
of a particle in 3D:  S

 Vector of dimension 3:



sx

sy

sz





0 x

y
z
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Linear vector spaces II. Basis

22

A set r1 , r2, ... is said to form  a ‘linear 
vector space L’ if the sum of any two 
members produces another in the set and a 
multiplication by a complex number c also 
produces another  in the set. 

The ‘dimension’ (l) of L = greatest number 
of vectors which form a linearly 
independent set. 

In l-dimensional vector space L any set of o 
l  linearly independent  vectors are said to 
form a ‘basis’ ej. 

A set of vectors r1 , r2, ... rp is said to be 
‘linearly independent’ if the members are 
not related by an equation: 

p�

k=1

ckrk = 0 r =
l�

j=1

cjej

any vector r in l-dimensional vector space 
L can be written as:

rj + ri 

c ri 
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Linear vector spaces III. Basis. Examples

23





sx1

sy1

sz1

sx2

sy2

sz2

...

...

...
sxN

syN

szN





3N-dimensional space of  all 
possible displacements (or 
magnetic moments)
Function ψ=s(s11, s12, ...) is 
defined on N discreet points 

ψ =
N�

n=1

�

j=x,y,z

sjnejn

3-dimensional  space of 
particle displacement (or 
magnetic moment)

s =
�

j=x,y,z

sjej
 S

0 ex

ey

ez

6-dimensional function space 

ψ =
6�

j=1

cjej

e1 = x2

e2 = y2

e3 = z2

e4 = yz

e5 = zx

e6 = xy

Thursday, 25 March 2010
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Group representations (reps) I

24

Dimension of representation is equal to the 
dimension of the vector space

If we can find a set of square matrices (in general 
linear operators) T(ga) in a vector space L, which 
correspond to the elements ga of group G and have the 
same multiplication table, i.e. T(ga) T(gb)= T(ga gb) 
then this set of matrices is said to form a matrix 
‘representation’ of the group G in space L. 

multiplication table

n matrices lxl. n  is order of G

, T (g2) =





t211 t212 t213 ... t21l
t221 t222 t223 ... t22l
. . . .
. . . .
. . . .

t2l1 t2l2 t2l3 ... t2ll




, T (g3) = ...T (g1) =





t111 t112 t113 ... t11l
t121 t122 t123 ... t12l
. . . .
. . . .
. . . .

t1l1 t1l2 t1l3 ... t1ll
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Reps II. Point groups. Real 3D space 

25

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





Rotation matrices for point groups can be used to construct 3-
dimensional representations

3-dimensional  vector space of 
particle spin 

s =
�

j=x,y,z

sjej
 S

0 ex

ey

ez
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R1

Reps II. Point groups. Real 3D space 
Example Point group 32 

26

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





1. 3-dimensional representation

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

... etc

2. By taking the one dimensional space of vector ez alone we may generate 
very simple one-dimensional representation

Thursday, 25 March 2010
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representation with dim=6 for point group 32. 
Induced transformation of functions (skipped)

27

Let’s construct the rep-matrix for 
element R1=2π/3 rotation around z
T (Ga)ψ(r) = ψ�(r) = ψ(G−1

a r)

x̄ = x cos(−2π/3) + y sin(−2π/3) = −(
1
2
)x− (

3
4
)1/2y

T (R1)ψ1 = x̄2 = (
1
4
)x2 + (

3
4
)1/2xy + (

3
4
)y2

T (R1)ψ1 = x̄2 = (
1
4
)ψ1 + (

3
4
)1/2ψ6 + (

3
4
)ψ2

6-dimensional function space 

ψ1 = x2

ψ2 = y2

ψ3 = z2

ψ4 = yz

ψ5 = zx

ψ6 = xy

ψ =
6�

j=1

cjψj

Thursday, 25 March 2010
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Reps III.  Sites space. 
Example Point group 32 

28

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

3-dimensional  vector space of 
particle sites. 
Note, not the xyz, but labeled 
sites.

R1

a

b

c

b ⇒ a 
c ⇒ b
a ⇒ c

element R1 permutes
the sites 

a
b

c

d
e

f

origin



1 0 0

0 1 0

0 0 1









0 1 0

0 0 1

1 0 0









0 0 1

1 0 0

0 1 0









0 1 0

1 0 0

0 0 1









0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0





permutation (n=3) representation of group 32

11





0 1 0

0 0 1

1 0 0



 =





b

c

a









a

b

c





1

2

3
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Product of two representations of group 

29

Direct (tensor) matrix product 

gives a new rep with dimension m×n
and new vector space!





1 0 0

0 1 0

0 0 1









0 1 0

0 0 1

1 0 0









0 0 1

1 0 0

0 1 0









0 1 0

1 0 0

0 0 1









0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0





permutation (n=3) representation of group 32

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





Rotation matrices for point group 32
⊗

...

= 9 by 9  matrices: 9 dimensional representation

dimension m                  n
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Reducibility

30

A study of possible representations of even a simple group like D3 seems to be a scaring task.





sx1

sy1

sz1

sx2

sy2

sz2

sx3

sy3

sz3

sx4

sy4

sz4









0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1̄ 0 0 0 0 0 0 0
0 0 0 0 0 1̄ 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 b̄ 0 0 0 0 0 0 0 0 0 0
0 0 b̄ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1̄ 0
0 0 0 0 0 0 0 0 0 0 0 1̄
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 b̄ 0 0 0 0
0 0 0 0 0 0 0 0 b̄ 0 0 0





BUT!

re
pre

se
nta

tio
n is

 re
ducib

le
!

For a finite group all representations can be built up from a 
finite number of ‘distinct‘ irreducible representations  
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Reduction of any representation of group to 
block diagonal shape 

31

Representation (dimension=n) of a group 
G in linear space L is reducible to a block-
diagonal shape that is a direct sum of 
irreducible square matrices τ1, τ2, ...  For 
each element Ga the representation has the 
shape:

τ1 ⊕ τ2 ⊕ τ3 ⊕ ... =





τ1 0 0 ... 0
0 τ2 0 ... 0
0 0 τ3 ... 0
. . . .
. . . .
0 0 0









Sτ1

Sτ2

Sτ3

.

.





One can divide space L into the sum of 
subspaces Li each of which is invariant 
and irreducible. Sτi is a vector from Li 
and is transformed by matrices τi(Ga).

τi  is irreducible if: It is impossible to find 
a new basis such that non-diagonal 
elements of any τi in the new basis are zero 
for all elements Ga

l

l

l-kk

l-k

k
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Example: Irreducible representations (irreps) 
of point group 32 (D3)

32

1 31 32 2u 2y 2x

Thursday, 25 March 2010
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Characters of representations

33

1 31 32 2u 2y 2x

Character =  trace of rep matrix

Conjugated class = elements with the same character

χ(Ga) =
l�

i=1

Tii(Ga)

T1

T2

T3

Thursday, 25 March 2010
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 Reduction formulae. Projection.

34

Tij1 0 0 0

0

0

0

Tij1 0 0

0 Tij2 0

0 0 ...

  ∑⊕
rep  ⇒      irreps:

Tij =
�

⊕
nνT ν

ij

nν =
1

n(G)

�

g⊂G

χ(g)χ∗ν(g)

basis functions: projection operator P technique

ψi = P̂ϕ =
1

n(G)

�

g⊂G

T ∗νij (g)T (g)ϕ

Example: 
6-dimensional function space 
in point group D3 (32) defines 
6D-representation T ψ1 = x2

ψ2 = y2

ψ3 = z2

ψ4 = yz

ψ5 = zx

ψ6 = xy

ψ =
6�

j=1

cjψj

T1

T2

T3

T = 2T1⊕ 2T2

decomposed 
to

n(G) order of G

Thursday, 25 March 2010
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Symmetry in QM. Theorem.

35

           eigenvalues/functions
 Ĥψν = Eνψν      ⇒ Eν , ψν 1 , ψν 2 , ... ψν lν

Ĥ(r), r = (r1, r2, r3, ... rn) , vector space with n degree of freedoms (dimension n)
ψ(r) arbitrary wave function

if H=H’: G is called symmetry group of the Hamiltonian
potential energy V(r) = V(Gar)

T (Ga)HT
−1(Ga) = H

�

G - group of coordinate transformation, T(Ga) - induced transformations in ψ-space
T (Ga)ψ(r) = ψ�(r) = ψ(G−1

a r)

Tij1 0 0 0

0

0

0

Tij1 0 0

0 Tij2 0

0 0 ...

  ∑⊕
rep  ⇒      irreps:

Eν, ψν lν can be classified by irreps tijν 
dimension of tijν  ≡ degeneracy lν !

Tij =
�

⊕
nνT ν

ij
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Apr.14th,2009

a large enough barrier to prevent lost superparamagnetism at zero field. A

long relaxation time is required. Also, it should be stable in environment,

hard to be distorted by other clusters, metallic surfaces, or other source of

external field such as electromagnetic wave flux.

1/2-Spin Cluster

So far, the theory and experimental results for integer-spin clusters

are briefly introduced. There’re another large family in the magnetic big

molecules with only 1/2 spin. According to the double-well model discussed

above, the anisotropic barrier of 1/2 spin molecules should be low. More-

over, the gap splitting which prevents tunneling is high. Large-spin model

cannot be applied in such systems. Here, the V15 cluster is taken as an

example.

Figure 7. V15 and its Hysteresis[19]

The V15 cluster consists a central triangle between two hexagons. The

hexagons are coupled by antiferromagnetic interactions. The spins of the

hexagons are canceled, and only spins in the triangle is accounted in simpli-

fied hamiltonian.[22]

H = −J0

3�

i,j=1(i<j)

Si ·Sj +

�

ij=12,23,31

Dij(Si×Sj)+A

3�

i=1

Ii ·Si+gµBH

3�

i=1

Si

The first term describes the exchange interaction between the spins. Due

to long distance between the three spins (about 10 Å), direct exchange is

unlikely. Instead, they are coupled through interactions with the hexagon

layers, which are strongly coupled by antiferromagnetic interactions. The

second term results from anisotropy. Third term in the hamiltonian de-

scribes the interactions between the spins and nuclear spin of protons in

the environment, which reduces coherence time in the cluster. The last is

Zeeman splitting term. The ground state is spin 1/2.[20][22]

Magnetization of V15 cluster is equivalent to how this two-state system

8

Illustration. Single molecular “classical” magnet 
or molecular vibrations 

36

3N-dimensional space of  spins.
Function ψ=s(s11, s12, ...) is 
defined on N discreet points 

ψ =
3N�

i=1

siei

Âej =
3N�

i=1

Ajiei
def of potential energy operator
i runs on both α and R

The molecule has symmetry group G ⇒ A must be invariant under 
symmetry elements of G

!
  ∑⊕

rep  ⇒      irreps: Eν, ψν lν can be classified by irreps 
tijν Normal modes ψν lν can be 
found without diagonalization of 
H!

Tij =
�

⊕
nνT ν

ij

ei
� = T (Ga)ei =

�

j

Tij(Ga)ej
Representation of group G in
3N-dimensional space of  spins 

H =
�

R,R�,α,β

Aα,β(R,R�)Sα(R)Sβ(R�) (α,β = x, y, z)

H = (ψ · Âψ) =
�

i,j

sisjAij=
�

i,j

sisj(ei · Aej)
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Landau theory of phase transitions says that only one 
irrep (+c.c.) is becoming critical and is needed to 

describe the ordered structure

37

Only 3 independent spins are 
needed!

one irrep

Zeroth cell contains 14 spins  
=> 14*3=42 parameters.

 

Great simplification!

PHYSICAL REVIEW B 72, 134413 (2005) 
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Basic crystallography

38
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32 crystallographic point groups

39

A crystallographic point group is a point group that maps a 
point lattice onto itself. Consequently, rotations and 
rotoinversions are restricted to the well known 
crystallographic cases 1, 2, 3, 4, 6 and 

There are 18 abstract crystallographic point groups in three dimensions: the point groups in 
each of the following lines are isomorphous and belong to the same abstract group:

Hermann–Mauguin (left) and Schoenflies symbols (right).

Thursday, 25 March 2010



V. Pomjakushin,  Advanced magnetic structures ETHZ ‘10

3D Space* groups 

Groups of transformations/motions of three dimensional 
homogeneous discreet space into itself

Two kinds of 
transformations/motions =   1. rotations     (32 point groups)

                                             2. translations                              t = n1t1 + n2t2 + n3t3

* E.S. Fedorov (1890) A.Schoenflies (1890)
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14 Bravias* groups.

41
*A. Bravias (1848)

γ

a≠b≠c, β≠π/2 a=b≠c, β≠π/2, γ≠π/2

b
  

a
2/m

2/m
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230 space groups 

42

Product of 32 point crystallographic groups and 14 Bravias groups 
New symmetry elements

Screw axes or axes of screw rotations = 
rotation + translation. e.g. 21, 31,32, ...   

Glide-reflection planes = 
mirror reflection + translation by t/2, 
a, b, n   
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International Tables

zeroth block of SG

general position:
rotation matrix + translation

Hermann–Mauguin

Schoenflies symbol

{h|τh}
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irreps of SG

44

O. V. Kovalev, “Representations of the Crystallographic Space 
Groups:  irreducible representations, induced representations, and 
corepresentations” (Gordon and Breach Science Publishers, 1993), 
2nd ed.
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Bloch waves, irreps of Bravias Lattice group

45

Bloch wave ψ(r) is a solution of Hamiltonian having periodic symmetry of Bravias Lattice  
BL (tL), (e.g. ψ(r) can describe magnetic structure) 

Representation theory

T (t) = T (t1)n1T (t2)n2T (t3)n3Two properties 
of T-elements:

Space group G contains translation (t) BL group T.    
What are irreps and basis functions (b.f) of T ?

Born–von Karman

 ⇒= T (n1t1 + n2t2 + n3t3)

N=N1 N2 N3 irreps of T enumerated by 
ordinary numbers pj

exp

�
−2πi

�
p1n1

N1
+

p2n2

N2
+

p3n3

N3

��
, 0 ≤ pj ≤ Nj − 1

T (tj)Nj+1 = T (tj), j = 1, 2, 3

t = n1t1 + n2t2 + n3t3

1D matrixes

u(r + tL) = u(r)ψ(r) = u(r)eikr,
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Bloch waves = basis functions

46

N1 N2 N3 irreps of T enumerated by ordinary 
numbers pj

exp

�
−2πi

�
p1n1

N1
+

p2n2

N2
+

p3n3

N3

��
, 0 ≤ pj ≤ Nj − 1

Reciprocal lattice (b1, b2, b3) allows us conveniently sort out/enumerate all irreps of T∈G

b = p1b1 + p2b2 + p3b3

bjtk = 2πδjk

T (t)→ exp(−ikt)

wave vector or propagation vector k =
�

p1

N1
b1 +

p2

N2
b2 +

p3

N3
b3

�

Dk(t) = exp(−ikt)Matrices of irrep number k:

T (t)ψk(r) = exp(−ikt)ψk(r)
operator

b.f.

Most general basis function of the kth irrep  
of translation group  T∈G is Bloch function ψk(r) = uk(r)eikr

t = n1t1 + n2t2 + n3t3

uk(r + t) = uk(r)
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Symmetry group of propagation vector, 
star {k}

T (t)ψk(r) = exp(−ikt)ψk(r)

1. Recap- under pure translation

How does b.f.                                 transform under any element of SG T(g)?ψk(r) = uk(r)eikr

+T (n1t1 + n2t2 + n3t3)

gψk(r) = {h|τh + tn}ψk(r) = ψ
�
(r)

rotation

accompanying translation

2. under general element g

{h|τh + tn}ψk(r) = ψĥk(r)

Manyfold of all non-equivalent* hk = propagation 
vector star  {k} 

k=[0,u,v]b3
{k}

b2

Little group Gk∈G
leave k invariant

*non-equivalent hk ≠  k + b

 hk = or ≠  k + b

To find ψ’ consider pure translation again
T (t)ψ

�
(r) = ...some math... = exp(−iĥkt)ψ

�
(r)
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Symmetry group of propagation vector, 
examples of star {k}

+T (n1t1 + n2t2 + n3t3)

Manyfold of all non-equivalent hk = propagation 
vector star  {k} 

k=[0,u,v]b3
{k}

b2

Little group Gk∈G
leave k invariant

Pnma D16
2h mmm Orthorhombic

No. 62 P 21/n 21/m 21/a Patterson symmetry Pmmm

Origin at 1̄ on 121 1

Asymmetric unit 0 ≤ x ≤ 1
2 ; 0 ≤ y ≤ 1

4 ; 0 ≤ z ≤ 1

Symmetry operations

(1) 1 (2) 2(0,0, 1
2 ) 1

4 ,0,z (3) 2(0, 1
2 ,0) 0,y,0 (4) 2( 1

2 ,0,0) x, 1
4 ,

1
4

(5) 1̄ 0,0,0 (6) a x,y, 1
4 (7) m x, 1

4 ,z (8) n(0, 1
2 ,

1
2 ) 1

4 ,y,z

298

International Tables for Crystallography (2006). Vol. A, Space group 62, pp. 298–299.

Copyright  2006 International Union of Crystallography

Pnma D16
2h mmm Orthorhombic

No. 62 P 21/n 21/m 21/a Patterson symmetry Pmmm

Origin at 1̄ on 121 1

Asymmetric unit 0 ≤ x ≤ 1
2 ; 0 ≤ y ≤ 1

4 ; 0 ≤ z ≤ 1

Symmetry operations

(1) 1 (2) 2(0,0, 1
2 ) 1

4 ,0,z (3) 2(0, 1
2 ,0) 0,y,0 (4) 2( 1

2 ,0,0) x, 1
4 ,

1
4

(5) 1̄ 0,0,0 (6) a x,y, 1
4 (7) m x, 1

4 ,z (8) n(0, 1
2 ,

1
2 ) 1

4 ,y,z

298

International Tables for Crystallography (2006). Vol. A, Space group 62, pp. 298–299.

Copyright  2006 International Union of Crystallography

label K

k=[0,0,0]b3
{k}

b2

label Г

●

Gk = G

Gk = ‘P1n1’

k=[1/2,0,0]
b2

{k}

b1

Gk = G

label X
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...

k19
k20
k22
k24
k21
k25

...

Kovalev

The k-vector types and Brillouin zones of 
the space groups

49

Special points:  Miller and Love, 
Kovalev, Lifshitz

propagation vector = a point on/inside Brillouine zone

D
k

Z

y
YSX

G

T
R

B

H

P

C

A E
U

kz

kx

Q

Brillouine zone of Pmmm (Г0)

A.P. Cracknell, B.L. Davis, S.C. Miller and W.F. Love (1979) 
(abbreviated as CDML) 
Kovalev  O.V (1986) (1993) Representations of the 
Crystallographic Space Groups (London: Gordon and Breach)
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1
2
b2

1
2
b3

Гcf face centered cubic. 
Brillouine zone, {k} 

50

CMDL Kovalev B1 , B2 , B3

B1

B2

B3

B1 , B2 , B3 edges of Bravias 
cell of reciprocal lattice 

b1 , b2 , b3 reciprocal lattice periods

−1
2
b1





b1

b2

b3



 =





−B1 + B2 + B3

B1−B2 + B3

B1 + B2−B3





k-vector star {k}
IPHS

Classification symbol, number, etc.
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Kovalev book (slide skipped)

51

Brillouine zone 
of  Pmmm (Г0)
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Kovalev book (slide skipped)

52

k-vector

Matrix is by table T85 for 
simple group or by P85 for 
double group, p.387 cross-ref

LIR τ1, τ2
double G LIR π1, π2

B-matrixes in App.3
SICR (coirreps) 
matrixes constructed 
with B-matrixes as 
explained on pp. 
26-28
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♕ Space group irreps ♕ 

53

Representation of SG for star 
{k} are characterized by irreps 
of little group Gk of any arm of 
propagation vector k.  

k=[1/2,0,0]
b2

{k}

b1

Gk = G

label X

Consider one irrep dkν  (lν × 
lν matrixes) with dim=lν with 
number ν

ψkν
λ = uν

kλ(r)eikr(λ = 1, ..., lν)

Its basis: lν functions

that are transformed by 
symmetry elements g by 
matrixes dkν(g) 





ψk1
λ

ψk2
λ
...
...
...

ψklν
λ





1                1             1           -1              -1              -1              -1 
dkν(g)

    gPnma k=[1/2,0,0], k20, X
irreps: two 2D τ1, τ2

Example (LIR)

!
Not yet defined. A linear 
combination of vectors of 
some linear vector space 
LVS

2xIT
Kovalev

2y 2z Ī nx my az
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Space group irreps, examples 
dimensions up to 6 (cf. 3 for point groups)

54

k=[1/2,0,0]
b2

{k}

b1

Gk = G

label X

Pnma k=[1/2,0,0], k20
irreps: two 2D τ1, τ2

1                1             1           -1              -1              -1              -1 
dkν(g)

    g

Example 3 
Higher dimensions: Ia3d (#230) k=[1,0,0]: 1(6D) ⊕ 3(2D)
                                                    k=[1/2,1/2,1/2]: 1(4D) ⊕ 2(2D)

1        1       1       1        1        1       1 

dkν(g)

    g
irreps: eight  1D τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8

Example 1

k=[0,0,0]b3
{k}

b2

label Г

●

Gk = G

Pnma k=[0,0,0], k19Example 2
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Constructing of vector space of magnetic 
structure and reducible magnetic representation

55

Space Group G: Pnma, no.62
propagation vector k=[µ,0,0]

has 4 1D irreducible representations

 New Journal of Physics 11, 043019 (2009)

Case study of magnetic structure of multiferroic TbMnO3

symmetry
irreps

linear space
reps of G in  LS
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k-vector group 

56

Group G: Pnma, no.62: 8 symmetry operators

Little group Gk, k=[0.45,0,0]=[q,0,0]

Little group of propagation vector Gk contains only the elements of G that do not change  k

rotation+
translation

E




100
010
001








0
0
0



 2x




100
01̄0
001̄








1
2
1
2
1
2



 my




100
01̄0
001








0
1
2
0



 mz




100
010
001̄








1
2
0
1
2
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vector space and representation for an atom in 
position (0,0,1/2) for k-vector group

57

Mn-position

a b c dposition number

k-group element

rotation+
translation

E




100
010
001








0
0
0



 2x




100
01̄0
001̄








1
2
1
2
1
2



 my




100
01̄0
001








0
1
2
0



 my




100
010
001̄








1
2
0
1
2





g1 g2 g3 g4

Permutation representation

a ⇒ b 
b ⇒ a
c ⇒ d
d ⇒ c

element g2 changes
atomic position:





0100
1000
0001
0010









a
b
c
d



 =





b
a
d
c




element g2 is represented

by 4x4 matrix

           -ap

a ⇒ b  (000)
b ⇒ a (-100)
c ⇒ d (000)
d ⇒ c (-100)

in addition, element g2 sometimes
moves the atom outside of the zerocell. 
We have to return the atom back with -ap:

ψkν(r) = uν
k(r)e2πikr

element g2 is represented
by 4x4 matrix





0100
b000
0001
00b0









a
b
c
d



 =





b
a
d
c





b = e2πi(kap)
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Classifying possible magnetic structures
Magnetic representation 

58

group element

Mn-position

Permutation representation

rotation+
translation

E




100
010
001








0
0
0



 2x




100
01̄0
001̄








1
2
1
2
1
2



 my




100
01̄0
001








0
1
2
0



 my




100
010
001̄








1
2
0
1
2





a b c dposition number

g1 g2 g3 g4

4x4 matrices (P)

Axial vector (spin) representation

element g2 is represented
by 3x3 matrix R(g2)×det(R)




100
01̄0
001̄





For instance:
rotational part of element g2: R(g2) changes

atomic spin direction:


Sx

Sy

Sz



 =




Sx

−Sy

−Sz





Permutation representation




1000
0100
0010
0001









0010
0001
1000
0100









0100
b000
0001
00b0









0001
00b0
0100
b000
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Classifying possible magnetic structures
Magnetic representation 

59

group element

Mn-position

Permutation representation

rotation+
translation

E




100
010
001








0
0
0



 2x




100
01̄0
001̄








1
2
1
2
1
2



 my




100
01̄0
001








0
1
2
0



 my




100
010
001̄








1
2
0
1
2





a b c dposition number

g1 g2 g3 g4

4x4 matrices (P)

Axial vector (spin) representation
3x3 matrices (A) R(g2)×det

(R) 


100
010
001








100
01̄0
001̄








1̄00
010
001̄








1̄00
01̄0
001
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Classifying possible magnetic structures
Magnetic representation 

60

group element

Permutation representation

Mn-position

a b c dposition number

g1 g2 g3 g4

4x4 matrices (P)

Axial vector (spin) representation
3x3 matrices (A) R(g2)×det

(R)

Magnetic representation

direct (tensor) product 
P⊗A

12x12 matrices 
e.g. for group 
element g2

⊗




100
01̄0
001̄



 =





0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1̄ 0 0 0 0 0 0 0
0 0 0 0 0 1̄ 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 b̄ 0 0 0 0 0 0 0 0 0 0
0 0 b̄ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1̄ 0
0 0 0 0 0 0 0 0 0 0 0 1̄
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 b̄ 0 0 0 0
0 0 0 0 0 0 0 0 b̄ 0 0 0









0100
b000
0001
00b0





S1 S2 S3 S4spin
 Vector 
spaces



a
b
c
d








Sx

Sy

Sz
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TmMnO3: Classifying possible magnetic structures
basis vectors/functions Sτ1, Sτ2, Sτ3, ... 

61

12D magnetic representation is reduced to 
four one-dimensional irreps

Pnma, k=[0.45,0,0] Mn in (4a)-position

a = eπikx

E 2x my mz

g1 g2 g3 g4

τ1 1 a 1 a
τ2 1 a −1 −a
τ3 1 −a 1 −a
τ4 1 −a −1 a

recap: irrep: 1D matrixes dτ(g) that define 
how basis functions b.f. should be changed/
transformed under action of abstract 
group elements gi. The permutations and 
spin rotations, or whatever meaning of gi  

is, are not yet here!

rep  ⇒      irreps:

Projection method: to find basis functions b.f. 
transforming according to a specific irrep τ 

3τ1 ⊕ 3τ2 ⊕ 3τ3 ⊕ 3τ4d =
�

⊕
nνdν =

nν =
1

n(G)

�

g⊂G

χ(g)χ∗ν(g)

Tm in (4c)-position (x,1/4,z)
1τ1 ⊕ 2τ2 ⊕ 2τ3 ⊕ 1τ4

Different 
decomposition!
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Axial basis construction. Projection method. 

62

Rαβh  rotation matrix of rotational part of group element {h|τh} 
dλµν matrix of irrep number ν
ap(g,j) returning translation after action of g on atom j
δh= det(Rαβh)

[...] the values, that must be fixed, define a start for the basis 
function construction. Choosing different start values for “[...]” 
one obtains either different linear independent b.f. or zero  

Start function.
3σM N-dimension column

3σM-dimension column in zeroth-cell. 
All components = 0, except the one 
for atom j and direction β

Basis functions.
3σMN-dimention 
column

3σM-dimention column in 
zeroth-cell.
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Verifying invariance of b.f. under irrep τ3   

63

12D magnetic representation is reduced to 
four one-dimensional irreps

3τ1 ⊕ 3τ2 ⊕ 3τ3 ⊕ 3τ4

Pnma, k=[0.45,0,0] Mn in (4a)-position

a = eπikx

E 2x my mz

g1 g2 g3 g4

τ1 1 a 1 a
τ2 1 a −1 −a
τ3 1 −a 1 −a
τ4 1 −a −1 a

recap: irrep: 1D matrixes dτ(g) that define 
how basis functions b.f. should be changed/
transformed under action of abstract 
group elements gi. The permutations and 
spin rotations, or whatever meaning of gi  

is, are not yet here!

Mn-position        1              2            3             4                
S�

τ3 = +1e1x − a∗e2x − 1e3x + a∗e4x

S��
τ3 = +1e1y + a∗e2y + 1e3y + a∗e4y

S���
τ3 = +1e1z + a∗e2z − 1e3z − a∗e4z

Projection method: to find basis functions b.f. transforming 
according to a specific irrep τ 

Example: ferromagnetic mode          . Element g2S��
τ3

action of g2  =(rotation 2x ; swap 1 ⇔ 2, 3 ⇔ 4,  phase 2πikx  for 2⇒1, 4⇒3)

rep  ⇒      irreps:

d =
�

⊕
nνdν =

d(g2)irrep τ3S��
τ3 = −a · S��

τ3 = +1e1y + a∗e2y + 1e3y + a∗e4y
Invariant!

a∗2 = e−2πikx

S��
τ3 → gswap

2 S��
τ3 = −a∗e1y − 1e2y − a∗e3y − 1e4y : cite space

S��
τ3 → g2x

2 S��
τ3 = −1e1y − a∗e2y − 1e3y − a∗e4y : spin space

S��
τ3 → gphase

2 S��
τ3 = −a∗e1y − a∗2e2y − a∗e3y − a∗2e4y : to 0th cell
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Classifying possible magnetic structures
Great simplification!

64

12D magnetic representation is reduced to 
four one-dimensional irreps
3τ1 ⊕ 3τ2 ⊕ 3τ3 ⊕ 3τ4

Pnma, k=[0.45,0,0] Mn in (4a)-position

a = eπikx

E 2x my mz

g1 g2 g3 g4

τ1 1 a 1 a
τ2 1 a −1 −a
τ3 1 −a 1 −a
τ4 1 −a −1 a

Mn-position        1              2            3             4                
S�

τ3 = +1e1x − a∗e2x − 1e3x + a∗e4x

S��
τ3 = +1e1y + a∗e2y + 1e3y + a∗e4y

S���
τ3 = +1e1z + a∗e2z − 1e3z − a∗e4z

Assuming that the phase transition goes according to one 
irreducible representation τ3 the spins of all four atoms 
are set only by 3 variables instead of 12! 

C1S
�
τ3 + C2S

��
τ3 + C3S

���
τ3

Thursday, 25 March 2010



V. Pomjakushin,  Advanced magnetic structures ETHZ ‘10

Refinement of the data for τ3 

65

S�
τ3 = +1e1x − a∗e2x − 1e3x + a∗e4x

S��
τ3 = +1e1y + a∗e2y + 1e3y + a∗e4y

S���
τ3 = +1e1z + a∗e2z − 1e3z − a∗e4z

k=[0.45,0,0]

40 60 80 100
-0.5

0.0

0.5

1.0

1.5

2.0

 

 

10
4  N

eu
tro

n 
co

un
ts

2Θ, (deg)

TmMnO3 , 35K

DMC, λ=4.5!
at T=35K
C1=2.11(1)μB, C2=0, 

C3=0.67(2) eiφ μB

φ can be fixed to any value. 
Experiment data are insensitive 
to φ.

S(r) =
1
2
(C1S

�
τ3 + C2S

��
τ3 + C3S

���
τ3)e

2πikr + c.c.

Thursday, 25 March 2010



V. Pomjakushin,  Advanced magnetic structures ETHZ ‘10

Visualization of the magnetic structure 

66

1

a cycloid structure propagating along x-direction

S(r) = Re [(C1S
�
τ3 + |C3| exp(iϕ)S���

τ3) exp(2πikr)]

k=[0.46,0,0]

1

4

1

3
4

2

k=[0.46,0,0]

1z

x
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Magnetic symmetry. 1651 3D-Shubnikov (Sh 
or Ш) space groups

67

230 space groups (SG)
an additional element: 
spin inversion operator R or color change. 
R-group (1,R)

R( ♖) = ♜

R(☺)=☹
R( ↑) = ↓

⇒

additional elements: 
‘anti-elements’ g’=(g·R),  g⋳G 

y

my=2yĪ

S = ”[v × r]”

y

my’

 Magnetic Groups = (subgroup of) 
space group G ⊗ R-group

230 (gray) paramagnetic groups Shp

1,1’ ⋳ Shp  ⇒ S=0 , e.g. Pnma1’

230 Single-color magnetic groups
no antielements

1191 black/whitе magnetic groups that contain 
additional ‘anti-elements’ g’=(g·R) except g=1 
(identity). No primed 1’ 

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova, 
Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)
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Isomorphism between Sh-groups and 1D 
irreps of SG. Niggli-Indenbom theorem

68

Consider 1D real irrep of space 
group

1, -1,  1,  ...
g1, g2, g3, ...

1D real irrep  and Sh group are isomorphous 
Niggli-Indenbom theorem formally we can

g1, g2’, g3,  ...

magnetic Sh space groups

same multiplication table

identity representations
1, 1, 1, 1, ...

230 Single-color magnetic groups
no antielements

1191 black/whitе magnetic subgroups that contain 
additional ‘antielements’ g’=(g·R) except g=1 
(identity). No primed 1’ 

non-identity 1D irreps
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Examples of Sh groups

69

recap: 
for ‘anti-elements’ g’=(g·R),  g⋳G 
g can be a pure translation t, so t’ 
gives centering/doubling

FIGURES 1.1 MAGNETIC SPACE GROUP LATTICES - 2

C 2a,a+b,c a-b,a+b,c ½(a+b),b,c 2c ½(a+b),b,2c P a+b,b,c a,b,c
P  = P  = P        C = C       C  = C   C  = C  = Cá á á 
     t = a = (1,0,0)       t = c = (0,0,1)            t = ½(a+b) = (½,½,0) 

Orthorhombic System

a,b,c 2a 2a,b,c 2b a,2b,c
P = P                  P  = P              P  = P 2c a,b,2c

P  = P     

á á á 
      t = a = (1,0,0)    t = b = (0,1,0)     t = c = (0,0,1)

C 2a,a+b,c F 2a,a+b,a+c A a,2b,b+c
P  = P P  = P  P  = Pá a+b,b+c,a+c á 
t = a = (1,0,0)      = P t = b = (0,1,0)á 

t = a = (1,0,0)

Ferromagnetic 
groups: point 
symmetry allows 
FM orientation of 
spins

!
k≠[0,0,0] structures for Pnma 
correspond to either complex 
irreps or/and muti-
dimensional irreps and 
cannot be derived from  
Pnma
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Disadvantages of Sh-group description 
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Reason 1: Sh group is not necessarily made from the 
parent G. Thus, it is not an ultimate practical tool for 
obtaining all allowed spin configurations

Sh groups do not give a constructive way of 
deducing all symmetry allowed magnetic modes. 

Example 1: there are no cubic ferromagnetic Sh-groups. 
“problems” with cubic ferromagnets Fe, EuO, EuS, ...

Reason 2: 3D Sh not describe modulated structures. 
No rotations on non-crystallographic angle - no helix. 
Linear orthogonal transformations preserve the spin 
size - no SDW

Sh groups: Pnnm Pn’nm, Pnnm’, Pn’n’m,  Pnn’m’, Pn’n’m’
No one describes CrCl2 magnetic structure
Cr-atoms in 2(a)-position
k=[0 1/2 1/2]

Example 2:
CrCl2 space group: Pnnm. 

One can still find less symmetric Sh group
Magnetic symbol
{Pnnm; 2(a) Sh72=PsĪ; 
S1=(uvw), S2=(-u-v-w)} 
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The End

71
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further complications

72

1. several irreps involved, e.g. exchange multiplet
2. multi-k structures
3. spin domains, k-domains, chiral domains for 

single crystal data
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Literature on (magnetic) neutron scattering

Neutron scattering (general)

Albert Furrer,  Joel Mesot , and Thierry Strassle, “Neutron scattering in 
condensed matter physics”. World Scientific, 2008 

S.W. Lovesey, “Theory of Neutron Scattering from Condensed Matter”, 
Oxford Univ. Press, 1987. Volume 2 for magnetic scattering. Definitive 
formal treatment

G.L. Squires, “Intro. to the Theory of Thermal Neutron Scattering”, C.U.P., 
1978, Republished by Dover, 1996. Simpler version of Lovesey. 
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