Advanced magnetic structures: classification and determination by neutron diffraction

Vladimir Pomjakushin
Laboratory for Neutron Scattering, ETHZ and PSI

Lecture course 402-0543-00L:
Neutron Scattering in Condensed Matter Physics
24.03. I 0 Lecture 12: Advanced magnetic structures

Purpose of this lecture

I.You need to acquaint yourself with the classification of the magnetic structures that are used in the literature, such as Shubnikov (or black-white) groups and irreducible representation notations.
2. You need to be able to construct all possible symmetry adapted magnetic structures for a given crystal structure and a propagation vector (a point on the Brilloine zone) using representation (rep) analysis of magnetic structures. This way of description/construction is related to the Landau theory of second order phase transitions and applies not only to magnetic ordering, but generally to any type of phase transitions. For example, using the rep-analysis one can analyze displacive crystal structure transitions.

Overview of Lecture

- Long range magnetic order seen by ND. Two ways of magnetic structure classification: "Shubnikov" vs. "reps analysis" -- introduction 9
- Point groups. Intro to group representations (reps) 12
- \quad Irreducible representations (irreps) 8
- Basic crystallography. Symmetry elements. Space groups (SG) 5
- Irreps of SG. Reciprocal lattice. Propagation k-vector of $<$ magnetic $>$ structure/Brillouine zone points 8
- Case study of magnetic structure determination using k-vector reps formalism for classifying symmetry adopted magnetic modes 12
- Magnetic Shubnikov groups. Comparison of two ways of magnetic structure classification/determination:"Shubnikov" vs. "reps analysis" 4

Literature on (magnetic) symmetry and magnetic neutron diffraction

> All you need to know about magnetic neutron diffraction. Magnetic symmetry, representation analysis

Yu.A. Izyumov,V. E. Naish and R. P. Ozerov, "Neutron diffraction of magnetic materials", New York [etc.]: Consultants Bureau, I99I.
and
Groups, representation analysis, point groups and simple applications, e.g. molecular vibrations, crystal field theory.

[^0]
Notes, papers, talks and computer programs, etc. on magnetic structures, (magnetic) symmetry and magnetic neutron diffraction

- Andrew S. Wills (UCL) http://www.chem.ucl.ac.uk/people/wills/ magnetic_structures/magnetic_structures.html
- Juan Rodríguez-Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/ program BasIreps
- Wiesława Sikora et al, http://www.ftj.agh.edu.pl/~sikora/modyopis.htm
- Bilbao Crystallographic Server is a web site with crystallographic programs and databases accessible via Internet billbao crystallographic server http://www.cryst.ehu.es/
V. Pomjakushin , "Determination of the magnetic structure from powder neutron diffraction." Lecture given at the "Workshop on X-rays, Synchrotron Radiation and Neutron Diffraction Techniques, June I8-22, 2008, PSI, http://sinq.web.psi.ch/sinq/instr/hrpt/praktikum

Magnetic structure seen by ND

Magnetic interactions are described by QM Hamiltonian with quantum spin operators

$$
\hat{H}=-\sum_{i, j} J_{i j} \hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{s}}_{j}+\sum_{i} D_{i} \hat{s}_{z}^{2}+\ldots
$$

In a diffraction experiment (coherent Bragg scattering), however, the problem is reduced and we observe only the following correlators. <> averaging over all initial states of the scatterer. $\mathrm{i}, \mathrm{j}=\mathrm{I} . . \mathrm{N}$

$$
\sim \sum\left\langle\hat{\mathbf{s}}_{i}\right\rangle \cdot\left\langle\hat{\mathbf{S}}_{j}\right\rangle \quad=\text { Fourier sum of classical axial vectors }
$$

Magnetic structure that we observe is an ordered set of classical axial vectors $\mathbf{S}_{i}=\left\langle\hat{\mathbf{S}}_{i}\right\rangle$ that can be directed at any angle with respect to crystal axes and field.
In the symmetry analysis we deal with the classical spins (no coreprs).

$$
\mathbf{s}_{i}=\left\langle\hat{\mathbf{s}}_{i}\right\rangle=s_{x} \mathbf{e}_{\boldsymbol{x}}+s_{y} \mathbf{e}_{\boldsymbol{y}}+s_{z} \mathbf{e}_{\boldsymbol{z}}
$$

Magnetic structure

Examples

Examples of magnetic structures. Propagation vector $k \neq 0$

$\begin{gathered}\text { Magnetic moment } \\ \text { is a real quantity }\end{gathered} \quad \mathbf{S}\left(\mathbf{r}_{j}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{+2 \pi i \mathbf{r}_{j} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-2 \pi i \mathbf{r}_{j} \mathbf{k}}\right)$
is a real quantity 2
Amplitude is complex (one can not avoid this)
$\mathbf{S}_{0}=\mathbf{S}_{x} e^{i \phi_{x}}+\mathbf{S}_{y} e^{i \phi_{y}}+\mathbf{S}_{z} e^{i \phi_{z}}$
$\mathbf{k}=[\mathrm{I} / 2, \mathrm{I} / 2]$ AFM

ϕ
ϕ
ϕ
\vdots
ϕ
ϕ

$$
\mathbf{S}_{01}=\mathbf{S}_{y}
$$

modulated (in)commensurate

$$
\begin{aligned}
\mathbf{S}_{01}=\mathbf{S}_{x}+\mathbf{S}_{y} e^{\frac{i \pi}{2}} & =\mathbf{S}_{x}+i \mathbf{S}_{y} \\
\mathbf{S}_{01} & =\mathbf{S}_{x}+i \mathbf{S}_{y}+\mathbf{S}_{z} e^{i \phi_{z}}
\end{aligned}
$$

0th cell

Interference between nuclear and magnetic scattering (slide skipped)

General note:

When the magnetic unit cell is larger than the nuclear one (propagation vector $\mathrm{k} \neq 0$) the interference between nuclear and magnetic scattering is absent in any (un)polarized neutron diffraction experiment.

Reason: Magnetic Bragg peaks appear at different from nuclear peaks positions in reciprocal space

Only amplitudes can be determined (slide skipped)

Spin/atom magnetic moment
$\phi=7 \pi / 8$

$\phi=\pi / 2$

The phase Φ is not accessible and the magnetic moments on the atoms cannot be determined.

Example of complex magnetic structure

Antiferromagnetic three sub-lattice ordering in $\mathrm{Tb}_{14} \mathrm{Au}_{51}$

P6/m

PHYSICAL REVIEW B 72, 134413 (2005)

Some legitimate questions

I. How do we describe/classify/predict magnetic symmetries and structures?
2. How do we construct all symmetry allowed magnetic structures for a given crystal structure?

Description vs. determination/constructiveness

Two ways of description of magnetic structures

Magnetic structure is an axial vector function $\mathbf{S}(\mathbf{r})$ defined on the discreet system of points (atoms), e.g. $\mathbf{S}(\mathbf{r})=\mathbf{s}\left(\mathbf{r}_{1}\right) \oplus \mathbf{s}\left(\mathbf{r}_{2}\right) \oplus \mathbf{s}\left(\mathbf{r}_{3}\right) \oplus \mathbf{s}\left(\mathbf{r}_{4}\right)$

1. $\mathbf{g S}(\mathbf{r})=\mathbf{S}(\mathbf{r})$ to itself, where $\mathrm{g} \in$ subgroup of $\mathrm{SG} \otimes 1^{\prime}, 1^{\prime}=$ spin reversal, SG (space group)
or
2. $\mathbf{g S}(\mathbf{r})=\mathbf{S}^{\prime}(\mathbf{r})$ to different function defined on the same system of points, $g \in S G$
$\mathbf{r})=\mathbf{S}^{\prime}(\mathbf{r})$ to different function defined on the
e by lensnolipoinShubatikg groups. Historically the first way of
description. A group that leaves $\mathbf{S}(\mathbf{r})$ invariant under a subgroup of $\mathrm{G} \otimes 1^{\prime}$. Identifying those symmetry elements that leave $\mathrm{S}(\mathrm{r})$ invariant.
Similar to the space groups (SG 230). Defining of all possible magnetic space groups MSG: a crystallographer dream. The MSG symbol looks similar to SG one, e.g. Pn'ma
3. Representation analysis. How does $\mathbf{S}(\mathbf{r})$ transform under $\mathrm{g} \in \mathrm{G}$ (space group)?
$\mathbf{S}(\mathbf{r})$ that is transformed under $\mathrm{g} \in \mathrm{G}$ according to a single irreducible representation τ_{i} of G. Identifying/classifying all the functions $\mathbf{S}^{\prime}(\mathbf{r})$ that appears under all symmetry operators of the space group G

$d^{k v}(g)$	$\tau \cdot 2$	1	1	1	-1	-1	-1	-1
	$\hat{\tau} 3$	1	-1	-1	1	1	-1	-1
	$\hat{\tau} 5$	-1	1	-1	1	-1	1	-1
	$\hat{\tau} 7$	-1	-1	1	1	-1	-1	1
	$\hat{\tau} 4$		$\hat{\tau} 3 \times \hat{\tau} 2, \hat{\tau} 6=\hat{\tau} 5 \times \hat{\tau} 2, \hat{\tau} 8=\hat{\tau} 7 \times \hat{\tau} 2$					

Introduction to representation theory

Four group axioms

A set G of elements is $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4}, \ldots$ said to form a group if a low of multiplication of the elements is defined that satisfies certain conditions

Closure

For all $\mathrm{G}_{a}, \mathrm{G}_{b}$ in G, the result of the operation $\mathrm{G}_{a} \cdot \mathrm{G}_{b}$ is also in G.

Associativity

For all G_{a}, G_{b} and G_{c} in G, the equation $\left(\mathrm{G}_{a} \cdot \mathrm{G}_{b}\right) \cdot \mathrm{G}_{c}=\mathrm{G}_{a} \bullet\left(\mathrm{G}_{b} \cdot \mathrm{G}_{c}\right)$ holds.

Identity element

One element of the set E called identity must have the properties $\mathrm{G}_{a} \cdot \mathrm{E}=\mathrm{G}_{a}$ and $\mathrm{E} \cdot \mathrm{G}_{a}=\mathrm{G}_{a}$ Inverse element
For each G_{a} in G, there exists an element G_{a}^{-1} in G such that $\mathrm{G}_{a} \cdot \mathrm{G}_{a}{ }^{-1}=\mathrm{G}_{a}{ }^{-1} \cdot \mathrm{G}_{a}=\mathrm{E}$

Example: point group 32

Point group Hermann-Mauguin symbol 32 (D_{3} Schoenflies symbol) e.g Quartz

or regular triangle

Multiplication table, isomorphism

Point group 32 (D_{3} Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp.

Multiplication table, isomorphism

Isomorphism. Abstract group. (slide skipped)

cyclic group of ordinary complex numbers

$i^{k} \quad k=0,-1,2,3$.

Linear vecłor spaces I. Vecłors

Vector of dimension 3:
position (or magnetic moment) of a particle in 3D:

$$
\left(\begin{array}{l}
s_{x} \\
s_{y} \\
s_{z}
\end{array}\right)
$$

Vector of dimension 3 N :
positions (or magnetic moments) of \mathbf{N} particles in 3D: $\left(s_{x}\right.$

$$
\left(\begin{array}{c}
s_{x 1} \\
s_{y 1} \\
s_{z 1} \\
s_{x 2} \\
s_{y 2} \\
s_{z 2} \\
\ldots \\
\ldots \\
\ldots \\
s_{x N} \\
s_{y N} \\
s_{z N}
\end{array}\right)
$$

Linear vector spaces II. Basis

A set $\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots$ is said to form a 'linear
$\mathrm{r}_{\mathrm{j}}+\mathrm{r}_{\mathrm{i}}$ vector space L ' if the sum of any two members produces another in the set and a multiplication by a complex number c also produces another in the set.

A set of vectors $r_{1}, r_{2}, \ldots r_{p}$ is said to be 'linearly independent' if the members are not related by an equation:

$$
\sum_{k=1}^{p} c_{k} \mathbf{r}_{k}=0
$$

any vector \mathbf{r} in l-dimensional vector space
L can be written as:

$$
\mathbf{r}=\sum_{j=1}^{l} c_{j} \mathbf{e}_{j}
$$

The 'dimension' (l) of $L=$ greatest number of vectors which form a linearly independent set.

In l-dimensional vector space L any set of o l linearly independent vectors are said to form a 'basis' \mathbf{e}_{j}.

Linear vector spaces III. Basis. Examples

3-dimensional space of particle displacement (or magnetic moment)

$$
\mathbf{S}=\sum_{j=x, y, z} s_{j} \mathbf{e}_{j}
$$

3 N -dimensional space of all possible displacements (or magnetic moments)
Function $\psi=\mathbf{s}\left(\mathrm{s}_{11}, \mathrm{~s}_{12}, . ..\right)$ is defined on N discreet points

$$
\psi=\sum_{n=1}^{N} \sum_{j=x, y, z} s_{j n} \mathbf{e}_{j n}
$$

$$
\left(\begin{array}{c}
s_{x 1} \\
s_{y 1} \\
s_{z 1} \\
s_{x 2} \\
s_{y 2} \\
s_{z 2} \\
\ldots \\
\ldots \\
\ldots \\
s_{x N} \\
s_{y N} \\
s_{z N}
\end{array}\right)
$$

6-dimensional function space
$e_{1}=x^{2}$
$e_{2}=y^{2}$
$\psi=\sum_{j=1}^{6} c_{j} \mathbf{e}_{j}$
$e_{3}=z^{2}$
$e_{4}=y z$
$e_{5}=z x$
$e_{6}=x y$

Group representations (reps) I

If we can find a set of square matrices (in general linear operators) $T\left(g_{a}\right)$ in a vector space L, which correspond to the elements g_{a} of group G and have the same multiplication table, i.e. $T\left(g_{a}\right) T\left(g_{b}\right)=T\left(g_{a} g_{b}\right)$ then this set of matrices is said to form a matrix 'representation' of the group G in space L.
n matrices $l \mathrm{x} l . n$ is order of G
multiplication table

	g_{1}	g_{2}	\cdots	g_{n}
g_{1}	g_{1}^{2}	$g_{1} g_{2}$	\ldots	$g_{1} g_{n}$
g_{2}	$g_{2} g_{1}$	g_{2}^{2}	\cdots	$g_{2} g_{n}$
\cdot	\cdot	\cdot		\cdot
\cdot	\cdot	\cdot		\cdot
\cdot	\cdot	\cdot		\cdot
g_{n}	$g_{n} g_{1}$	$g_{n} g_{2}$		g_{n}^{3}

$T\left(g_{1}\right)=\left(\begin{array}{ccccc}t_{11}^{1} & t_{12}^{1} & t_{13}^{1} & \ldots & t_{1 l}^{1} \\ t_{21}^{1} & t_{22}^{1} & t_{23}^{1} & \ldots & t_{2 l}^{1} \\ \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & \cdot & & \cdot \\ t_{l 1}^{1} & t_{l 2}^{1} & t_{l 3}^{1} & \ldots & t_{l l}^{1}\end{array}\right), T\left(g_{2}\right)=\left(\begin{array}{ccccc}t_{11}^{2} & t_{12}^{2} & t_{13}^{2} & \ldots & t_{1 l}^{2} \\ t_{21}^{2} & t_{22}^{2} & t_{23}^{2} & \ldots & t_{2 l}^{2} \\ \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & \cdot & & \cdot \\ \cdot & \cdot & \cdot & & \cdot \\ t_{l 1}^{2} & t_{l 2}^{2} & t_{l 3}^{2} & \ldots & t_{l l}^{2}\end{array}\right), T\left(g_{3}\right)=\ldots$
Dimension of representation is equal to the dimension of the vector space

Reps II. Point groups. Real 3D space

Rotation matrices for point groups can be used to construct 3dimensional representations

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Reps II. Point groups. Real 3D space Example Point group 32

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plane

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

1. 3-dimensional representation
$T\left(R_{1}\right)=\left(\begin{array}{rrr}-\frac{1}{2} & -\sqrt{ } \frac{3}{4} & 0 \\ \sqrt{ } \frac{3}{4} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right) \mathrm{T}\left(R_{2}\right)=\left(\begin{array}{rrr}-\frac{1}{2} & \sqrt{ } \frac{3}{4} & 0 \\ -\sqrt{ } \frac{3}{4} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right) \mathrm{T}\left(R_{3}\right)=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right) \ldots$ etc
2. By taking the one dimensional space of vector \mathbf{e}_{z} alone we may generate very simple one-dimensional representation

$$
\begin{aligned}
& \mathrm{T}^{(2)}\left(\mathrm{R}_{1}\right)=1, \mathrm{~T}^{(2)}\left(\mathrm{R}_{2}\right)=1, \mathrm{~T}^{(2)}\left(\mathrm{R}_{3}\right)=-1, \mathrm{~T}^{(2)}\left(\mathrm{R}_{4}\right)=-1 \\
& \mathrm{~T}^{(2)}\left(\mathrm{R}_{5}\right)=-1, \mathrm{~T}^{(2)}(\mathrm{E})=1
\end{aligned}
$$

representation with dim=6 for point group 32. Induced transformation of functions (skipped)
6-dimensional function space

$$
\psi=\sum_{j=1}^{6} c_{j} \psi_{j}=x^{2} \quad \begin{aligned}
& \psi_{2}=y^{2} \\
& \psi_{3}=z^{2} \\
& \psi_{4}=y z \\
& \psi_{5}=z x \\
& \psi_{6}=x y
\end{aligned}
$$

Let's construct the rep-matrix for

$$
T\left(R_{1}\right)=\left(\begin{array}{rrrrrr}
\frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & \sqrt{ } \frac{3}{4} \\
\frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 & -\sqrt{ } \frac{3}{4} \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} & \sqrt{ } \frac{3}{4} & 0 \\
0 & 0 & 0 & -\sqrt{ } \frac{3}{4} & -\frac{1}{2} & 0 \\
-\sqrt{ } \frac{3}{4} & \sqrt{ } \frac{3}{4} & 0 & 0 & 0 & -\frac{1}{2}
\end{array}\right)
$$

Reps III. Sites space. Example Point group 32

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plar
3-dimensional vector space of particle sites.
Note, not the xyz, but labeled sites.
element R_{1} permutes
the sites

$\begin{aligned} & \mathrm{b} \Rightarrow \mathrm{a} \\ & \mathrm{c} \Rightarrow \mathrm{b} \\ & \mathrm{a} \Rightarrow \mathrm{c}\end{aligned} \quad\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}b \\ c \\ a\end{array}\right)$
permutation $(\mathrm{n}=3)$ representation of group 32

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Product of two representations of group

dimension m n
$T_{(\alpha \times \beta)}^{(\alpha \times)^{\prime}}\left(\mathbf{G}_{a}\right)=T_{i k}^{(\alpha)}\left(\mathbf{G}_{a}\right) T^{(\beta)}(\mathbf{G})$, gives a new rep with dimension $\mathrm{m} \times \mathrm{n}$ and new vector space!
permutation $(n=3)$ representation of group 32

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

\otimes
$\varphi_{z}\left(\begin{array}{ccc}\cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right) \quad \ldots$

$=9$ by 9 matrices: 9 dimensional representation matrices for point group 32

Reducibility

A study of possible representations of even a simple group like D_{3} seems to be a scaring task.

BUT!

For a finite group all representations can be built up from a finite number of 'distinct' irreducible representations

Reduction of any representation of group to block diagonal shape

Representation (dimension=n) of a group G in linear space L is reducible to a blockdiagonal shape that is a direct sum of irreducible square matrices $\tau_{1}, \tau_{2}, \ldots$ For each element G_{a} the representation has the shape:

τ_{i} is irreducible if: It is impossible to find a new basis such that non-diagonal elements of any τ_{i} in the new basis are zero for all elements G_{a}

One can divide space L into the sum of subspaces L_{i} each of which is invariant and irreducible. $S_{\mathrm{\tau i}}$ is a vector from L_{i} and is transformed by matrices $\tau_{\mathrm{i}}\left(G_{a}\right)$.

Example: Irreducible representations (irreps) of point group $32\left(D_{3}\right)$

Characters of representations

Character $=$ trace of rep matrix $\quad \chi\left(G_{a}\right)=\sum_{i=1}^{l} T_{i i}\left(G_{a}\right)$

Conjugated class $=$ elements with the same character

Group element G_{a}	E	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}
Representation						

Reduction formulae. Projection.

$$
\begin{aligned}
& \text { rep } \Rightarrow \Sigma_{\oplus} \text { irreps: } \\
& T_{i j}=\sum_{\oplus} n_{\nu} T_{i j}^{\nu} \quad \begin{array}{l|c|c|c}
T_{i j}{ }^{1} & 0 & 0 & 0 \\
\hline 0 & T_{i j}{ }^{1} & 0 & 0 \\
\hline 0 & 0 & T_{i j}{ }^{2} & 0 \\
\hline & 0 & 0 & 0 \\
\hline
\end{array} \\
& n_{\nu}=\frac{1}{n(G)} \sum_{g \subset G} \chi(g) \chi^{* \nu}(g) \\
& n(G) \text { order of } G
\end{aligned}
$$

basis functions: projection operator P technique

$$
\psi_{i}=\hat{P} \varphi=\frac{1}{n(G)} \sum_{g \subset G} T_{i j}^{* \nu}(g) T(g) \varphi
$$

Example:

$$
\psi=\sum_{j=1}^{6} c_{j} \psi_{j}
$$

$$
\text { in point group } D_{3}(32) \text { defines }
$$

$$
\text { 6D-representation } T
$$

$$
\psi_{1}=x^{2}
$$

$$
\psi_{2}=y^{2}
$$

decomposed
to

$$
\psi_{3}=z^{2}
$$

$$
\mathrm{T}=2 \mathrm{~T}^{1} \oplus 2 \mathrm{~T}^{2}
$$

$$
\psi_{4}=y z
$$

$$
\psi_{5}=z x
$$

$$
\psi_{6}=x y
$$

Character Table

$\mathrm{D}_{3}(32)$	$\#$	1	3	2	functions
Mult.	-	1	2	3	\cdot
$\mathrm{~A}_{1}$	$\mathrm{~T}^{1}$	1	1	1	1
$\mathrm{~A}_{2}$	$\mathrm{~T}^{2}$	1	1	1	-1

Symmetry in QM. Theorem.

$\hat{H}(\boldsymbol{r}), \boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}, \ldots r_{n}\right)$, vector space with n degree of freedoms (dimension n) $\psi(r)$ arbitrary wave function
G - group of coordinate transformation, $\mathrm{T}\left(\mathrm{G}_{\mathrm{a}}\right)$ - induced transformations in ψ-space $T\left(G_{a}\right) \psi(\mathbf{r})=\psi^{\prime}(\mathbf{r})=\psi\left(G_{a}^{-1} \mathbf{r}\right)$
$T\left(G_{a}\right) H T^{-1}\left(G_{a}\right)=H^{\prime} \quad$ if $H=H^{\prime}: G$ is called symmetry group of the Hamiltonian potential energy $V(\mathbf{r})=V\left(\mathrm{G}_{\mathbf{a}} \mathbf{r}\right)$

> eigenvalues/functions

$$
\hat{H} \psi_{v}=E_{v} \psi_{v} \quad \Rightarrow E_{v}, \psi_{v}^{l}, \psi_{v}^{2}, \ldots \psi_{v}{ }_{v}
$$

$$
\begin{aligned}
& E_{v,} \psi_{v}^{l v} \text { can be classified by irreps } t_{i j^{v}} \\
& \text { dimension of } t_{i j}{ }^{v} \equiv \text { degeneracy } l_{v}
\end{aligned}
$$

$$
\text { rep } \Rightarrow \Sigma_{\oplus} \text { irreps: } T_{i j}=\sum_{\oplus} n_{\nu} T_{i j}^{\nu}
$$

$T_{i j}{ }^{1}$	0	0	0
0	$T_{i j}{ }^{1}$	0	0
0	0	$T_{i j}{ }^{2}$	0
0	0	0	\ldots

Illustration. Single molecular "classical" magnet or molecular vibrations

$$
H=\sum_{\mathbf{R}, \mathbf{R}^{\prime}, \alpha, \beta} A_{\alpha, \beta}\left(\mathbf{R}, \mathbf{R}^{\prime}\right) S_{\alpha}(\mathbf{R}) S_{\beta}\left(\mathbf{R}^{\prime}\right) \quad(\alpha, \beta=x, y, z)
$$

$$
\hat{A} \mathbf{e}_{j}=\sum_{i=1}^{3 N} A_{j i} \mathbf{e}_{i} \quad \begin{aligned}
& \text { def of potential energy operator } \\
& i \text { runs on both } \alpha \text { and } \mathbf{R}
\end{aligned}
$$

The molecule has symmetry group $G \Rightarrow \begin{aligned} & A \text { must be invariant under } \\ & \text { symmetry elements of } G\end{aligned}$
Representation of group G in 3 N -dimensional space of spins

$$
\mathbf{e}_{i}^{\prime}=T\left(G_{a}\right) \mathbf{e}_{i}=\sum_{j} T_{i j}\left(G_{a}\right) \mathbf{e}_{j}
$$

3 N -dimensional space of spins. Function $\psi=\mathbf{s}\left(\mathrm{s}_{11}, \mathrm{~s}_{12}, . ..\right)$ is defined on N discreet points

$$
H=(\psi \cdot \hat{A} \psi)=\sum_{i, j} s_{i} s_{j}\left(\mathbf{e}_{i} \cdot A \mathbf{e}_{j}\right)=\sum_{i, j} s_{i} s_{j} A_{i j}
$$

$$
\psi=\sum_{i=1}^{3 N} s_{i} \mathbf{e}_{i}
$$

$$
\begin{gathered}
\text { rep } \Rightarrow{ }_{\Sigma_{\oplus}}{ }^{\text {irreps: }} \text { ! } \\
T_{i j}=\sum_{\oplus} n_{\nu} T_{i j}^{\nu}
\end{gathered}
$$

$E_{v}, \psi_{v}{ }^{l v}$ can be classified by irreps $t_{i j}{ }^{v}$ Normal modes $\psi_{v}{ }^{l v}$ can be found without diagonalization of H !

Landau theory of phase transitions says that only one

 irrep (+c.c.) is becoming critical and is needed to describe the ordered structure
Great simplification!

PHYSICAL REVIEW B 72, 134413 (2005)

Zeroth cell contains $\mathbf{1 4}$ spins $=>14 * 3=42$ parameters.
one irrep
Only 3 independent spins are needed!

Basic crysłallography

32 crysłallographic point groups

A crystallographic point group is a point group that maps a point lattice onto itself. Consequently, rotations and rotoinversions are restricted to the well known crystallographic cases $1,2,3,4,6$ and $\overline{1}, \overline{2}=m, \overline{3}, \overline{4}, \overline{6}$

General symbol	Crystal system											
	Triclinic		Monoclinic (top) Orthorhombic (bottom)		Tetragonal		Trigonal		Hexagonal		Cubic	
n	1	C_{1}	2	C_{2}	4	C_{4}	3	C_{3}	6	C_{6}	23	T
\bar{n}	$\overline{1}$	C_{i}	$m \equiv \overline{2}$	C_{5}	$\overline{4}$	S_{4}	$\overline{3}$	$C_{3 i}$	$\overline{6} \equiv 3 / m$	$C_{3 k}$	-	-
n / m			$2 / m$	$C_{2 k}$	4/m	C_{4}	-	-	$6 / m$	$C_{\text {dit }}$	$2 / m \overline{3}$	T_{h}
$n 22$			222	D_{2}	422	D_{4}	32	D_{3}	622	D_{6}	432	O
nmm			mm2	C_{2}	4 mm	C_{4}	3 m	$C_{3 v}$	6 mm	C_{6}	-	-
$\bar{n} 2 m$			-	-	$\overline{4} 2 \mathrm{~m}$	$D_{2 d}$	$\overline{3} 2 / m$	$D_{3 d}$	$\overline{6} 2 \mathrm{~m}$	$D_{3 h}$	$\overline{4} 3 \mathrm{~m}$	T_{d}
$\mathrm{n} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$			$2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$	$D_{2 h}$	4/m2/m $2 / \mathrm{m}$	$D_{4 /}$	-	-	6/m2/m $2 / \mathrm{m}$	$D_{0} /$	$4 / m \overline{3} 2 / m$	O_{h}

Hermann-Mauguin (left) and Schoenflies symbols (right).

3D Space* groups

Groups of transformations/motions of three dimensional homogeneous discreet space into itself

Two kinds of transformations/motions $=1$. rotations $\quad(32$ point groups $)$

2. translations $\mathbf{t}=n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}$

* E.S. Fedorov (1890) A.Schoenflies (1890)

14 Bravias* groups.

A full group of motions (of both kinds) that bring the lattice into self-coincidence, i.e., which contains both point symmetry operations and translations, is called a Bravais group, and an infinite lattice derived from one point by a Bravais group, a Bravais lattice.

(a) triclinic; (b) monos orthorhombic; (d) tetra trigonal; (f) hexagonal; (see Table 2.10)

group otation)	International symbol
	$P \overline{1}$
	$P 2 / m$
	$B(C) 2 / m$
	$P m m m$
	$C(B, A) m m m$
	Immm
	$F m m m$
	$P 4 / m m m$
	$I 4 / m m m$
	$R \overline{3} m$
	$P 6 / m m m$
	$P m \overline{3} m$
	$I m \overline{3} m$
	$F m \overline{3} m$

*A. Bravias (1848)

230 space groups

Product of 32 point crystallographic groups and 14 Bravias groups New symmetry elements

Screw axes or axes of screw rotations = rotation + translation. e.g. $2_{1}, 3_{1}, 3_{2}, \ldots$

$$
\begin{aligned}
& \alpha_{s}=2 \pi / N, N=2,3,4,6 \\
& t_{s}=\frac{q}{N} t, \quad q=1,2,3,4,6
\end{aligned}
$$

International Tables

Pnma

Schoenflies symbol
mmm

Orthorhombic

No. 62

$$
P 2_{1} / n 2_{1} / m 2_{1} / a
$$

Hermann-Mauguin
Origin at $\overline{1}$ on $12_{1} 1$
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{4} ; \quad 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
(4) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{4}, \frac{1}{4}$
(5) $\overline{1} \quad 0,0,0$
(6) $a \quad x, y, \frac{1}{4}$
(7) $m x, \frac{1}{4}, z$
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$
zeroth block of SG

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity,
Coordinates
Wyckoff letter,
Site symmetry

| 8 | d | 1 | (1) x, y, z (2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$
 (5) $\bar{x}, \bar{y}, \bar{z}$ (3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
 (6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$ (4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
 (7) $x, \bar{y}+\frac{1}{2}, z$ (8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

general position:
rotation matrix + translation
$\left\{h \mid \boldsymbol{\tau}_{h}\right\}$
$00 l: l=2 n$
Special: as above, plus
no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$

irreps of SG

O. V. Kovalev, "Representations of the Crystallographic Space Groups: irreducible representations, induced representations, and corepresentations" (Gordon and Breach Science Publishers, 1993), 2nd ed.

Bloch waves, irreps of Bravias Lattice group

Bloch wave $\boldsymbol{\psi}(\mathbf{r})$ is a solution of Hamiltonian having periodic symmetry of Bravias Lattice BL (\mathbf{t}_{L}), (e.g. $\boldsymbol{\psi}(\mathbf{r})$ can describe magnetic structure)

$$
\psi(\mathbf{r})=u(\mathbf{r}) e^{i \mathbf{k r}}, u\left(\mathbf{r}+\mathbf{t}_{L}\right)=u(\mathbf{r})
$$

Representation theory
Space group G contains translation (t) BL group $T . \quad \mathbf{t}=n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}$
What are irreps and basis functions (b.f) of T ?

Two properties $\quad T(\mathbf{t})=T\left(\mathbf{t}_{\mathbf{1}}\right)^{n_{1}} T\left(\mathbf{t}_{\mathbf{2}}\right)^{n_{2}} T\left(\mathbf{t}_{\mathbf{3}}\right)^{n_{3}}=T\left(n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}\right)$
of T-elements: $\quad T\left(\mathbf{t}_{j}\right)^{N_{j}+1}=T\left(\mathbf{t}_{j}\right), j=1,2,3$
Born-von Karman

1D matrixes

$$
\begin{aligned}
& N=N_{1} N_{2} N_{3} \text { irreps of } T \text { enumerated by } \\
& \text { ordinary numbers } p_{\mathrm{j}}
\end{aligned} \quad \exp \left[-2 \pi i\left(\frac{p_{1} n_{1}}{N_{1}}+\frac{p_{2} n_{2}}{N_{2}}+\frac{p_{3} n_{3}}{N_{3}}\right)\right], 0 \leq p_{j} \leq N_{j}-1
$$

Bloch waves = basis functions

$N_{1} N_{2} N_{3}$ irreps of T enumerated by ordinary $\exp \left[-2 \pi i\left(\frac{p_{1} n_{1}}{N_{1}}+\frac{p_{2} n_{2}}{N_{2}}+\frac{p_{3} n_{3}}{N_{3}}\right)\right], 0 \leq p_{j} \leq N_{j}-1$
numbers p_{j}

Reciprocal lattice ($\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$) allows us conveniently sort out/enumerate all irreps of $T \in G$ $\mathbf{b}_{j} \mathbf{t}_{k}=2 \pi \delta_{j k}$

$$
\begin{gathered}
\mathbf{b}=p_{1} \mathbf{b}_{1}+p_{2} \mathbf{b}_{2}+p_{3} \mathbf{b}_{3} \\
T(\mathbf{t}) \rightarrow \exp (-i \mathbf{k} \mathbf{t})
\end{gathered}
$$

wave vector or propagation vector $\mathbf{k}=\left(\frac{p_{1}}{N_{1}} \mathbf{b}_{1}+\frac{p_{2}}{N_{2}} \mathbf{b}_{2}+\frac{p_{3}}{N_{3}} \mathbf{b}_{3}\right)$

$$
\mathbf{t}=n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}
$$

Most general basis function of the $\mathbf{k} t h$ irrep of translation group $T \in G$ is Bloch function

$$
\begin{gathered}
\psi^{\mathbf{k}}(\mathbf{r})=u_{\mathbf{k}}(\mathbf{r}) e^{i \mathbf{k r}} \\
u_{\mathbf{k}}(\mathbf{r}+\mathbf{t})=u_{\mathbf{k}}(\mathbf{r})
\end{gathered}
$$

Symmetry group of propagation vector, star $\{k\}$

Pnma
No. 62
$D_{2 h}^{16}$
$P 2_{1} / n 2_{1} / m 2_{1} / a$
mmm
Orthorhombic

Symmetry operations
(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
$\begin{aligned} & \text { (4) } 2\left(\frac{1}{2}, 0,0\right) \\ & \text { (8) } n\left(0, \frac{1}{2}, \frac{1}{4}\right) \\ & \frac{1}{4}, y, z\end{aligned}+T\left(n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}\right)$

How does b.f. $\psi^{\mathbf{k}}(\mathbf{r})=u_{\mathbf{k}}(\mathbf{r}) e^{i \mathbf{k r}}$ transform under any element of SG $T(g)$?

1. Recap- under pure translation
$T(\mathbf{t}) \psi^{\mathbf{k}}(\mathbf{r})=\exp (-i \mathbf{k} \mathbf{t}) \psi^{\mathbf{k}}(\mathbf{r})$
2. under general element g rotation $g \psi^{\mathbf{k}}(\mathbf{r})=\left\{h \mid \boldsymbol{\tau}_{h}+\mathbf{t}_{n}\right\} \psi^{\mathbf{k}}(\mathbf{r})=\psi^{\prime}(\mathbf{r})$ \uparrow accompanying translation
V. Pomjakushin, Advanced magnetic structures ETHZ'IO

To find ψ^{\prime} consider pure translation again

$$
\begin{aligned}
& T(\mathbf{t}) \psi^{\prime}(\mathbf{r})=\ldots \text { some math... }=\exp (-i \hat{h} \mathbf{k} \mathbf{t}) \psi^{\prime}(\mathbf{r}) \\
& \left\{h \mid \boldsymbol{\tau}_{h}+\mathbf{t}_{n}\right\} \psi^{\mathbf{k}}(\mathbf{r})=\psi^{\hat{h} \mathbf{k}}(\mathbf{r}) \quad h \mathbf{k}=\text { or } \neq \mathbf{k}+\mathbf{b}
\end{aligned}
$$

Manyfold of all non-equivalent* vector star $\{\mathbf{k}\}$
Little group $\mathrm{G}_{\mathrm{k}} \in G$ leave \boldsymbol{k} invariant

Symmetry group of propagation vector, examples of star $\{k\}$

| Pnma | $D_{2 h}^{16}$ | $m m m$ |
| :--- | :--- | :--- | | Orthorhombic |
| ---: |
| No. 62 |

Symmetry operations
(1) 1
(5) $\overline{1} \quad 0,0,0$
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
$\begin{aligned} & \text { (4) } 2\left(\frac{1}{2}, 0,0\right) \\ & \text { (8) } n\left(0, \frac{1}{4}, \frac{1}{4}\right. \\ & \left.n\left(\frac{1}{2}\right), \frac{1}{2}\right) \\ & \frac{1}{4}, y, z\end{aligned}+T\left(n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}\right)$
(7) $m x, \frac{1}{4}, z$
Manyfold of all non-equivalent $h \mathbf{k}=$ propagation
vector star $\{\mathbf{k}\}$
$\xrightarrow{\left(\mathbf{b}_{3}\{\mathbf{k}\}\right.} \underset{\substack{\mathrm{k}=[0, \mathrm{u}, \mathrm{v}] \\ \mathbf{b}_{2} \\ \quad \text { label } K}}{ }$

(1) 1
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$

$$
\mathrm{G}_{\mathrm{k}}=' P \ln 1 '
$$

Little group $\mathrm{G}_{\mathrm{k}} \in G$ leave \boldsymbol{k} invariant

The k-vector types and Brillouin zones of the space groups

propagation vector $=$ a point on/inside Brillouine zone Brillouine zone of Pmmm (Γ_{0})

A.P. Cracknell, B.L. Davis, S.C. Miller and W.F. Love (1979) (abbreviated as CDML)
Kovalev O.V (1986) (1993) Representations of the
Crystallographic Space Groups (London: Gordon and Breach) V. Pomjakushin, Advanced magnetic structures ETHZ'IO

Kovalev	k-vector label Wyckoff position			
		CDML		ITA
k_{19}		0,0,0	1	mmm
k_{20}	X	1/2,0,0	1 b	mmm
k_{22}	Z	0,0,1/2	1	mmm
k_{24}	U	1/2,0,1/2	1	mmm
k_{21}	Y	0,1/2,0	1	mmm
k_{25}	s	1/2,1/2,0	1	mmm
...	T	0,1/2,1/2	19	mmm
...	R	1/2,1/2,1/2	1 h	mmm

SM	u,0,0	2	i	2mm
A	u,0,1/2	2	j	2mm
C	u,1/2,0	2	k	2mm
E	u, 1/2,1/2	2	I	2 mm
DT	0,u,0	2	m	m2m
B	0,u,1/2	2	n	m2m
D	1/2,u,0	2	0	m2m
P	1/2,u,1/2	2	p	m2m
LD	0,0,u	2	q	mm2
H	0,1/2,u	2	r	mm2
G	1/2,0,u	2	S	mm2
Q	1/2,1/2,u	2	t	mm2

K	$0, u, v$	4	u	$m .$.

$\Gamma_{c}{ }^{f}$ face centered cubic. Brillouine zone, \{k\}

Classification symbol, number, etc.

CMDL Kovalev $\quad \mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}$
$\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}$ edges of Bravias cell of reciprocal lattice
$\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ reciprocal lattice periods

$$
\left[\begin{array}{l}
\mathrm{b} 1 \\
\mathrm{~b} 2 \\
\mathrm{~b} 3
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{B} 1+\mathrm{B} 2+\mathrm{B} 3 \\
\mathrm{~B} 1-\mathrm{B} 2+\mathrm{B} 3 \\
\mathrm{~B} 1+\mathrm{B} 2-\mathrm{B} 3
\end{array}\right]
$$

k -vector star $\{\mathrm{k}\}$

$$
\begin{aligned}
& k_{1}=1 / 4\left(b_{1}+b_{2}\right)+1 / 2\left(b_{2}+b_{3}\right), k_{2}=-k_{1} \\
& k_{3}=1 / 4\left(b_{1}+b_{3}\right)+1 / 2\left(b_{1}+b_{2}\right), k_{4}=-k_{3} \\
& k_{5}=1 / 4\left(b_{2}+b_{3}\right)+1 / 2\left(b_{1}+b_{3}\right), k_{6}=-k_{5} \\
& k_{1}=1 / 2\left(b_{1}+b_{2}^{\prime}+b_{3}\right), k_{2}=1 / 2 b_{1}, k_{3}=1 / 2 b_{2}, k_{4}=1 / 2 b_{3} \\
& k_{1}=1 / 2\left(b_{1}+b_{2}\right), k_{2}=1 / 2\left(b_{1}+b_{3}\right), k_{3}=1 / 2\left(b_{2}+b_{3}\right)
\end{aligned}
$$

Kovalev book (slide skipped)

Table C CHARACTERISTIC POINTS

Correspondence between letter symbols of [13] and number symbols of this book.

$$
\begin{aligned}
& \text { Lattice } C \text { (Fig. 7): } \quad A=\mathbf{k}_{1}, B=/ 5 \times \mathbf{k}_{2}, C=\mathbf{k}_{3}, J=/ 5 \times \mathbf{k}_{3}, \Sigma=\mathbf{k}_{4} \text {, } \\
& S=/ 5 \times \mathbf{k}_{5}, Z=/ 9 \times \mathbf{k}_{6}=/ 16 \times \mathbf{k}_{14}, T=\mathbf{k}_{7}, \Delta=/ 5 \times \mathbf{k}_{8}, \Lambda=\mathbf{k}_{9}, X=/ 5 \times \mathbf{k}_{10} \text {, } \\
& M=\mathbf{k}_{11}, \Gamma=\mathbf{k}_{12}, R=\mathbf{k}_{13} \text {. } \\
& \text { Lattice } C f \text { (Fig. 8): } \quad A=\mathbf{k}_{1}, B=/ 5 \times \mathbf{k}_{1}+\mathbf{b}_{1}, C=\mathbf{k}_{2}, J=/ 5 \times \mathbf{k}_{2}, Q=/ 9 \times \mathbf{k}_{3} \text {, } \\
& \Sigma=\mathrm{k}_{4}, S=/ 5 \times \mathrm{k}_{4}-\mathrm{b}_{2}, \Lambda=\mathrm{k}_{5}, \Delta=/ 5 \times \mathrm{k}_{6}, V=/ 9 \times \mathrm{k}_{7}+\mathrm{b}_{3}=\mathrm{k}_{7}^{\prime} \text {, } \\
& W=/ 9 \times \mathrm{k}_{8}, L=\mathrm{k}_{3}, X=/ 5 \times \mathrm{k}_{10}, \Gamma=\mathrm{k}_{11} \text {. } \\
& \text { Lattice } C v \text { (Fig. 9): } \quad A=\mathbf{k}_{1}, C=\mathbf{k}_{2}=/ 27 \times \mathbf{k}_{3}-\mathrm{b}_{1}, J=/ 5 \times \mathbf{k}_{2}=/ 30 \times \mathbf{k}_{3}-\mathrm{b}_{1} \text {, } \\
& B=\mathbf{k}_{3}=/ 27 \times \mathbf{k}_{2}+\mathrm{b}_{2}, \Sigma=\mathrm{k}_{4}, G=\mathrm{k}_{5}, D=\mathbf{k}_{6}, \Lambda=\mathbf{k}_{7}=/ 16 \times \mathrm{k}_{13}-\mathrm{b}_{3} \text {, } \\
& \Delta=/ 5 \times \mathbf{k}_{8}, N=\mathbf{k}_{9}, P=\mathbf{k}_{10}, \Gamma=\mathbf{k}_{11}, H=/ 5 \times \mathbf{k}_{12}, F=/ 5 \times \mathbf{k}_{13}=/ 23 \times \mathbf{k}_{7}+\mathbf{b}_{2} \text {. } \\
& \text { Lattice } Q \text { (Fig. 10): } \quad D=\mathbf{k}_{1}, E=\mathbf{k}_{2}, B=\mathbf{k}_{3}, F=\mathbf{k}_{4}, C=\mathbf{k}_{5}, Y=\mathbf{k}_{6}, T=\mathbf{k}_{7} \text {, } \\
& \Delta=\mathbf{k}_{8}, U=\mathbf{k}_{9}, \Sigma=\mathbf{k}_{10}, S=\mathbf{k}_{11}, W=\mathbf{k}_{12}, \Lambda=\mathbf{k}_{13}, V=\mathbf{k}_{14}, X=\mathbf{k}_{15}, R=\mathbf{k}_{16} \text {, } \\
& \Gamma=\mathbf{k}_{17}, M=\mathbf{k}_{18}, Z=\mathbf{k}_{19}, A=\mathbf{k}_{20} \text {. } \\
& \text { Lattice } Q v \text { (Fig. 11): } \quad B=\mathrm{k}_{1}, C=\mathrm{k}_{2}, A=\mathrm{k}_{3}=/ 27 \times \mathrm{k}_{4}-\mathrm{b}_{2}, E=\mathrm{k}_{4} \\
& =/ 27 \times \mathbf{k}_{3}+\mathrm{b}_{2}, Q=\mathbf{k}_{5}, \Sigma=\mathrm{k}_{6}, \Delta=\mathrm{k}_{7}, Y=\mathrm{k}_{8}, W=\mathrm{k}_{9}, \Lambda=\mathbf{k}_{10} \text {, } \\
& V=\mathrm{k}_{10}-\mathrm{b}_{1}+\mathrm{b}_{3}, N=\mathrm{k}_{11}, P=\mathrm{k}_{12}=/ 16 \times \mathrm{k}_{16}, X=\mathrm{k}_{13}, \Gamma=\mathrm{k}_{14} \text {, } \\
& M=\mathrm{k}_{15}-\mathrm{b}_{1}+\mathrm{b}_{3} \text {. } \\
& \text { Lattice } Q v \text { (Fig. 12): } \quad B=\mathrm{k}_{1}, C=\mathrm{k}_{2}, D=\mathrm{k}_{2}+\mathrm{b}_{1}, A=\mathrm{k}_{3}=/ 27 \times \mathrm{k}_{4}-\mathrm{b}_{2} \text {, } \\
& E=\mathrm{k}_{4}=/ 27 \times \mathrm{k}_{3}+\mathrm{b}_{2}, Q=\mathrm{k}_{5}, \Sigma=\mathrm{k}_{6}, F=\mathrm{k}_{6}+\mathrm{b}_{1}-\mathrm{b}_{3}, \Delta=\mathrm{k}_{7}, Y=\mathrm{k}_{8} \text {, } \\
& U=/ 14 \times \mathrm{k}_{8}+\mathrm{b}_{2}, W=\mathrm{k}_{9}, \Lambda=\mathrm{k}_{10}, N=\mathrm{k}_{11}, P=\mathrm{k}_{12}=/ 16 \times \mathrm{k}_{16}, X=\mathrm{k}_{13} \text {, } \\
& \Gamma=\mathrm{k}_{14}, M=\mathrm{k}_{15} \text {. }
\end{aligned}
$$

Brillouine zone
of $\operatorname{Pmmm}\left(\Gamma_{0}\right)$

Kovalev book (slide skipped)

SICR (coirreps)
matrixes constructed with B-matrixes as explained on pp . 26-28

[^1]In Chapter 2, the information on SICRs is written in lists entitled "LIR,SICR" in the parentheses which follow the LIR set number. If there are no parentheses, this means that variation I occurs. In parentheses, before a slanted line is given information on the SICRs of simple groups and after the slanted line information on SICRs of double groups.

The numbers indicated in the parentheses are SIR numbers according to the corresponding table of LIRs. If the SIR generates a type a ICR, then we will show the SIR number, and, immediately after it, the concrete form (B_{1}, B_{2}, etc.) of the auxiliary matrix β. If this matrix is not shown, this means that it is equal to one. For example, " $1,2,3 B 4$ " means that the one-dimensional SIRs δ^{1} and δ^{2} generate type a SICRs with $\beta=1$, and the multi-dimensional SIR δ^{3} generates a type a SICR with $\beta=B_{4}$ (denoted by $B 4$).

If an SIR generates a type b SICR, then before the number of this SIR we write the number 2 with a multiplication sign. Then the auxiliary matrix β is shown, if it is different from unity. For example, " $2 \times 4,2 \times 5 B 2$ " means that SIR δ^{4} generates a type b SICR with $\beta=1$, and SIR δ^{5} a type b SICR with $\beta=B_{2}$.

If SIRs $\delta=\delta^{i}$ and $\delta^{\prime}=\delta^{j}$ together generate SICR $d(i+j)$ of type c according to the rule of Eq. (26a) and with $\beta=\beta_{m}$, then " $i+B m^{\dagger} j B m^{\prime}$ " is written. For example, the expression " $1+B 3^{\dagger} 2 B 3$ " means that the matrices for unitary elements have the form,

$$
\left(\begin{array}{cc}
\delta^{1}(g) & 0 \\
0 & B_{3}^{\dagger} \delta^{2} B_{3}
\end{array}\right)
$$

Thus the equations in Chapter 2 give: (1) the connection between ICR matrices and SIR matrices, i.e., SICR matrices, and (2) the auxiliary matrices β needed for the construction of basis vectors. The β matrices are defined in Appendix 3.

In the beginning of the data relating to each Bravais lattice is shown how, in each case, the fixed antiunitary operator a_{0} is chosen. It is important to keep in mind that the meaning of matrix β is defined by this operator. In replacing element a_{0} with a different one, and also in changing the form of a SIR or LIR matrix, the β matrix, in general, changes.

Real SIRs are possible only under the condition that $\mathbf{k}=-\mathbf{k}+\mathbf{b}$. They generate type a SICRs d of group $G(\mathbf{k})+K G(\mathbf{k})$, where K is the complex conjugate operator. SICR d reduces to the real form d_{r} with the help of unitary matrix S :

씅 Space group irreps miky

Representation of SG for star $\{\mathbf{k}\}$ are characterized by irreps of little group G_{k} of any arm of propagation vector \mathbf{k}.

$\mathrm{G}_{\mathrm{k}}=G$

Consider one irrep $\mathrm{d}^{\mathrm{kv}}\left(l_{v} \times\right.$ l_{v} matrixes) with $\mathrm{dim}=l_{v}$ with number v

Example (LIR)

Space group irreps, examples

 dimensions up to 6 (cf. 3 for point groups)

Example 3

Higher dimensions: Ia3d (\#230) $k=[1,0,0]: 1(6 \mathrm{D}) \oplus 3(2 \mathrm{D})$

Constructing of vector space of magnetic structure and reducible magnetic representation

Case study of magnetic structure of multiferroic TbMnO_{3}

Space Group G: Pnma, no. 62 propagation vector $\mathrm{k}=[\mu, 0,0]$

has 4 1D irreducible representations

New Journal of Physics 11, 043019 (2009)
V. Pomjakushin, Advanced magnetic structures ETHZ 'IO

k-vector group

Group G: Pnma, no.62: 8 symmetry operators

(1) 1
(5) $10,0,0$
(2) $2\left(0,0, \frac{1}{5}\right)$ $\frac{1}{4}, 0, z$ (3) $2\left(0, \frac{1}{2}, 0\right)$ (6) $a x, y, \frac{1}{4}$ (7) $m x, \frac{1}{4}, z$ (4) $2\left(\frac{1}{2}, 0,0\right) x, \frac{1}{4}, \frac{1}{2}$

Little group $G_{k,} k=[0.45,0,0]=[q, 0,0]$
Little group of propagation vector G_{k} contains only the elements of G that do not change \mathbf{k} $P 2_{1} m a \dot{a}\left(P m c 2_{1}, 26\right)$

$$
\begin{array}{cccc}
\text { (1) } x, y, z & \text { (4) } x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2} & \text { (7) } x, \bar{y}+\frac{1}{2}, z & \text { (6) } x+\frac{1}{2}, y, \bar{z}+\frac{1}{2} \\
\text { rotation+ } & E\left(\begin{array}{l}
100 \\
010 \\
001
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) & 2_{x}\left(\begin{array}{l}
100 \\
0 \overline{1} 0 \\
00 \overline{1}
\end{array}\right)\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)
\end{array} m_{y}\left(\begin{array}{c}
100 \\
0 \overline{1} 0 \\
001
\end{array}\right)\left(\begin{array}{c}
0 \\
\frac{1}{2} \\
0
\end{array}\right) m_{z}\left(\begin{array}{c}
100 \\
010 \\
00 \overline{1}
\end{array}\right)\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right)
$$

vector space and representation for an atom in position ($0,0,1 / 2$) for k-vector group

Mn-position	O, $0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	O, $\frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0,0$
position number	a	b	C	d
k-group element	gI	g_{2}	g_{3}	g_{4}
rotation+ translation	$\left(\begin{array}{l}100 \\ 010 \\ 001\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	$2_{x}\left(\begin{array}{c}100 \\ 0 \overline{1} 0 \\ 00 \overline{1}\end{array}\right)\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right)$	$m_{y}\left(\begin{array}{l}100 \\ 0 \overline{1} 0 \\ 001\end{array}\right)\left(\begin{array}{c}0 \\ \frac{1}{2} \\ 0\end{array}\right)$	$m_{y}\left(\begin{array}{c}100 \\ 010 \\ 00 \overline{1}\end{array}\right)\left(\begin{array}{c}\frac{1}{2} \\ 0 \\ \frac{1}{2}\end{array}\right)$

Permutation representation
element g_{2} changes atomic position:

$$
\begin{aligned}
& b=e^{2 \pi i\left(\mathbf{k a}_{p}\right)}
\end{aligned}
$$

in addition, element g_{2} sometimes
moves the atom outside of the zerocell.
We have to return the atom back with - \mathbf{a}_{p} : $-\mathbf{a}_{p}$

$$
\begin{gathered}
\mathrm{a} \Rightarrow \mathrm{~b}(000) \\
\mathrm{b} \Rightarrow \mathrm{a}(-100) \\
\mathrm{c} \Rightarrow \mathrm{~d}(000) \\
\mathbf{d} \Rightarrow \mathrm{c}(-100) \\
\psi^{\mathbf{k} \nu}(\mathbf{r})=u_{\mathbf{k}}^{\nu}(\mathbf{r}) e^{2 \pi i \mathbf{k r}}
\end{gathered}
$$

Classifying possible magnetic structures Magnetic representation

Classifying possible magnetic structures Magnetic representation

group element	g_{1}	g_{2}	g_{3}	g_{4}
rotation+ translation	$E\left(\begin{array}{c}100 \\ 010 \\ 001\end{array}\right)$	$\left(\begin{array}{c}0 \\ 0 \\ 0\end{array}\right)$	$2_{x}\left(\begin{array}{c}100 \\ 0 \overline{1} 0 \\ 00 \overline{1}\end{array}\right)\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right)$	$m_{y}\left(\begin{array}{c}100 \\ 0 \overline{1} 0 \\ 001\end{array}\right)\left(\begin{array}{c}0 \\ \frac{1}{2} \\ 0\end{array}\right)$

010

00 \overline{1}\end{array}\right)\left($$
\begin{array}{c}\frac{1}{2} \\
0 \\
\frac{1}{2}\end{array}
$$\right)\)

Axial vector (spin) representation
3×3 matrices $(\mathrm{A}) R\left(\mathrm{~g}_{2}\right) \times \operatorname{det}$
(R) $\quad\left(\begin{array}{l}100 \\ 010 \\ 001\end{array}\right)$

$$
\left(\begin{array}{l}
100 \\
0 \overline{1} \overline{0} \\
00 \overline{1}
\end{array}\right) \quad\left(\begin{array}{l}
\overline{1} 00 \\
010 \\
00 \overline{1}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
\overline{1} 00 \\
0 \overline{1} 0 \\
001
\end{array}\right)
$$

Classifying possible magnetic structures Magnetic representation

TmMnO_{3} : Classifying possible magnetic structures basis vectors/functions $S_{T 1}, S_{T 2}, S_{T 3}$,

Pnma, $\mathrm{k}=[0.45,0,0] \mathrm{Mn}$ in (4a)-position 12D magnetic representation is reduced to four one-dimensional irreps

$$
\begin{aligned}
& d=\sum_{\oplus} n_{\nu} d^{\nu}=3 \tau_{1} \oplus 3 \tau_{2} \oplus 3 \tau_{3} \oplus 3 \tau 4 \\
& n_{\nu}=\frac{1}{n(G)} \sum_{g \subset G} \chi(g) \chi^{* \nu}(g)
\end{aligned}
$$

Tm in (4c)-position (x, $1 / 4, \mathrm{z}$) Different $1 \tau_{1} \oplus 2 \tau_{2} \oplus 2 \tau_{3} \oplus 1 \tau_{4} \quad$ decomposition!

	E	2_{x}	m_{y}	m_{z}
	g_{1}	g_{2}	g_{3}	g_{4}
τ_{1}	1	a	1	a
τ_{2}	1	a	-1	$-a$
τ_{3}	1	$-a$	1	$-a$
τ_{4}	1	$-a$	-1	a

recap: irrep: 1D matrixes $d_{\tau}(\mathrm{g})$ that define how basis functions b.f. should be changed/ transformed under action of abstract group elements g_{i}. The permutations and spin rotations, or whatever meaning of g_{i} is, are not yet here!

Projection method: to find basis functions b.f. transforming according to a specific irrep τ
$a=e^{\pi i k_{x}}$
V. Pomjakushin, Advanced magnetic structures ETHZ 'IO

Axial basis construction. Projection method.

Basis functions.

$3 \sigma_{\mathrm{M}} \mathrm{N}$-dimention column

$$
\psi_{\lambda}^{\mathrm{K} \mathrm{\nu}}=\sum_{n}^{\oplus} \sigma_{\lambda}^{\mathrm{K} \nu} \exp \left(i \mathbf{i} \mathbf{t}_{n}\right),
$$

$3 \sigma_{\mathrm{M}}$-dimention column in zeroth-cell.

$$
\sigma_{\lambda}^{\mathrm{K} \nu}=\sum_{i=1}^{\sigma_{\mathrm{M}}} \mathrm{~S}\left(\left.\begin{array}{l}
\mathrm{\kappa} \nu \\
\lambda
\end{array} \right\rvert\, i\right),
$$

$\mathbf{S}\left(\begin{array}{l|l}\boldsymbol{\kappa} v & i \\ \lambda & i\end{array}\right)=\sum_{h \in G_{\mathbf{K}}^{0}} d_{\lambda[\mu]}^{* \mathrm{~K} v}(\mathrm{~g}) \exp \left[-i \mathrm{Ka}_{p}(g, j)\right] \delta_{i, g[j]} \delta_{h}\left(\begin{array}{l}R_{x[\beta]}^{h} \\ R_{y}^{h}[\beta] \\ R_{z[\beta]}^{h}\end{array}\right)$
Start function.
$3 \sigma_{\mathrm{M}} \mathrm{N}$-dimension column
$\varphi_{\mathbf{K}}^{j \beta}=\sum_{n}^{\oplus} \sigma_{0}^{j \beta} \exp \left(i \mathbf{K t}_{n}\right)$,
[...] the values, that must be fixed, define a start for the basis function construction. Choosing different start values for "[...]" one obtains either different linear independent b.f. or zero
 $d_{\lambda \mu}{ }^{\nu}$ matrix of irrep number v
$\mathbf{a}_{p}(g, j)$ returning translation after action of g on atom j
$\delta_{h}=\operatorname{det}\left(R_{\alpha \beta}{ }^{h}\right)$
V. Pomjakushin, Advanced magnetic structures ETHZ 'IO
$3 \sigma_{\mathrm{M}}$-dimension column in zeroth-cell.
All components $=0$, except the one for atom j and direction β

Verifying invariance of b.f. under irrep T3

Pnma, $\mathrm{k}=[0.45,0,0] \mathrm{Mn}$ in (4a)-position 12D magnetic representation is reduced to four one-dimensional irreps

$$
d=\sum_{\oplus} n_{\nu} d^{\nu}=3 \tau_{1} \oplus 3 \tau_{2} \oplus 3 \tau_{3} \oplus 3 \tau 4
$$

recap: irrep: 1D matrixes $d_{\tau}(\mathrm{g})$ that define how basis functions b.f. should be changed/ transformed under action of abstract group elements g_{i}. The permutations and spin rotations, or whatever meaning of g_{i} $i s$, are not yet here!

$a=e^{\pi i k_{x}}$
$d\left(g_{2}\right)^{\text {irrep }}{ }^{\tau 3} S_{\tau 3}^{\prime \prime}=-a \cdot S_{\tau 3}^{\prime \prime}=+1 \mathbf{e}_{1 y}+a^{*} \mathbf{e}_{2 y}^{\text {Invariant! }}+1 \mathbf{e}_{3 y}+a^{*} \mathbf{e}_{4 y}$

[^2]
Classifying possible magnetic structures Great simplification!

Pnma, $\mathrm{k}=[0.45,0,0] \mathrm{Mn}$ in (4a)-position
12D magnetic representation is reduced to
four one-dimensional irreps

	E	2_{x}	m_{y}	m_{z}
	g_{1}	g_{2}	g_{3}	g_{4}
τ_{1}	1	a	1	a
τ_{2}	1	a	-1	$-a$
τ_{3}	1	$-a$	1	$-a$
τ_{4}	1	$-a$	-1	a

$$
\begin{array}{rcccc}
& 0,0, \frac{1}{2} & \frac{1}{2}, \frac{1}{2}, 0 & 0, \frac{1}{2}, \frac{1}{2} & \frac{1}{2}, 0,0 \\
\text { Mn-position } & 1 & 2 & 3 & 4 \\
S_{\tau 3}^{\prime}= & +1 \mathbf{e}_{1 x}-a^{*} \mathbf{e}_{2 x}-1 \mathbf{e}_{3 x}+a^{*} \mathbf{e}_{4 x} \\
S_{\tau 3}^{\prime \prime \prime}=+1 \mathbf{e}_{1 y}+a^{*} \mathbf{e}_{2 y}+1 \mathbf{e}_{3 y}+a^{*} \mathbf{e}_{4 y} \\
S_{\tau 3}^{\prime \prime \prime}=+1 \mathbf{e}_{1 z}+a^{*} \mathbf{e}_{2 z}-1 \mathbf{e}_{3 z}-a^{*} \mathbf{e}_{4 z}
\end{array}
$$

Assuming that the phase transition goes according to one irreducible representation $\tau 3$ the spins of all four atoms are set only by 3 variables instead of 12 !

Refinement of the data for T_{3}

$$
\mathbf{S}(\mathbf{r})=\frac{1}{2}\left(C_{1} S_{\tau 3}^{\prime}+C_{2} S_{\tau 3}^{\prime \prime \prime}+C_{3} S_{\tau 3}^{\prime \prime \prime}\right) e^{2 \pi i \mathbf{k} r}+c . c .
$$

Visualization of the magnetic structure

a cycloid structure propagating along x-direction

$$
\mathbf{S}(\mathbf{r})=\operatorname{Re}\left[\left(C_{1} S_{\tau 3}^{\prime}+\left|C_{3}\right| \exp (i \varphi) S_{\tau 3}^{\prime \prime \prime}\right) \exp (2 \pi i \mathbf{k} \boldsymbol{r})\right]
$$

Magnetic symmetry. 1651 3D-Shubnikov (Sh or Ш) space groups

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

Isomorphism between Sh-groups and 1D irreps of SG. Niggli-Indenbom theorem

Examples of Sh groups

Disadvantages of Sh-group description

Sh groups do not give a constructive way of deducing all symmetry allowed magnetic modes.

Reason 1: Sh group is not necessarily made from the parent G. Thus, it is not an ultimate practical tool for obtaining all allowed spin configurations

Reason 2: 3D Sh not describe modulated structures. No rotations on non-crystallographic angle - no helix. Linear orthogonal transformations preserve the spin size - no SDW
Example 1: there are no cubic ferromagnetic Sh-groups. "problems" with cubic ferromagnets Fe, EuO, EuS, ...

Example 2:
CrCl_{2} space group: Pnnm.
Sh groups: Pnnm Pn'nm, Pnnm', Pn'n'm, Pnn'm', Pn'n'm'
No one describes CrCl_{2} magnetic structure
Cr-atoms in 2(a)-position

$$
\mathbf{k}=\left[\begin{array}{lll}
0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

One can still find less symmetric Sh group
Magnetic symbol
\{Pnnm; 2(a) $\mathrm{Sh}^{7}{ }_{2}=\mathrm{P}_{\mathrm{s}} \overline{\mathrm{I}}$;
$\left.\mathbf{S}_{1}=(\mathrm{uvw}), \mathbf{S}_{2}=(-\mathrm{u}-\mathrm{v}-\mathrm{w})\right\}$

The End

further complications

1. several irreps involved, e.g. exchange multiplet
2. multi-k structures
3. spin domains, k-domains, chiral domains for single crystal data

Literature on (magnetic) neutron scattering

Neutron scattering (general)

Albert Furrer, Joel Mesot , and Thierry Strassle," N eutron scattering in condensed matter physics".World Scientific, 2008
S.W. Lovesey, "Theory of Neutron Scattering from Condensed Matter", Oxford Univ. Press, I987.Volume 2 for magnetic scattering. Definitive formal treatment
G.L. Squires, "Intro. to the Theory ofThermal Neutron Scattering", C.U.P., 1978, Republished by Dover, 1996. Simpler version of Lovesey.

[^0]: J.P Elliott and P.G. Dawber "Symmetry in physics", vol. I, I979 The Macmillan press LTD

[^1]: V. Pomjakushin, Advanced magnetic structures ETHZ 'IO

[^2]: V. Pomjakushin, Advanced magnetic structures ETHZ 'IO

