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Neutron sources for condensed matter studies

I. Continuous neutron sources II. Pulsed neutron sources

II-a. SPS

W = 10 – 100 MW 
Const in time 

SINQ, Switzerland
ILL, France
LLB, France
VVR-M, Russia
IR-8, Russia,
BENSC, Germany
FRM II, Germany
BNC, Hungary
NPI, Czechia
NIST, USA
ORNL, USA
…

W = 0.01 – 1 MW 
Pulsed in time
Δt0 ≈ (15 – 100) µs 

II-b. LPS

W = 2 – 5 MW 
Pulsed in time
Δt0 ≈ (300 – 1000) µs 

ISIS, UK
LANSCE, USA
SNS, USA
KENS, Japan
J-SNS, Japan

IBR-2M, Russia
ESS, Europe
LANSCE (new)
???

Short pulse Long pulse

 courtesy of A. Balagurov
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Monochromatic incident beam: 
λ = const ≈ 1.4 Å,    Δλ/λ ≈ 0.01,
Source: W = (10 – 100) MW = const,
Scan over scattering angle,
Wide angle range is needed.

Steady state reactor or spallation source / Pulsed neutron 
source

 courtesy of A. Balagurov
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Monochromatic incident beam: 
λ = const ≈ 1.4 Å,    Δλ/λ ≈ 0.01,
Source: W = (10 – 100) MW = const,
Scan over scattering angle,
Wide angle range is needed.

Steady state reactor or spallation source / Pulsed neutron 
source

Polychromatic incident beam:
λmin ≤ λ ≤ λmax,    Δλ ≈ 5 Ǻ,
Source: W = (0.01 – 2)  MW, pulsed,
Scan over time of flight (TOF),
Fixed angle geometry.
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Geometry of diffractometer with  λ = const

Source monochromator

samplesample

detector
k1

k2
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Elastic and inelastic neutron scattering

Momentum transfer
q=k2-k1 Energy transfer (Е0 ≈ 0.025 eV)

Always takes place  
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Elastic and inelastic neutron scattering

Momentum transfer
q=k2-k1 Energy transfer (Е0 ≈ 0.025 eV)

Always takes place  

to atom,  
ΔЕ/Е0 ~ 1, “inelastic” 

to collective mode,  
ΔЕ/Е0 ~ 1, “inelastic”

to crystal,  
ΔЕ/Е0 ~ 10-24 (ΔE = 0)

“elastic scattering”

Ei = Ef

|ki| = |kf|

 courtesy of A. Balagurov
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Specifics of thermal neutron interaction with matter
Scattering amplitude or length
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Specifics of thermal neutron interaction with matter
Scattering amplitude or length

• b nuclear coherent scattering length does not depend on q (thermal factors)

• no regularity in b dependence on atomic number
 light atoms in presence of heavy atoms: H-O, Mn-O, U-H, …
 neighbours discrimination: O-N, Co-Fe, … )

• no regularity in b dependence on nuclear mass (isotope contrasting)
    bH = −0.37  bFe-56 = 1.01
    bD = 0.67  bFe-57 = 0.23

• b can be < 0 (“zero” matrix without coherent scattering from container)

• large magnetic scattering amplitude (magnetic structure)

• small absorption (high penetration)

 courtesy of A. Balagurov
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Real space/lattice. Translational symmetry

unit cell
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Reciprocal space/lattice

{ai} – basis in the real crystal space

{bi} – basis in the reciprocal space
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Reciprocal space/lattice

{ai} – basis in the real crystal space

{bi} – basis in the reciprocal space

b1=[a2a3]/Vc,  b2=[a3a1]/Vc,  b3=[a1a2]/Vc,

Vc=a1[a2a3]  

ai·bj = δij = 1 for i=j,  0 for i≠j
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Reciprocal space/lattice

{ai} – basis in the real crystal space

{bi} – basis in the reciprocal space

b1=[a2a3]/Vc,  b2=[a3a1]/Vc,  b3=[a1a2]/Vc,

Vc=a1[a2a3]  

ai·bj = δij = 1 for i=j,  0 for i≠j

T = n1a1 + n2a2 + n3a3 – crystal lattice if ni is integer

H = h1b1 + h2b2 + h3b3 – reciprocal lattice hi is integer

Tn·Hh = n1h1 + n2h2 + n3h3 = m – integer

(h, k, l) – Miller indexes

H ⊥ {h1 h2 h3}, dhkl = 1/|Hhkl| 

|Hhkl| = (H·H)1/2

Saturday, 26 October 2013
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Neutron scattering on periodic structure

an object

Position of the scatterer
R=       Rm     +    rj

Position of 
object origin

Position of 
scatterer in object
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Sum of wave amplitude from all objects
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an object
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object origin
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scatterer in object

f(q) ∝
�

m

exp(iqRm) ·
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b(rj) exp(iqrj)
Sum of wave amplitude from all objects

δ(q− 2πH)

F (q) =
�

j

b(rj) exp(iqrj)

 same value for any Rm

Structure factor: unique property 
of the object

Bragg peak at reciprocal 
lattice nodes
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scattering wave amplitude
 <k1|V|k2> = b(R)exp(iRq), q = k2 – k1

Neutron scattering on periodic structure

an object

Position of the scatterer
R=       Rm     +    rj

Position of 
object origin

Position of 
scatterer in object

f(q) ∝
�

m

exp(iqRm) ·
�

j

b(rj) exp(iqrj)
Sum of wave amplitude from all objects

δ(q− 2πH)

F (q) =
�

j

b(rj) exp(iqrj)

 same value for any Rm

Structure factor: unique property 
of the object

Intensity in the detector

I =
dσ

dΩ
∝ |f(q)|2 ∝ |F (q)|2δ(q− 2πH)

Bragg peak at reciprocal 
lattice nodes
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b2

b1

H

k1/2π

k2/2π

Ewald sphere construction for λ=const 

q = k2 – k1 = 2πH

2θ

Ewald reflection  
sphere

f ~ F·δ(q – 2πH)

2θ

k1/2π

k2/2π
H

H = h1b1 + h2b2 + h3b3 – 
reciprocal lattice vector

Paul Peter Ewald
23.01.1888, Germany

22.08.1985, USA

 courtesy of A. Balagurov
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b2

b1

H

k1/2π

k2/2π

Ewald sphere construction for λ=const 

q = k2 – k1 = 2πH

2θ

Ewald reflection  
sphere

f ~ F·δ(q – 2πH)

2θ

k1/2π

k2/2π
H

H = h1b1 + h2b2 + h3b3 – 
reciprocal lattice vector

Paul Peter Ewald
23.01.1888, Germany

22.08.1985, USA

 courtesy of A. Balagurov

k2/2π
qmax=2|k|
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Elastic scattering as Fourier transform of a structure 

I(q) ~ ∫ eiqr G(r)dr

G(r) ~ ∫ e-iqr I(q)dq

f(q) ~ ∫ eiqr b(r)dr

b(r) ~ ∫ e-iqr f(q)dq

Amplitude of a wave function

Scattering-length density

Intensity of scattered waves

Pair correlation function

b(r) / G(r) - object f(q) / I(q) - image

Real space Reciprocal space

I(q) ~ |f(q)|2

G(r) = ∫ b(u) b(u + r) du

 courtesy of A. Balagurov
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Diffraction limit and image quality

Object

Fourier image

b(r) ~  e-iqr f(q)dq

Fourier image 
without high Q

b(r) ~  e-iqr f(q)dq

f(q) ~ ∫ eiqr b(r)dr

 courtesy of A. Balagurov
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Fourier synthesis of 
HgBa2CuO4+δ structure

HgBa2CuO4+δ structure:
the О3 position is partially 
filled, n(O3) = δ = 0.12.

Hg

O1

O2BaCu

O3

O3 Difference synthesis.
Cross-section: 
0 ≤ x ≤ 1,
0 ≤ y ≤  1, 
z = 0

Cross-section: 
0 ≤ x = y ≤ 1,
0 ≤ z ≤ 0.5

Cu

Ba
O1

O1

Cu

Hg

Hg

O3

 courtesy of A. Balagurov
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Diffraction limit

b(r) ~  e-iqr f(q)dq

lс ≈ 2π/Q ≥ λmin/2  –  diffraction limit

b(r) ~  e-iqr f(q)dq,    Q = qmax 

 courtesy of A. Balagurov
Saturday, 26 October 2013
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Diffraction limit

b(r) ~  e-iqr f(q)dq

As a rule:  for diffraction   λmin ≈ 1 Å, i.e. lc ≈ 0.5 Ǻ,
   for SANS  Q ≈ 0.5 Å-1, i.e. lc ≈ 20 Ǻ.

lс ≈ 2π/Q ≥ λmin/2  –  diffraction limit

b(r) ~  e-iqr f(q)dq,    Q = qmax 

In practice: for interatomic distances σ ~ 0.002 Å, 
       for lattice parameters   σ < 0.0001 Å,
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Diffraction limit

b(r) ~  e-iqr f(q)dq

As a rule:  for diffraction   λmin ≈ 1 Å, i.e. lc ≈ 0.5 Ǻ,
   for SANS  Q ≈ 0.5 Å-1, i.e. lc ≈ 20 Ǻ.

lс ≈ 2π/Q ≥ λmin/2  –  diffraction limit

b(r) ~  e-iqr f(q)dq,    Q = qmax 

In practice: for interatomic distances σ ~ 0.002 Å, 
       for lattice parameters   σ < 0.0001 Å,
      

Diffraction limit is overcome owing to:
 - periodicity of a structure,
 - parametric description of an object.

 courtesy of A. Balagurov
Saturday, 26 October 2013



PSI master class’13

Powder neutron diffractometers

17

European Portal for Neutron Scattering 
http://pathfinder.neutron-eu.net
http://www.neutrons-ensa.eu/

Text
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Powder neutron diffractometers

SINQ/PSI, CH Structure: DMC, HRPT, 
Strain scanner: POLDI

ILL, FR D20, D2B,...

LLB, FR G41, G42

ISIS, UK GEM, HRPD, PEARL

FRM-II, GE SPODI

FLNP/Dubna, RU HRFD, DN2, DN12
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Powder ND at SINQ/PSI

HRPT - High Resolution Powder 
Diffractometer for Thermal Neutrons at SINQ DMC - cold neutron  powder diffractometer 
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Powder ND at SINQ/PSI

HRPT - High Resolution Powder 
Diffractometer for Thermal Neutrons at SINQ DMC - cold neutron  powder diffractometer 
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Example of HRPT diffraction pattern
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Powder ND at SINQ/PSI

HRPT - High Resolution Powder 
Diffractometer for Thermal Neutrons at SINQ DMC - cold neutron  powder diffractometer 
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Powder ND at SINQ/PSI
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cf. resolution/q-range

22

DMC range at 4.5Å

HRPT 1.9Å

magnetic 
contribution
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Cf. resolution/q-range
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DMC, 4.5Å

excellent resolution
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Complementarity 1.9Å HRPT and 4.5Å DMC
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1) Precise structure refinement complementary to 
x-rays 

2) Magnetic ordering phenomena. For small 
moments and/or very long-periodic structure 
DMC is much better.

3) Direct structure solution. Phase analysis of 
(new) materials 

High Resolution Powder Diffractometer 
for Thermal Neutrons at PSI.

 Applications of HRPT

Saturday, 26 October 2013
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More information about HRPT

26

Saturday, 26 October 2013



PSI master class’13

More information about HRPT
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HRPT neutron
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More information about HRPT
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HRPT neutron
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Instrument view at SINQ target 
station
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Instrument view at SINQ target 
station
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Instrument view at SINQ target 
station
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SINQ hall

28

SINQ Elephant
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“Elephant” - shielding of primary 
beam (200 tons)
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Neutron flux from the D2O moderator  
at HRPT/NEUTRA (white beam) 
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DMC flux

32
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neutron monochromator
fixed 120 take off angle
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neutron monochromator
fixed 120 take off angle

120o
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Ge hkk focusing monochromator

34
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Ge hkk focusing 
monochromator

35

Monochromator hight: 11slabs*25=255mm
Beam spot hight at sample position 
is smaller due to vertical focusing:    60mm
Wavelength is chosen by rotation along (hkk)
Mosaic 15’  

3.3!

Flat

Focused
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2θM=90°2θM=90° 2θM = 120°2θM = 120°
(hkk) 
Ge

λ, Å Effective 
intensity

λ, Å Effective 
intensity

311 2.40971 0.64 2.9536 ~0.16
400 1.99844,5 2.4491,3 0.19
133 1.8324 1.00 2.2461,2

511 1.5384 1.55 1.886 1.0
533 1.2183 0.83 1.494 0.90
711 1.1194 0.60 1.372 0.71
733 0.9763 0.34 1.197 0.63
822 0.9419 0.48 1.154 0.79
466 1.044 0.27

Flexible choice of wavelength, resolution/intensity
• Wavelength is selected by (hkk) plane of Ge-monochromator
• Resolution and intensity are controlled by appropriate primary/secondary 

collimations and take-off-angle of the monochromator (120o or 90o)
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90
°

12
0°

160° Si-Filter, N2-cooled

Beam reductions

High energy neutron
beam shutter

Collimators α1
Oscillating radial 
collimator

Beam stop

3He multidetector

Monochromator Gehkk

Thermal shutter

Variable slit

Vert./horiz. 
slits

PGC Filter (opt) 

Neutron beam monitor

Evacuated 
beam tube

Monochromator
shielding (elephant)

Detector
shielding

Monochromatic 
beam shielding

37

primary beam collimator(s): 
6’, 12’, 24’, 30’

HRPT resolution
horizontal angular divergence control

mosaic spread of the 
monochromator  15’ 

slit system for 
monochromatic beam

and 
sample diameter

α1

α2

α3
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Resolution calibration

38

λ=1.9Å, 12’/24’
10mm, Na2Al12Ca3F14
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Resolution and intensity (2)

39

Comparison of resolution functions for different primary-secondary 
collimations. Typical modes are HI:40ʼ-, MR:12ʼ-24ʼ, HR:6ʼ-12ʼ. Counting 
rates are decreased by a factor of ~3 and ~(8-10) for MR and HR, 
respectively.     
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Detector

40

• 3He (3.6 bar) + CF4 (1.1 bar), effective detection length 3.5 cm, 15 cm 
hight

• Volume 100L, Voltage -6.7kV 
•  Efficiency 80% @ 1.5 Å
• 1600 wires with angular separation 0.1o (2.6 mm), 1500 mm to sample

detector
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Detector chamber. 1600 wires

41

1600 wires with angular separation 0.1o (2.6mm)

Saturday, 26 October 2013



PSI master class’13

Oscillating radial collimator to avoid 
scattering from sample environment. 

42

radial 
collimator
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HRPT radial collimators

Detector

Radial 
collimator

Sample

2θ

Cryostat walls, etc

<0.03% for spurious Bragg peaks

Radial collimator with the 
shielding.
There are two radial 
collimators with 14mm and 
28mm full width full 
maximum triangular 
transmission function. 

Saturday, 26 October 2013



PSI master class’13

Samples, T, P, H and other 
equipment

• standard sample container: 6-10 mm dia x 50 mm 
(<4cm3) 

• due to low background small samples can be measured 
(30 mm3)

• zero matrix high pressure cells: 
• clamp cells for 9 and 15 kbar 
• Paris Edinburgh cell 100 kbar

• standard LNS sample environment: 
• Temperature = 50 mK—1800K, 
• Magnetic field H = 4 T (vertical)

• Sample changers 4-8 samples, T=1.5-300 K

44
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standard sample containers: 6-10 mm 
dia x 50 mm (<4cm3) 
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Samples, T, P, H and other 
equipment

• standard sample container: 6-10 mm dia x 50 mm 
(<4cm3) 

• due to low background small samples can be 
measured (30 mm3)

• zero matrix high pressure cells: 
• clamp cells for 9 and 15 kbar 
• Paris Edinburgh cell 100 kbar

• standard LNS sample environment: 
• Temperature = 50 mK—1800K, 
• Magnetic field H = 4 T (vertical)

• Sample changers 4-8 samples, T=1.5-300 K
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Samples, T, P, H and other 
equipment

• standard sample container: 6-10 mm dia x 50 mm 
(<4cm3) 

• due to low background small samples can be measured 
(30 mm3)

• zero matrix high pressure cells: 
• clamp cells for 9 and 15 kbar 
• Paris Edinburgh cell 100 kbar

• standard LNS sample environment: 
• Temperature = 50 mK—1800K, 
• Magnetic field H = 4 T (vertical)

• Sample changers 4-8 samples, T=1.5-300 K
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clamp cells for 9 and 14 kbar 

48
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Paris Edinburgh cell 100 kbar
[Th. Straessle et al]

49
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Samples, T, P, H and other 
equipment

• standard sample container: 6-10 mm dia x 50 mm 
(<4cm3) 

• due to low background small samples can be measured 
(30 mm3)

• zero matrix high pressure cells: 
• clamp cells for 9 and 15 kbar 
• Paris Edinburgh cell 100 kbar

• standard LNS sample environment: 
• Temperature = 50 mK—1800K, 
• Magnetic field H = 6 T (vertical)
• Automatic He, N2 refilling systems

• Sample changers 4-8 samples, T=1.5-300 K

50
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Samples, T, P, H and other 
equipment

• standard sample container: 6-10 mm dia x 50 mm 
(<4cm3) 

• due to low background small samples can be measured 
(30 mm3)

• zero matrix high pressure cells: 
• clamp cells for 9 and 15 kbar 
• Paris Edinburgh cell 100 kbar

• standard LNS sample environment: 
• Temperature = 50 mK—1800K, 
• Magnetic field H = 4 T (vertical)
• Automatic He, N2 refilling systems

• Sample changers 4-8 samples, T=1.5-300 K
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HRPT room temperature 8-sample changer
- Eight samples mounted on a caroussel-type changer, few 
seconds to bring the next one into the measurement position;
- Independent sample rotation mechanism – for reducing the 
preferred orientation aberrations.

Fully loaded with 8 samples, the sample changer is ready to be installed in-place on the HRPT sample table.
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HRPT room temperature 8-sample changer
- Eight samples mounted on a caroussel-type changer, few 
seconds to bring the next one into the measurement position;
- Independent sample rotation mechanism – for reducing the 
preferred orientation aberrations.

Fully loaded with 8 samples, the sample changer is ready to be installed in-place on the HRPT sample table.

User Experiment 20061119 
“Structure of leached Raney 
 Ni alloys” (Nov. 2007):
~80 samples measured in 
       4 beam days:

20 samples/day!
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HRPT low temperature 4-sample changer

A device for routine powder diffraction measurements at 
temperatures between 1.5K -300K. 

- All samples have the same temperature, i.e. time for 
temperature change is saved;

- Four samples mounted on a caroussel-type changer, that is a 
special inset for an orange cryostat
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HRPT low temperature 4-sample changer

54
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HRPT low temperature 4-sample changer
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Examples of HRPT applications

55
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Mn-O bond lengths

56

(La1-yPry)0.7Ca0.3(Mn3+)0.7 (Mn4+)0.3O3
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Orbital and charge ordering OO/CO

57

Mn-O bond lengths in LPCM (y=0.7)

sp.gr. Pnma

(l )

(m )

(s)

(La1-yPry)0.7Ca0.3(Mn3+)0.7 (Mn4+)0.3O3
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Where are Ni ions in the trimer?

58

 

Ca3Cu3−xNix(PO4)4 (x=0,1,2)

Ca3Cu3(PO4)4 is a novel quantum spin 
trimer system in which the three Cu2+(S = 
1/2 ) spins are antiferromagnetically 
coupled giving rise to a doublet ground 
state. By substituting a Cu2+ spin in the 
trimer by Ni2+ (S = 1) a singlet ground state 
could be in principle realized offering the 
observation of the Bose-Einstein 
condensation in a quantum spin trimer 
system.
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Ca3Cu3(PO4)4 is a novel quantum spin 
trimer system in which the three Cu2+(S = 
1/2 ) spins are antiferromagnetically 
coupled giving rise to a doublet ground 
state. By substituting a Cu2+ spin in the 
trimer by Ni2+ (S = 1) a singlet ground state 
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observation of the Bose-Einstein 
condensation in a quantum spin trimer 
system.

 

Crystal and magnetic structures and magnetic excitations  
spin-trimer system Ca3Cu3−xNix(PO4)4 (x=0,1,2) 

Where are Ni ions in the trimer?
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C(CrBr)4-liquid in gas pressure cell. T-P 
phase diagram

M.Barrio, et al (2009)

HRPT, 1.9A, HI

1st coordination 
sphere 

2nd 3rd ... 
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High pressure structure transition in quantum 
dimer system SrCu2(BO3)2

LNS, PSI:  V. Pomjakushin, Th. Strassle, 
K. Conder, E. Pomjakushina
EPFL: M. Zayed, H. Ronnow

p=3.7GPa, known tetragonal I-42m 
structure

p=8GPa: monoclinic C2: the new 
structure solved from the HRPT 
data!

Anvil pressure cell installed at 
HRPT diffractometer

detector shielding + radial 
collimator + BN anvils + low 
noise ellectronics = excellent 
peak to background ratio

The S=1/2 moments of the Cu2+ ions 
are arranged in a 2D lattice of 
strongly coupled dimers (J=85 K).

• The material is predicted to 
undergo a quantum phase 
transition by application of 
hydrostatic pressure.

• To fully understand the 
magnetic properties of the 
material the knowledge of the 
exchange paths as a function of 
pressure is mandatory. 
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High pressure structure transition in quantum 
dimer system SrCu2(BO3)2

p=3.7GPa, known tetragonal 
I-42m structure

p=8GPa: monoclinic C2: the new 
structure solved from the HRPT data!
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Magnetic structure of Cu2CdB2O6 exhibiting a quantum-
mechanical magnetization plateau and classical 

antiferromagnetic long-range order 

M.Hase, et al (2009)

F(H) ∝M⊥Cu exp(2πiRCuH)
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Lattice distortion (0.1%) and magnetic 
structure in NiO under high pressures 

(up to 130kbar) at HRPT

64

@ p=1bar: µNi=1.73(9) µB, k =[½ ½ ½] in Fm3m 
R3-m: a=2.9534(2)Å, α=60.061(2)o

S. Klotz, Th. Strässle, G. Rousse, 
G. Hamel, V. Pomjakushin, APL 
2005.
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High-pressure studies of PbMg1/3Ta2/3O3 relaxor 
ferroelectric

S. Gvasaliya, V. Pomjakushin, B. Roessli, Th. Strässle, S. Klotz, S. Lushnikov 

Relaxor ferroelectrics are peculiar crystals where the 
giant dielectric permittivity appears without 
structural phase transition. There is no theory which 
describe their properties. Among other anomalies, 
there is a suppression of the peak in the dielectric 
permittivity and of the intensity of diffuse scattering 
under hydrostatic pressure. In order to understand 
underlying physics the structure of a model relaxor 
was studies up to hydrostatic pressure P~7 GPa

Photo of a high pressure setup using 
Paris-Edinburgh pressure cell at HRPT 
diffractometer. The sample volume is 
less than 100 mm3, approximately 
two orders of magnitude smaller than in a 
standard setup. 
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Observed and calculated diffraction spectrum 
from PbMg1/3Ta2/3O3. Increased background is 
probably due to the unmasked part of the steel leg 
of the pressure cell. The crystal structure remains 
cubic at all pressures. The important changes are: 
(i) Reduction of the Lead displacements at 
increased pressures (ii) Appearance of the 
anisotropy in the Oxygen thermal motion – its 
ellipsoid becomes significantly elongated toward 
the Lead ions. Thus these change are responsible 
for the suppression of the peak in dielectric 
permittivity and of the diffuse scattering. Similar 
behaviors were never reported earlier. 
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More information about HRPT
http://sinq.web.psi.ch/hrpt

OR
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The End

68
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