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Purpose of this lecture is to show:
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1. Basic principles of magnetic neutron diffraction.

2. Classification of the magnetic structures that are used in the 
literature, such as Shubnikov (or black-white) space groups and 
irreducible representation notations. Relation between two 
approaches.

3. How one can construct all possible symmetry adapted magnetic 
structures  for a given crystal structure and a propagation vector 
(a point on the Brillouine zone) using representation (rep) analysis 
of magnetic structures. This way of description/construction is 
related to the Landau theory of second order phase transitions 
and applies not only to magnetic ordering,  but generally to any 
type of phase transitions in crystals. 
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Literature on (magnetic) neutron 
scattering

Neutron scattering (general)
S.W. Lovesey, “Theory of Neutron Scattering from Condensed Matter”, 
Oxford Univ. Press, 1987. Volume 2 for magnetic scattering. Definitive 
formal treatment

G.L. Squires, “Intro. to the Theory of Thermal Neutron Scattering”, C.U.P., 
1978, Republished by Dover, 1996. Simpler version of Lovesey. 

All you need to know about magnetic neutron 
diffraction. Symmetry, representation analysis

 Yu. A. Izyumov, V. E. Naish and R. P. Ozerov, ”Neutron diffraction of magnetic 
materials”, New York [etc.]: Consultants Bureau, 1991.
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Literature on (magnetic) symmetry and 
magnetic neutron diffraction

All you need to know about magnetic neutron diffraction. 
Magnetic symmetry, representation analysis

                      Yu. A. Izyumov, V. E. Naish and R. P. Ozerov, 
                     ”Neutron diffraction of magnetic materials”, New York [etc.]: 
                      Consultants Bureau, 1981-1991. 

Groups, representation analysis, and applications in physics

                    J.P Elliott and P.G. Dawber 
                    “Symmetry in physics”,  vol. 1,1979 The Macmillan press LTD
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Web/computer resources to perform group theory 
symmetry analysis, in particular magnetic structures. 
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• Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell    

ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu

• Bilbao Crystallographic Server
                                                  http://www.cryst.ehu.es/

General tools for representation analysis, Shubnikov groups, 3D+n, 
and much more...  
Web sites with  a collection of software which applies group 
theoretical methods to the analysis of phase transitions in crystalline 
solids.

http://iso.byu.edu
http://iso.byu.edu
http://www.cryst.ehu.es
http://www.cryst.ehu.es
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ISOTROPY Software Suite
Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, 
Provo, Utah 84606, USA, stokesh@byu.edu

Description: The ISOTROPY software suite is a collection of software which applies group theoretical methods to the analysis of 
phase transitions in crystalline solids. 
How to cite: ISOTROPY Software Suite, iso.byu.edu.

References and Resources
Isotropy subgroups and distortions

• ISODISTORT: Explore and visualize distortions of crystalline structures. Possible distortions include atomic displacements, 
atomic ordering, strain, and magnetic moments.

• ISOSUBGROUP: Coming soon!
• ISOTROPY: Interactive program using command lines to explore isotropy subgroups and their associated distortions.
• SMODES: Find the displacement modes in a crystal which brings the dynamical matrix to block-diagonal form, with the smallest 

possible blocks.
• FROZSL: Calculate phonon frequencies and displacement modes using the method of frozen phonons.

Space groups and irreducible representations
• ISOCIF: Create or modify CIF files.
• FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell.
• New! ISO-IR: Tables of Irreducible Representations. The 2011 version of IR matrices.
• ISO-MAG: Tables of magnetic space groups, both in human-readable and computer-readable forms.

Superspace Groups
• ISO(3+d)D: (3+d)-Dimensional Superspace Groups for d=1,2,3
• ISO(3+1)D: Isotropy Subgroups for Incommensurately Modulated Distortions in Crystalline Solids: A Complete List for One-

Dimensional Modulations
• FINDSSG: Identify the superspace group symmetry given a list of symmetry operators.
• TRANSFORMSSG: Transform a superspace group to a new setting.

Phase Transitions
• COPL: Find a complete list of order parameters for a phase transition, given the space-group symmetries of the parent and 

subgroup phases.
• INVARIANTS: Generate invariant polynomials of the components of order parameters.
• COMSUBS: Find common subgroups of two structures in a reconstructive phase transition

Linux
• ISOTROPY Software Suite for Linux: includes ISOTROPY, FINDSYM, SMODES, COMSUBS.

iso.byu.edu

http://stokes.byu.edu/iso/references.php
http://stokes.byu.edu/iso/references.php
http://stokes.byu.edu/iso/isodistort.php
http://stokes.byu.edu/iso/isodistort.php
http://stokes.byu.edu/iso/isosubgroup.php
http://stokes.byu.edu/iso/isosubgroup.php
http://stokes.byu.edu/iso/isowww.php
http://stokes.byu.edu/iso/isowww.php
http://stokes.byu.edu/iso/smodes.php
http://stokes.byu.edu/iso/smodes.php
http://stokes.byu.edu/iso/frozsl.php
http://stokes.byu.edu/iso/frozsl.php
http://stokes.byu.edu/iso/isocif.php
http://stokes.byu.edu/iso/isocif.php
http://stokes.byu.edu/iso/findsym.php
http://stokes.byu.edu/iso/findsym.php
http://stokes.byu.edu/iso/irtables.php
http://stokes.byu.edu/iso/irtables.php
http://stokes.byu.edu/iso/magneticspacegroups.php
http://stokes.byu.edu/iso/magneticspacegroups.php
http://stokes.byu.edu/iso/ssg.php
http://stokes.byu.edu/iso/ssg.php
http://stokes.byu.edu/iso/incommensurate.php
http://stokes.byu.edu/iso/incommensurate.php
http://stokes.byu.edu/iso/findssg.php
http://stokes.byu.edu/iso/findssg.php
http://stokes.byu.edu/iso/transformssg.php
http://stokes.byu.edu/iso/transformssg.php
http://stokes.byu.edu/iso/copl.php
http://stokes.byu.edu/iso/copl.php
http://stokes.byu.edu/iso/invariants.php
http://stokes.byu.edu/iso/invariants.php
http://stokes.byu.edu/iso/comsubs.php
http://stokes.byu.edu/iso/comsubs.php
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Computer programs to construct symmetry adapted 
magnetic structures and fit the experimental data.

• Juan Rodríguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/ 
Fullprof suite

• Vaclav Petricek, Michal Dusek (Prague) Jana2006 http://
jana.fzu.cz/

• Wiesława  Sikora et al, http://www.ftj.agh.edu.pl/~sikora/modyopis.htm 
program MODY

• Andrew S. Wills  (UCL) http://www.ucl.ac.uk/chemistry/staff/
academic_pages/andrew_wills                          
program SARAh

• ...
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Workhorses: Computer programs for representation analysis to be used 
together with the diffraction data analysis programs to determine magnetic 
structure from neutron diffraction (ND) experiment. 

http://www.ill.fr/sites/fullprof/
http://www.ill.fr/sites/fullprof/
http://www.ftj.agh.edu.pl/~sikora/modyopis.htm
http://www.ftj.agh.edu.pl/~sikora/modyopis.htm
http://www.ftj.agh.edu.pl/~sikora/modyopis.htm
http://www.ftj.agh.edu.pl/~sikora/modyopis.htm
http://www.ftj.agh.edu.pl/~sikora/modyopis.htm
http://www.ftj.agh.edu.pl/~sikora/modyopis.htm
http://www.chem.ucl.ac.uk/people/wills/magnetic_structures/magnetic_structures.html
http://www.chem.ucl.ac.uk/people/wills/magnetic_structures/magnetic_structures.html
http://www.chem.ucl.ac.uk/people/wills/magnetic_structures/magnetic_structures.html
http://www.chem.ucl.ac.uk/people/wills/magnetic_structures/magnetic_structures.html
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  Comparison of neutron scattering lengths (fm)
       
magnetic
Mn3+ (S=2):  -10.8,   Cu2+ (S=½):  -2.65
nuclear 
Mn            :   -3.7,    Cu:               7.7

neutron magnetic moment in μn -1.91 classical electron radius
e2

mc2

1. The size

fm=fermi=10-13 cm
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magnetic scattering intensity can be  
larger than the nuclear one

magnetic nuclear

11
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Magnetic neutron scattering on an atom

“magnetic scattering amplitude” = γre

�
Q̂⊥

�
,

�
Q̂

�
=

�
�

i
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Magnetic neutron scattering on an atom
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ϕ |Q⊥| = |S| sin(ϕ)
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Elastic scattering intensity

14

Neutron scattering cross-section 
(for unpolarized neutron beam)

dσ

dΩ
∝ |Q⊥|2
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incoherent magnetic 
scattering

I ∼ S(S + 1)f2(q)

q, Å−2
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Elastic scattering on a lattice of spins

incoherent

coherent Bragg scattering

I ∼
�
Ŝ2

�
= S(S + 1)

15

Magnetic Bragg 
peaks

I ∼ | < S > |2F 2
HKL
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Magnetic structure

16

Examples

0th cell

k=[0,0]
AFM

S01 = Sx + Sy

1

2

S02 = −S01

0th cell

k=[0,0]
FM

S01 = Sx + Sy

1



Examples of magnetic structures. 
Propagation vector formalism k≠0

S0 = Sxeiφx + Syeiφy + Sze
iφzFourie amplitude is complex

(one can not avoid this)

Magnetic moment
is a real quantity Bloch waves

S(tn) =
1
2
(S0e

+2πitnk + S∗0e
−2πitnk)



Examples of magnetic structures. 
Propagation vector formalism k≠0

S0 = Sxeiφx + Syeiφy + Sze
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Examples of magnetic structures. 
Propagation vector formalism k≠0

S0 = Sxeiφx + Syeiφy + Sze
iφzFourie amplitude is complex

(one can not avoid this)

 k=[0,0,kz]

1

modulated (in)commensurate 
helix

SDW
cycloidal
spiral

S01 = Sx + iSy + Sze
iφz

S01 = Sx + Sye
iπ
2 = Sx + iSy

Magnetic moment
is a real quantity Bloch waves

0th cell

S(tn) =
1
2
(S0e

+2πitnk + S∗0e
−2πitnk)

ϕn = 2πitnk
S(tn) = Sx cos(ϕn) + Sy sin(ϕn)
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Scattering from the lattice of spins. 
Structure factor F(q)

18

In ND experiment we measure correlators of Fourier transform of magnetic lattice

polarized neutron 
(chiral) term. structure factor

dσ

dΩ
∝ (F(q) · F∗(q) + iP · [F(q)× F

∗(q)]) · δ(H± k− q)
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Scattering from the lattice of spins. 
Structure factor F(q)

18

Bragg peak at
q = H∓ k

In ND experiment we measure correlators of Fourier transform of magnetic lattice

polarized neutron 
(chiral) term. 

Sum runs over all atoms in zeroth cell 

Complex amplitude
of spin modulation 
perpendicular to q

position of spin in 
the zeroth cell

F(q)+k =
�

j

1
2
S
∗

⊥0j
exp(irjq)F(q)−k =

�

j

1
2
S
⊥0j

exp(irjq)

structure factor

dσ

dΩ
∝ (F(q) · F∗(q) + iP · [F(q)× F

∗(q)]) · δ(H± k− q)
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h,k,0

the mesh is for the parent I4/mmm cell
T=300K, (hk0) plane of CsyFe2-xSe2

{k2} = {[ 1
5
,
2
5
, 1̄]}

{k1} = {[ 2
5
,
1
5
, 1]}

4-arms k-vector stars

Note: the k-vectors are shown in 
projection. Their origin is at L=+/-1

superstructure satellites

(110)(-110)

(200)(-200)

(-1-10) (1-10)

Example of modulated structure and 
single crystal diffraction
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Example of complex magnetic structure

 

Zeroth cell contains 14 spins 
of Tb3+.
Conventional magnetic unit 
cell contains 126 spins of 
Tb3+!!

k-vector=[1/3, 1/3, 0]
P6/m

Antiferromagnetic three sub-lattice ordering in Tb14Au51



Example of complex magnetic structure

 

Zeroth cell contains 14 spins 
of Tb3+.
Conventional magnetic unit 
cell contains 126 spins of 
Tb3+!!

k-vector=[1/3, 1/3, 0]
P6/m

Antiferromagnetic three sub-lattice ordering in Tb14Au51

PHYSICAL REVIEW B 72, 134413 (2005) 
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Some legitimate questions

22

1. How do we describe/classify/predict magnetic 
symmetries and structures?

2. How do we construct all symmetry allowed magnetic 
structures for a given crystal structure?
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Magnetic structure/symmetry seen by ND

23

Magnetic interactions are described by QM Hamiltonian with quantum spin operators

si = �ŝi� = sxex + syey + szez �ŝz� ,
�
ŝ2

�

Magnetic structure that we observe by ND is an ordered set of classical axial 
vectors                    that can be directed at any angle with respect to crystal axes and 
field.  
In the representation symmetry analysis we deal with the classical spins transforming 
as axial vectors under symmetry operations of space groups such as rotations, 
inversion, etc. 

si = �ŝi�

In a diffraction experiment the problem is reduced and we observe only the spin 
expectation values: <> averaging over all states (wave function ψ) of the scatterer.

Ĥ = −
�

i,j

Jij ŝi · ŝj +
�

i

Diŝ
2
z + ...
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Atomic structure of any 3D crystal can be 
described by one of 230 3D Space* groups  

 Artur Moritz 
Schöenflies 1853 – 1928.
“Kristallsysteme 
Und Kristallstruktur” (1891)

* E.S. Fedorov 1853 – 1919.
“Symmetry of regular 
figures” (1890)
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Basic crystallography (3 slides)

25
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230 3D Space* groups  

Groups of transformations/motions of three dimensional 
homogeneous discreet space into itself

Two kinds of 
transformations/motions =   1. rotations     (32 point groups)
                             e.g:

                                             2. lattice translations                                                  t = n1t1 + n2t2 + n3t3

* E.S. Fedorov (1890) A.Schoenflies (1890)

Space group ~ (semi)product point crystallographic group and Bravias group. 

(14 Bravias groups)  
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230 space groups. New symmetry elements 

27

Product of 32 point crystallographic groups and 14 Bravias groups 
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230 space groups. New symmetry elements 

27

Product of 32 point crystallographic groups and 14 Bravias groups 

Screw axes or axes of screw rotations = 
rotation + translation. e.g. 21, 31,32, ...   

Glide-reflection planes = 
mirror reflection m + translation by t/2, 
a, b, n   
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International Tables
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International Tables

zeroth block of SG

Hermann–Mauguin
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International Tables

zeroth block of SG

general position:
rotation matrix + translation

Hermann–Mauguin

Schoenflies symbol

{h|τh}

Hermann–Mauguin, short
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1

Two ways of description of magnetic 
structures

1

2

3

4

Magnetic structure is an axial vector function S(r) defined on the discreet 
system of points (atoms), e.g.  S(r) = s(r1) ⊕ s(r2) ⊕ s(r3) ⊕ s(r4)
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1

Two ways of description of magnetic 
structures

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin/time reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG

1

2

3

4

Magnetic structure is an axial vector function S(r) defined on the discreet 
system of points (atoms), e.g.  S(r) = s(r1) ⊕ s(r2) ⊕ s(r3) ⊕ s(r4)
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Two ways of description of magnetic 
structures

30

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG
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Two ways of description of magnetic 
structures

30

1. Magnetic or Shubnikov groups MSG. Historically the first 
way of description.  A group that leaves S(r) invariant under a 
subgroup of G⊗1’. Identifying those symmetry elements that 
leave S(r) invariant. 
Similar to the space groups (SG 230). The MSG symbol looks 
similar to SG one, e.g.  I4/m’

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG
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1. Magnetic or Shubnikov groups MSG. Historically the first 
way of description.  A group that leaves S(r) invariant under a 
subgroup of G⊗1’. Identifying those symmetry elements that 
leave S(r) invariant. 
Similar to the space groups (SG 230). The MSG symbol looks 
similar to SG one, e.g.  I4/m’

2. Representation analysis. How does S(r) transform 
under g ∈ G (space group)?

S(r) is transformed to Si(r) under g ∈ G according to a 
single irreducible representation* τi of G. Identifying/
classifying all the functions Si(r) that appears under all 
symmetry operators of the space group G

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG

MSG Example:

*each group element g --> matrix τ(g)
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Two ways of description of magnetic 
structures

30

1. Magnetic or Shubnikov groups MSG. Historically the first 
way of description.  A group that leaves S(r) invariant under a 
subgroup of G⊗1’. Identifying those symmetry elements that 
leave S(r) invariant. 
Similar to the space groups (SG 230). The MSG symbol looks 
similar to SG one, e.g.  I4/m’

2. Representation analysis. How does S(r) transform 
under g ∈ G (space group)?

S(r) is transformed to Si(r) under g ∈ G according to a 
single irreducible representation* τi of G. Identifying/
classifying all the functions Si(r) that appears under all 
symmetry operators of the space group G

1. gS(r) = S(r) to itself, where g ∈ subgroup of 
SG⊗1’, 1’=spin reversal, SG (space group)

     or

2. gS(r) = S’(r) to different function defined on the 
same system of points, g ∈ SG

irrep Example:
I4/m, k=0  has 8 1D irreps τ1,... τ8. 

MSG Example:

*each group element g --> matrix τ(g)
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Magnetic space groups and representation 
analysis: competing or friendly concepts?

31

E.F.Bertaut, CNRS, Grenoble
 Representation Analysis 

W.Opechovski, UBC, Vancouver
 Shubnikov magnetic space groups

In 1960th-70th often opposed

Nowdays

(Representation Analysis) and  (Magnetic space groups) are complementary 
and in case k=0 or commensurate (e.g 1/2)  provide identical description of 
magnetic symmetry. 
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Magnetic symmetry. 1651 3D-Shubnikov (Sh 
or Ш) space groups

32

230 space groups (SG)

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova, 
Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

14 Bravias lattice 32 point groups
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Magnetic symmetry. 1651 3D-Shubnikov (Sh 
or Ш) space groups

32

230 space groups (SG)
an additional element: 
spin reversal operator R or color change. 
R-group (1,R)

R( ♖) = ♜

R(☺)=☹
R( ↑) = ↓

⇒

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova, 
Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

14 Bravias lattice 32 point groups
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Magnetic symmetry. 1651 3D-Shubnikov (Sh 
or Ш) space groups

32

230 space groups (SG)
an additional element: 
spin reversal operator R or color change. 
R-group (1,R)

R( ♖) = ♜

R(☺)=☹
R( ↑) = ↓

⇒

additional elements: 
‘anti-elements’ g’=(g·R),  g⋳G 

y

2y

S = ”[v × r]”

y

2y’

 Magnetic Groups = (subgroup of) 
space group G ⊗ R-group

230 (gray) paramagnetic groups Shp

1,1’ ⋳ Shp  ⇒ S=0 , e.g. Pnma1’

230 Single-color magnetic groups
no antielements

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova, 
Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

14 Bravias lattice 32 point groups
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Magnetic symmetry. 1651 3D-Shubnikov (Sh 
or Ш) space groups

32

230 space groups (SG)
an additional element: 
spin reversal operator R or color change. 
R-group (1,R)

R( ♖) = ♜

R(☺)=☹
R( ↑) = ↓

⇒

additional elements: 
‘anti-elements’ g’=(g·R),  g⋳G 

y

2y

S = ”[v × r]”

y

2y’

 Magnetic Groups = (subgroup of) 
space group G ⊗ R-group

230 (gray) paramagnetic groups Shp

1,1’ ⋳ Shp  ⇒ S=0 , e.g. Pnma1’

230 Single-color magnetic groups
no antielements

1191 black/whitе magnetic groups that contain 
additional ‘anti-elements’ g’=(g·R) except g=1 
(identity). No primed 1’ 

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova, 
Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

14 Bravias lattice 32 point groups
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Examples of Sh groups
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Ferromagnetic groups: point 
symmetry allows FM 
orientation of spins 
Only 275 FM groups out of 
1651...
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Examples of Sh groups

33

recap: 
for ‘anti-elements’ g’=(g·R),  g⋳G 
g can be a pure translation t, so t’ 
gives centering/doubling

FIGURES 1.1 MAGNETIC SPACE GROUP LATTICES - 2

C 2a,a+b,c a-b,a+b,c ½(a+b),b,c 2c ½(a+b),b,2c P a+b,b,c a,b,c
P  = P  = P        C = C       C  = C   C  = C  = Cá á á 
     t = a = (1,0,0)       t = c = (0,0,1)            t = ½(a+b) = (½,½,0) 

Orthorhombic System

a,b,c 2a 2a,b,c 2b a,2b,c
P = P                  P  = P              P  = P 2c a,b,2c

P  = P     

á á á 
      t = a = (1,0,0)    t = b = (0,1,0)     t = c = (0,0,1)

C 2a,a+b,c F 2a,a+b,a+c A a,2b,b+c
P  = P P  = P  P  = Pá a+b,b+c,a+c á 
t = a = (1,0,0)      = P t = b = (0,1,0)á 

t = a = (1,0,0)

Ferromagnetic groups: point 
symmetry allows FM 
orientation of spins 
Only 275 FM groups out of 
1651...
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Example of Shubnikov group. Magnetic structure 
of Iron based superconductor KFeSe

I4/m, k=0  has 8 1D irreps τ1,... τ8. 
4 real irreps   <--> Shubnikov groups of I4/m 
4 complex irreps 

I4/m’

One unit cell with Fe

vacancy

8 unique Fe
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Example of Shubnikov group. Magnetic structure 
of Iron based superconductor KFeSe

I4/m, k=0  has 8 1D irreps τ1,... τ8. 
4 real irreps   <--> Shubnikov groups of I4/m 
4 complex irreps 

I4/m’

One unit cell with Fe

vacancy

8 unique Fe
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“Disadvantages” Specifics of Shubnikov Sh-
group description 

35
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Specifics 1: Sh group that describes the magnetic 
structure is not necessarily made from the parent G. 
Thus, it is not an ultimately practical...
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“Disadvantages” Specifics of Shubnikov Sh-
group description 

35

Specifics 1: Sh group that describes the magnetic 
structure is not necessarily made from the parent G. 
Thus, it is not an ultimately practical...

Example 1: 
there are no cubic ferromagnetic Sh-groups. “problems” 
with cubic ferromagnets Fe, Ni,  EuO, EuS, ...
One can find lower symmetry ferromagnetic group, e.g. 
tetragonal  Sh-group  I4/mm’m’ for Fe (Im-3m)
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“Disadvantages” Specifics of Shubnikov Sh-
group description 

35

Specifics 1: Sh group that describes the magnetic 
structure is not necessarily made from the parent G. 
Thus, it is not an ultimately practical...

Example 1: 
there are no cubic ferromagnetic Sh-groups. “problems” 
with cubic ferromagnets Fe, Ni,  EuO, EuS, ...
One can find lower symmetry ferromagnetic group, e.g. 
tetragonal  Sh-group  I4/mm’m’ for Fe (Im-3m)

No Sh group derived from  Pnnm describes CrCl2 
magnetic structure
Cr-atoms in 2a-position
k=[0 1/2 1/2]

Example 2:
CrCl2 orthorhombic space group: Pnnm. 

One can still find less 
symmetric Sh group triclinic 
Sh72=P2sĪ; 

a

b
c
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“Disadvantages” Specifics of Shubnikov Sh-
group description 

35

Specifics 1: Sh group that describes the magnetic 
structure is not necessarily made from the parent G. 
Thus, it is not an ultimately practical...

Example 1: 
there are no cubic ferromagnetic Sh-groups. “problems” 
with cubic ferromagnets Fe, Ni,  EuO, EuS, ...
One can find lower symmetry ferromagnetic group, e.g. 
tetragonal  Sh-group  I4/mm’m’ for Fe (Im-3m)

Specifics 2: 3D Sh do not describe modulated 
structures. 
* No rotations on non-crystallographic angle - no helix. 
* Linear orthogonal transformations preserve the spin 
size - no SDW

No Sh group derived from  Pnnm describes CrCl2 
magnetic structure
Cr-atoms in 2a-position
k=[0 1/2 1/2]

Example 2:
CrCl2 orthorhombic space group: Pnnm. 

One can still find less 
symmetric Sh group triclinic 
Sh72=P2sĪ; 

a

b
c
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Specifics 1: Sh group that describes the magnetic 
structure is not necessarily made from the parent G. 
Thus, it is not an ultimately practical...

Example 1: 
there are no cubic ferromagnetic Sh-groups. “problems” 
with cubic ferromagnets Fe, Ni,  EuO, EuS, ...
One can find lower symmetry ferromagnetic group, e.g. 
tetragonal  Sh-group  I4/mm’m’ for Fe (Im-3m)

Specifics 2: 3D Sh do not describe modulated 
structures. 
* No rotations on non-crystallographic angle - no helix. 
* Linear orthogonal transformations preserve the spin 
size - no SDW

No Sh group derived from  Pnnm describes CrCl2 
magnetic structure
Cr-atoms in 2a-position
k=[0 1/2 1/2]

Example 2:
CrCl2 orthorhombic space group: Pnnm. 

One can still find less 
symmetric Sh group triclinic 
Sh72=P2sĪ; 

a

b
c

Problem is solved in 3D+1 
(3D+n) superspace 
crystallographic magnetic-
group.
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Introduction to representation theory with 
relatively simple example of magnetic 

representation. Classification of magnetic 
structures by irreducible representations irreps 

of group

36
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Why irreducible representations of space group 
is so important for magnetic structure?

37
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Symmetry in QM

38

Ĥ(r), r = (r1, r2, r3, ... rn) , vector space with dimension n
ψ(r) arbitrary wave function
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Symmetry in QM
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Ĥ(r), r = (r1, r2, r3, ... rn) , vector space with dimension n
ψ(r) arbitrary wave function
G - group of coordinate transformation, T(Ga) - induced transformations in ψ-space
T (Ga)ψ(r) = ψ�(r) = ψ(G−1

a r)
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Ĥ(r), r = (r1, r2, r3, ... rn) , vector space with dimension n
ψ(r) arbitrary wave function

if H=H’: G is called symmetry group of the HamiltonianT (Ga)HT
−1(Ga) = H

�

G - group of coordinate transformation, T(Ga) - induced transformations in ψ-space
T (Ga)ψ(r) = ψ�(r) = ψ(G−1

a r)
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Symmetry in QM
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           eigenvalues/functions
 Ĥψν = Eνψν      ⇒ Eν , ψν 1 , ψν 2 , ... ψν lν

Ĥ(r), r = (r1, r2, r3, ... rn) , vector space with dimension n
ψ(r) arbitrary wave function

if H=H’: G is called symmetry group of the HamiltonianT (Ga)HT
−1(Ga) = H

�

G - group of coordinate transformation, T(Ga) - induced transformations in ψ-space
T (Ga)ψ(r) = ψ�(r) = ψ(G−1

a r)
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Symmetry in QM

38

           eigenvalues/functions
 Ĥψν = Eνψν      ⇒ Eν , ψν 1 , ψν 2 , ... ψν lν

Ĥ(r), r = (r1, r2, r3, ... rn) , vector space with dimension n
ψ(r) arbitrary wave function

if H=H’: G is called symmetry group of the HamiltonianT (Ga)HT
−1(Ga) = H

�

G - group of coordinate transformation, T(Ga) - induced transformations in ψ-space
T (Ga)ψ(r) = ψ�(r) = ψ(G−1

a r)

τij1 0 0 0

0

0

0

τij1 0 0

0 τij2 0

0 0 ...

  ∑⊕
rep  ⇒      irreps:

Eν, ψν lν can be classified by irreps τijν 
degeneracy lν  is ≥ dimension of τijν !

Tij =
�

⊕
nντν

ij

For example:
* Crystal field splitting
* Molecular vibrations
* Phonons
* Magnetic structure
... e.v.
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Example: point group 32

39

Point group Hermann–Mauguin symbol 32  (D3 Schoenflies symbol)
e.g Quartz

or regular triangle
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Multiplication table, isomorphism

40

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle
6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp.  

R1

xhex
yhex

uhex

1 31 32 2u 2y 2xhex  axes in xy-plane
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Point group 32 (D3 Schoenflies symbol)
e.g regular triangle
6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp.  

R1

xhex
yhex

uhex

1 31 32 2u 2y 2xhex

multiplication table

 axes in xy-plane
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Multiplication table, isomorphism

40

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle
6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp.  

R1

xhex
yhex

uhex

1 31 32 2u 2y 2xhex

1

2 3

multiplication table

 axes in xy-plane
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Multiplication table, isomorphism

41

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

R1

xhex
yhex

uhex

2x1 31 32 2u 2yhex

1 31 32 2u 2y 2xhex
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Multiplication table, isomorphism

41

Point group 32 (D3 Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

R1

xhex
yhex

uhex

2x1 31 32 2u 2yhex

1 31 32 2u 2y 2xhex

Two groups are isomorphous if they have the same multiplication table
Quartz 32 D3

Ammonia molecule 3m C3v
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Group representations:  formal definition

42

Dimension of representation is equal to the 
dimension of the vector space

If we can find a set of square matrices (in general 
linear operators) T(ga) in a vector space L, which 
correspond to the elements ga of group G and have the 
same multiplication table, i.e. T(ga) T(gb)= T(ga gb) 
then this set of matrices is said to form a matrix 
‘representation’ of the group G in space L. 

multiplication table

n matrices lxl. n  is order of G

, T (g2) =





t211 t212 t213 ... t21l
t221 t222 t223 ... t22l
. . . .
. . . .
. . . .

t2l1 t2l2 t2l3 ... t2ll




, T (g3) = ...T (g1) =





t111 t112 t113 ... t11l
t121 t122 t123 ... t12l
. . . .
. . . .
. . . .

t1l1 t1l2 t1l3 ... t1ll
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Linear vector spaces

43

3-dimensional  space of 
particle displacement (or 
magnetic moment)

s =
�

j=x,y,z

sjej
 S

0 ex

ey

ez
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Linear vector spaces

43





sx1

sy1

sz1

sx2

sy2

sz2

...

...

...
sxN

syN

szN





3N-dimensional space of  all 
possible displacements (or 
magnetic moments)
Function ψ is defined on N 
discreet points 

ψ =
N�

n=1

�

j=x,y,z

sjnejn

3-dimensional  space of 
particle displacement (or 
magnetic moment)

s =
�

j=x,y,z

sjej
 S

0 ex

ey

ez

Apr.14th,2009

a large enough barrier to prevent lost superparamagnetism at zero field. A

long relaxation time is required. Also, it should be stable in environment,

hard to be distorted by other clusters, metallic surfaces, or other source of

external field such as electromagnetic wave flux.

1/2-Spin Cluster

So far, the theory and experimental results for integer-spin clusters

are briefly introduced. There’re another large family in the magnetic big

molecules with only 1/2 spin. According to the double-well model discussed

above, the anisotropic barrier of 1/2 spin molecules should be low. More-

over, the gap splitting which prevents tunneling is high. Large-spin model

cannot be applied in such systems. Here, the V15 cluster is taken as an

example.

Figure 7. V15 and its Hysteresis[19]

The V15 cluster consists a central triangle between two hexagons. The

hexagons are coupled by antiferromagnetic interactions. The spins of the

hexagons are canceled, and only spins in the triangle is accounted in simpli-

fied hamiltonian.[22]

H = −J0

3�

i,j=1(i<j)

Si ·Sj +

�

ij=12,23,31

Dij(Si×Sj)+A

3�

i=1

Ii ·Si+gµBH

3�

i=1

Si

The first term describes the exchange interaction between the spins. Due

to long distance between the three spins (about 10 Å), direct exchange is

unlikely. Instead, they are coupled through interactions with the hexagon

layers, which are strongly coupled by antiferromagnetic interactions. The

second term results from anisotropy. Third term in the hamiltonian de-

scribes the interactions between the spins and nuclear spin of protons in

the environment, which reduces coherence time in the cluster. The last is

Zeeman splitting term. The ground state is spin 1/2.[20][22]

Magnetization of V15 cluster is equivalent to how this two-state system

8



V. Pomjakushin, Symmetry constraints in magnetic structures PSI’13

Induced representation of group in 
“magnetic” linear space. 

44

To construct the representation  one has to know the rules of 
transformations of the vector in LS under group symmetry elements.





sx1

sy1

sz1

sx2

sy2

sz2

...

...

...
sxN

syN

szN





3N-dimensional space of  
magnetic moments defined on 
N discreet points 

ψ =
N�

n=1

�

j=x,y,z

sjnejn

3N by 3N matrices given by group 
transformations different ψ-vectors 
form a magnetic representation of 
group.

We split the problem:
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Induced representation of group in 
“magnetic” linear space. 

44

To construct the representation  one has to know the rules of 
transformations of the vector in LS under group symmetry elements.





sx1

sy1

sz1

sx2

sy2

sz2

...

...

...
sxN

syN

szN





3N-dimensional space of  
magnetic moments defined on 
N discreet points 

ψ =
N�

n=1

�

j=x,y,z

sjnejn

3N by 3N matrices given by group 
transformations different ψ-vectors 
form a magnetic representation of 
group.

We split the problem:

1. 3D space of spin rotations
2. N-dimentional space of positions/sites
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Point groups. Classical spin rotations in 3D space 

45

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





Rotation matrices can be used to construct 3-
dimensional representation matrices of proper 
rotations

3-dimensional  vector space of 
classical spin 

s =
�

j=x,y,z

sjej
 S

0 ex

ey

ez
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Point groups. Classical spin rotations in 3D space 

45

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





Rotation matrices can be used to construct 3-
dimensional representation matrices of proper 
rotations

3-dimensional  vector space of 
classical spin 

s =
�

j=x,y,z

sjej
 S

0 ex

ey

ez

z
S = ”[v × r]”

For improper rotations such as inversion 
(I) or mirror plane we should remember 
that spin is an axial vector. 

ĪS = S

mz=2zĪ
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Point groups. Classical spin rotations in 3D space 

45

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





Rotation matrices can be used to construct 3-
dimensional representation matrices of proper 
rotations

3-dimensional  vector space of 
classical spin 

s =
�

j=x,y,z

sjej
 S

0 ex

ey

ez

2z

z
S = ”[v × r]”

For improper rotations such as inversion 
(I) or mirror plane we should remember 
that spin is an axial vector. 

ĪS = S

mz=2zĪ
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Point groups. Classical spin rotations in 3D space 

45

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





Rotation matrices can be used to construct 3-
dimensional representation matrices of proper 
rotations

3-dimensional  vector space of 
classical spin 

s =
�

j=x,y,z

sjej
 S

0 ex

ey

ez

mz=2zĪ

2z

z
S = ”[v × r]”

For improper rotations such as inversion 
(I) or mirror plane we should remember 
that spin is an axial vector. 

ĪS = S

mz=2zĪ
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R1

Induced representation of Point group 32 in 
3D rotation space of spin S 

46

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





1. 3-dimensional representation

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  S
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R1

Induced representation of Point group 32 in 
3D rotation space of spin S 

46

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





1. 3-dimensional representation

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

... etc

S
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R1

Induced representation of Point group 32 in 
3D rotation space of spin S 

46

ϕz




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1





1. 3-dimensional representation

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

... etc

2. By taking the one dimensional space of vector ez alone we may generate 
very simple one-dimensional representation

S
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Representation in sites space 
for point group 32 

47

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

Let us assume we have 3 atoms/spins  a, b, c in 
the sites 1,2,3 
3-dimensional  linear space of atom/spin sites. 
Note, not the 3D xyz, but labeled sites.

R1

a

b

c

11

1

2

3
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Representation in sites space 
for point group 32 

47

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

Let us assume we have 3 atoms/spins  a, b, c in 
the sites 1,2,3 
3-dimensional  linear space of atom/spin sites. 
Note, not the 3D xyz, but labeled sites.

R1

a

b

c

a
b

c

d
e

f

origin

11

1

2

3
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R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

Let us assume we have 3 atoms/spins  a, b, c in 
the sites 1,2,3 
3-dimensional  linear space of atom/spin sites. 
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for point group 32 
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6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

Let us assume we have 3 atoms/spins  a, b, c in 
the sites 1,2,3 
3-dimensional  linear space of atom/spin sites. 
Note, not the 3D xyz, but labeled sites.

R1

a

b

c

b ⇒ a 
c ⇒ b
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Representation in sites space 
for point group 32 

47

6 symmetry elements (rotations): 
R0=E, R1=2π/3, R2=4π/3 around z, R3, R4, R5, = π around resp. axes in xy-plane  

Let us assume we have 3 atoms/spins  a, b, c in 
the sites 1,2,3 
3-dimensional  linear space of atom/spin sites. 
Note, not the 3D xyz, but labeled sites.

R1

a

b

c

b ⇒ a 
c ⇒ b
a ⇒ c

element R1 permutes
the atoms 

a
b

c

d
e

f

origin



1 0 0

0 1 0

0 0 1









0 1 0

0 0 1

1 0 0









0 0 1

1 0 0

0 1 0









0 1 0

1 0 0

0 0 1









0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0





permutation (n=3) representation of group 32

11





0 1 0

0 0 1

1 0 0



 =





b

c

a









a

b

c





1

2

3
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Product of two representations of group 

48

Direct (tensor) matrix product 

gives a new rep with dimension m×n
and new vector space!

dimension m                  n
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Direct (tensor) matrix product 

gives a new rep with dimension m×n
and new vector space!





1 0 0

0 1 0

0 0 1









0 1 0

0 0 1

1 0 0









0 0 1

1 0 0

0 1 0









0 1 0

1 0 0

0 0 1









0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0





permutation (n=3) representation of group 32

dimension m                  n
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Product of two representations of group 

48

Direct (tensor) matrix product 

gives a new rep with dimension m×n
and new vector space!





1 0 0

0 1 0

0 0 1









0 1 0

0 0 1

1 0 0









0 0 1

1 0 0

0 1 0









0 1 0

1 0 0

0 0 1









0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0





permutation (n=3) representation of group 32

dimension m                  n

Rotation matrices for point group 32⊗

... etc
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Product of two representations of group 

48

Direct (tensor) matrix product 

gives a new rep with dimension m×n
and new vector space!





1 0 0

0 1 0

0 0 1









0 1 0

0 0 1

1 0 0









0 0 1

1 0 0

0 1 0









0 1 0

1 0 0

0 0 1









0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0





permutation (n=3) representation of group 32

= 9 by 9  matrices: 9 dimensional representation in LS

dimension m                  n





sx1

sy1

sz1

sx2

sy2

sz2

sx3

sy3

sz3





Rotation matrices for point group 32⊗

... etc
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Reducibility

49

A study of possible representations of even a simple group like D3 seems to be a scaring task...

T (R3) =





0 0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0





T (R1) =





0 0 0 −1/2 −1/2
√

3 0 0 0 0

0 0 0 1/2
√

3 1/2 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1/2 −1/2
√

3 0

0 0 0 0 0 0 1/2
√

3 1/2 0

0 0 0 0 0 0 0 0 1

−1/2 −1/2
√

3 0 0 0 0 0 0 0

1/2
√

3 1/2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
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Reducibility

49

A study of possible representations of even a simple group like D3 seems to be a scaring task...

BUT!

representation is reducible!

All representations can be built up from a finite number of 
‘distinct‘ irreducible representations. There is an easy way of 
finding the decomposition. 

T (R3) =





0 0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0





T (R1) =





0 0 0 −1/2 −1/2
√

3 0 0 0 0

0 0 0 1/2
√

3 1/2 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1/2 −1/2
√

3 0

0 0 0 0 0 0 1/2
√

3 1/2 0

0 0 0 0 0 0 0 0 1

−1/2 −1/2
√

3 0 0 0 0 0 0 0

1/2
√

3 1/2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
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Reduction of any representation of group to 
block diagonal shape 

50

Representation (dimension=n) of a group 
G in linear space L is reducible to a block-
diagonal shape that is a direct sum of 
irreducible square matrices τ1, τ2, ...  For 
each element Ga the representation has the 
shape:

τ1 ⊕ τ2 ⊕ τ3 ⊕ ... =





τ1 0 0 ... 0
0 τ2 0 ... 0
0 0 τ3 ... 0
. . . .
. . . .
0 0 0
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50

Representation (dimension=n) of a group 
G in linear space L is reducible to a block-
diagonal shape that is a direct sum of 
irreducible square matrices τ1, τ2, ...  For 
each element Ga the representation has the 
shape:

τ1 ⊕ τ2 ⊕ τ3 ⊕ ... =





τ1 0 0 ... 0
0 τ2 0 ... 0
0 0 τ3 ... 0
. . . .
. . . .
0 0 0





τi  is irreducible if: It is impossible to find 
a new basis such that non-diagonal 
elements of any τi in the new basis are zero 
for all elements Ga. 

l

l

l-kk

l-k
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Sτ1

Sτ2

Sτ3
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.





One can divide space L into the sum of 
subspaces Li each of which is invariant 
and irreducible. Sτi is a vector from Li 
and is transformed by matrices τi(Ga).

Sτi are linear combinations 
of n basis functions of L 
with some coefficients

...lτ1 dim of τ

Sτ1(1) =
n�

j=1

cτ1
j (1)ej

Sτ1(lτ1) =
n�

j=1

cτ1
j (lτ1)ej
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Representation (dimension=n) of a group 
G in linear space L is reducible to a block-
diagonal shape that is a direct sum of 
irreducible square matrices τ1, τ2, ...  For 
each element Ga the representation has the 
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and is transformed by matrices τi(Ga).

Sτi are linear combinations 
of n basis functions of L 
with some coefficients

group G space L under actions of Ga
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diagonal shape that is a direct sum of 
irreducible square matrices τ1, τ2, ...  For 
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.





One can divide space L into the sum of 
subspaces Li each of which is invariant 
and irreducible. Sτi is a vector from Li 
and is transformed by matrices τi(Ga).

Sτi are linear combinations 
of n basis functions of L 
with some coefficients

group G space L under actions of Ga
τ1, τ2, τ3 ...

structures of these matrixes depend 
solely on group G and are 
independent on the choice of L.
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Irreducible representations (irreps) of point 
group 32 (D3)

52

1 31 32 2u 2y 2x

τ2
τ1

τ3
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Irreducible representations (irreps) of point 
group 32 (D3)

52

Tij =
�

⊕
nντν

ij  ∑⊕
rep  ⇒      irreps: τ1 ⊕ 2τ2 ⊕ 3τ3 =





τ1 0 0 ... 0
0 τ2 0 ... 0
0 0 τ2 ... 0
. . . .
. . . .
0 0 0




=

Our magnetic 9x9 representation splits up in:

1 31 32 2u 2y 2x

τ2
τ1

τ3

nν =
1

n(G)

�

g⊂G

χ(g)χ∗ν(g)
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a large enough barrier to prevent lost superparamagnetism at zero field. A

long relaxation time is required. Also, it should be stable in environment,

hard to be distorted by other clusters, metallic surfaces, or other source of

external field such as electromagnetic wave flux.

1/2-Spin Cluster

So far, the theory and experimental results for integer-spin clusters

are briefly introduced. There’re another large family in the magnetic big

molecules with only 1/2 spin. According to the double-well model discussed

above, the anisotropic barrier of 1/2 spin molecules should be low. More-

over, the gap splitting which prevents tunneling is high. Large-spin model

cannot be applied in such systems. Here, the V15 cluster is taken as an

example.

Figure 7. V15 and its Hysteresis[19]

The V15 cluster consists a central triangle between two hexagons. The

hexagons are coupled by antiferromagnetic interactions. The spins of the

hexagons are canceled, and only spins in the triangle is accounted in simpli-

fied hamiltonian.[22]

H = −J0

3�

i,j=1(i<j)

Si ·Sj +

�

ij=12,23,31

Dij(Si×Sj)+A

3�

i=1

Ii ·Si+gµBH

3�

i=1

Si

The first term describes the exchange interaction between the spins. Due

to long distance between the three spins (about 10 Å), direct exchange is

unlikely. Instead, they are coupled through interactions with the hexagon

layers, which are strongly coupled by antiferromagnetic interactions. The

second term results from anisotropy. Third term in the hamiltonian de-

scribes the interactions between the spins and nuclear spin of protons in

the environment, which reduces coherence time in the cluster. The last is

Zeeman splitting term. The ground state is spin 1/2.[20][22]

Magnetization of V15 cluster is equivalent to how this two-state system

8

Classification of normal modes of a magnet

53

The crystal has symmetry group G




sx1

sy1

sz1

sx2

sy2

sz2

...

...

...
sxN

syN

szN





3N-dimensional space of  expectation values of 
the spins <ψ|s|ψ>  defined on N discreet points 

induced magnetic 
representation of group G

H =
�

R,R�,α,β

Jα,β(R,R�)sα(R)sβ(R�) (α,β = x, y, z)

is decomposed into independent normal modes Sτ1, Sτ2, ... 
(specific vectors from 3N-dimensional space of  spins)

Tij(Ga)
N�

n=1

�

α=x,y,z

sαneαn
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3N-dimensional space of  expectation values of 
the spins <ψ|s|ψ>  defined on N discreet points 

induced magnetic 
representation of group G

H =
�

R,R�,α,β

Jα,β(R,R�)sα(R)sβ(R�) (α,β = x, y, z)

is decomposed into independent normal modes Sτ1, Sτ2, ... 
(specific vectors from 3N-dimensional space of  spins)

 Sτi  called normal modes or basis functions, corresponding to Eν, ψν lν can 
be classified by irreps τν of group G 

  ∑⊕
rep  ⇒      irreps: Tij =

�

⊕
nντν

ij





Sτ1

Sτ2

Sτ3

.

.









τ1 0 0 ... 0
0 τ2 0 ... 0
0 0 τ3 ... 0
. . . .
. . . .
0 0 0





Tij(Ga)
N�

n=1

�

α=x,y,z

sαneαn
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Normal modes of magnetic configurations for 
spins sitting on the triangle corners

54

R1

a

b

c

Point group 32 

Normal mode for irrep τ1

1D linear subspace of 9-dimensional space
irrep τ1

exey

Sτ1 = −1 · exa + 1 · exb + 1 · eyb − 1 · eyc

One parameter instead of 9 is enough to describe the structure!
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Normal modes of magnetic configurations for 
spins sitting on the triangle corners

54

R1

a

b

c

Point group 32 

Normal mode for irrep τ1

Space group P321, no. 150 

1D linear subspace of 9-dimensional space
irrep τ1

exey

Sτ1 = −1 · exa + 1 · exb + 1 · eyb − 1 · eyc

One parameter instead of 9 is enough to describe the structure!
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Normal modes of magnetic configurations for 
spins sitting on the triangle corners

55

R1

a

b

c

Point group 32 

Normal mode 1

 τ2  enters 2 times

Normal mode 2
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Normal modes of magnetic configurations for 
spins sitting on the triangle corners
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R1

a

b

c

Point group 32 

Normal mode 1

R1

a

b

c
+

 τ2  enters 2 times

Normal mode 2
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Normal modes of magnetic configurations for 
spins sitting on the triangle corners

55

R1

a

b

c

Point group 32 

Normal mode 1

R1

a

b

c
+

Space group P321, no. 150 

=

 τ2  enters 2 times

Normal mode 2
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Landau theory of phase transitions says that only one 
irrep (+c.c.) is becoming critical and is needed to 

describe the ordered structure

56
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Landau theory of phase transitions says that only one 
irrep (+c.c.) is becoming critical and is needed to 

describe the ordered structure

56

Zeroth cell contains 14 spins  
=> 14*3=42 parameters.

 

Great simplification!

PHYSICAL REVIEW B 72, 134413 (2005) 

Real example:  Antiferromagnetic three sub-lattice ordering in Tb14Au51
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Landau theory of phase transitions says that only one 
irrep (+c.c.) is becoming critical and is needed to 

describe the ordered structure

56

Only 3 independent spins are 
needed!

one irrep

Zeroth cell contains 14 spins  
=> 14*3=42 parameters.

 

Great simplification!

PHYSICAL REVIEW B 72, 134413 (2005) 

Real example:  Antiferromagnetic three sub-lattice ordering in Tb14Au51
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irreps of space groups SG. Some history and 
an introduction

57

O. V. Kovalev, “Representations of the Crystallographic Space 
Groups:  irreducible representations, induced representations, and 
corepresentations” 1961- (Gordon and Breach Science Publishers, 
1993), 2nd ed.

http://stokes.byu.edu/iso

Harold T. Stokes and Dorian M. Hatch, "Isotropy Subgroups of the 230 Space 
Groups," (World Scientific, Singapore, 1988).

S.C. Miller and W.F Love, “Tables of Representations of the 
Crystallographic Space Groups and corepresentations of Magnetic 
space groups  (Colorado, 1967)

http://stokes.byu.edu/iso
http://stokes.byu.edu/iso
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Bloch waves, irreps of Bravias Lattice group

58

Space group G contains translation (t) BL group T.    t = n1t1 + n2t2 + n3t3
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Bloch waves, irreps of Bravias Lattice group

58

Space group G contains translation (t) BL group T.    t = n1t1 + n2t2 + n3t3

u(r + tL) = u(r)ψ(r) = u(r)eikr,

S(tn) =
1
2
(S0e

itnk + S∗0e
−itnk)

Fourie amplitude of mag. structure

Bloch waves three ψ(r) can describe magnetic structure 
Sx(r), Sy(r), Sz(r); u(r) <-> zeroth cell
r runs over discreet points given by atoms
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Bloch waves, irreps of Bravias Lattice group

58

Space group G contains translation (t) BL group T.    t = n1t1 + n2t2 + n3t3

Representation theory

T (t)→ exp(−ikt)Dk(t) = exp(−ikt)Matrices of irrep number k:

wave vector or propagation vector k = (p1b1 + p2b2 + p3b3)
 sort out/enumerate all irreps of T∈G

u(r + tL) = u(r)ψ(r) = u(r)eikr,

S(tn) =
1
2
(S0e

itnk + S∗0e
−itnk)

Fourie amplitude of mag. structure

Bloch waves three ψ(r) can describe magnetic structure 
Sx(r), Sy(r), Sz(r); u(r) <-> zeroth cell
r runs over discreet points given by atoms
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Bloch waves, irreps of Bravias Lattice group

58

Space group G contains translation (t) BL group T.    t = n1t1 + n2t2 + n3t3

Representation theory

T (t)→ exp(−ikt)Dk(t) = exp(−ikt)Matrices of irrep number k:

wave vector or propagation vector k = (p1b1 + p2b2 + p3b3)
 sort out/enumerate all irreps of T∈G

Bloch wave ψ(r) is a basis function of irrep k of BL translation group  

u(r + tL) = u(r)ψ(r) = u(r)eikr,

S(tn) =
1
2
(S0e

itnk + S∗0e
−itnk)

Fourie amplitude of mag. structure

Bloch waves three ψ(r) can describe magnetic structure 
Sx(r), Sy(r), Sz(r); u(r) <-> zeroth cell
r runs over discreet points given by atoms
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...

k19
k20
k22
k24
k21
k25

...

Kovalev

The k-vector types and Brillouin zones of 
the space groups

59

Special points:  Miller and Love, 
Kovalev, Lifshitz

propagation vector = a point on/inside Brillouine zone

D
k

Z

y
YSX

G

T
R

B

H

P

C

A E
U

kz

kx

Q

Brillouine zone of Pmmm (Г0)

A.P. Cracknell, B.L. Davis, S.C. Miller and W.F. Love (1979) 
(abbreviated as CDML) 
Kovalev  O.V (1986) (1993) Representations of the 
Crystallographic Space Groups (London: Gordon and Breach)
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 Basis functions of space group irrep  

60

Propagation vector k
  + 

Space group elements  g in 
zeroth cell

irrep with number ν: τkν
symmetry elements g are 
represented by matrixes dkν(g) 
(lν × lν matrixes) with dim=lν
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 Basis functions of space group irrep  

60

Propagation vector k
  + 

Space group elements  g in 
zeroth cell

irrep with number ν: τkν
symmetry elements g are 
represented by matrixes dkν(g) 
(lν × lν matrixes) with dim=lν

Its basis: lν functions with 
the same k

that are transformed by 
symmetry elements g by 
matrixes dkν(g) 





ψkν
1

ψkν
2

...

...

...
ψkν

lν





ψkν
λ = ukν

λ (r)eikr

(λ = 1, ..., lν)
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Symmetry group of propagation vector, 
examples of star {k}

+T (n1t1 + n2t2 + n3t3)

Manyfold of all non-equivalent hk = propagation 
vector star  {k} 

k=[0,u,v]b3
{k}

b2

Little group Gk∈G
leave k invariant

Pnma D16
2h mmm Orthorhombic

No. 62 P 21/n 21/m 21/a Patterson symmetry Pmmm

Origin at 1̄ on 121 1

Asymmetric unit 0 ≤ x ≤ 1
2 ; 0 ≤ y ≤ 1

4 ; 0 ≤ z ≤ 1

Symmetry operations

(1) 1 (2) 2(0,0, 1
2 ) 1

4 ,0,z (3) 2(0, 1
2 ,0) 0,y,0 (4) 2( 1

2 ,0,0) x, 1
4 ,

1
4

(5) 1̄ 0,0,0 (6) a x,y, 1
4 (7) m x, 1

4 ,z (8) n(0, 1
2 ,

1
2 ) 1

4 ,y,z

298

International Tables for Crystallography (2006). Vol. A, Space group 62, pp. 298–299.

Copyright  2006 International Union of Crystallography
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4 ; 0 ≤ z ≤ 1

Symmetry operations

(1) 1 (2) 2(0,0, 1
2 ) 1

4 ,0,z (3) 2(0, 1
2 ,0) 0,y,0 (4) 2( 1

2 ,0,0) x, 1
4 ,

1
4

(5) 1̄ 0,0,0 (6) a x,y, 1
4 (7) m x, 1

4 ,z (8) n(0, 1
2 ,

1
2 ) 1

4 ,y,z

298

International Tables for Crystallography (2006). Vol. A, Space group 62, pp. 298–299.

Copyright  2006 International Union of Crystallography

label K

Gk = ‘P1n1’
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label K

k=[0,0,0]b3
{k}

b2

label Г

●

Gk = G

Gk = ‘P1n1’
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label K

k=[0,0,0]b3
{k}

b2

label Г

●

Gk = G

Gk = ‘P1n1’

k=[1/2,0,0]
b2

{k}

b1

Gk = G

label X
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Space group irreps, examples 
dimensions up to 6 (cf. 3 for point groups)

62

k=[1/2,0,0]
b2

{k}

b1

Gk = G

label X

Pnma k=[1/2,0,0], k20
irreps: two 2D τ1, τ2

1                1             1           -1              -1              -1              -1 
dkν(g)

    g

Example 1
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Space group irreps, examples 
dimensions up to 6 (cf. 3 for point groups)

62

k=[1/2,0,0]
b2

{k}

b1

Gk = G

label X

Pnma k=[1/2,0,0], k20
irreps: two 2D τ1, τ2

1                1             1           -1              -1              -1              -1 
dkν(g)

    g

1        1       1       1        1        1       1 

dkν(g)

    g
irreps: eight  1D τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8

Example 1

k=[0,0,0]b3
{k}

b2

label Г

●

Gk = G

Pnma k=[0,0,0], k19Example 2
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Space group irreps, examples 
dimensions up to 6 (cf. 3 for point groups)

62

k=[1/2,0,0]
b2

{k}

b1

Gk = G

label X

Pnma k=[1/2,0,0], k20
irreps: two 2D τ1, τ2

1                1             1           -1              -1              -1              -1 
dkν(g)

    g

Example 3 
Higher dimensions: Ia3d (#230) k=[1,0,0]: 1(6D) ⊕ 3(2D)
                                                    k=[1/2,1/2,1/2]: 1(4D) ⊕ 2(2D)

1        1       1       1        1        1       1 

dkν(g)

    g
irreps: eight  1D τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8

Example 1

k=[0,0,0]b3
{k}

b2

label Г

●

Gk = G

Pnma k=[0,0,0], k19Example 2
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Paramagnetic crystallographic space group (PSG) Propagation vector of magnetic structure k

choose one irreducible representation (irrep) of PSG

is irrep real and 1D?

Yes

Shubnikov from PSG
Symop g that have irrep(g)=-1 
are primed in Sh-group

No is k commensurate?

3D+1 magnetic 
superspace group

No Yes

choice of direction of 
order parameter for 
irrep

combining nD irrep 
& c.c into real 2nD

=
equivalent

magnetic symmetry representation

Magnetic structure made 
from linear combination of 
basis functions (normal 
modes)

Magnetic structure made 
from admissible spin 
directions in Sh-group

Shubnikov from 
isotropy subgroup of 
PSG. 

equivalent

Construction of 
basis functions 
(normal modes)

constrains on the 
components of basis 
function for >1D 
irrep

or in 3D+1 magnetic group
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Comparison of Shubnikov and representation 
analysis: same symmetry adapted solutions.

I4/m, k=0  has 8 1D irreps τ1,... τ8. 
4 real irreps   <--> Shubnikov groups of I4/m 
4 complex irreps 

I4/m’

One unit cell with Fe

vacancy

Magnetic representation
(16i) (x,y,z): all eight irreps

Γ = 3τ1 ⊕ 3τ2 ⊕ 3...⊕ 3τ8

Fe

8 unique Fe
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I4/m, k=0  has 8 1D irreps τ1,... τ8. 
4 real irreps   <--> Shubnikov groups of I4/m 
4 complex irreps 

I4/m’

One unit cell with Fe

vacancy

Magnetic representation
(16i) (x,y,z): all eight irreps

Γ = 3τ1 ⊕ 3τ2 ⊕ 3...⊕ 3τ8

Fe

8 unique Fe

C2’/m’

Comparison of Shubnikov and representation 
analysis: same symmetry adapted solutions.
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• Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell    

ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu

Web/computer resources to perform group theory 
symmetry analysis, in particular magnetic structures. 

Computer programs to construct symmetry adapted 
magnetic structures and fit the experimental data.

• Juan Rodríguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/ 
program BasIreps

• Vaclav Petricek, Michal Dusek (Prague) Jana2006 http://
jana.fzu.cz/

http://sinq.web.psi.ch/sinq/instr/hrpt/doc/magdif13.pdf
This lecture:

http://iso.byu.edu
http://iso.byu.edu
http://www.ill.fr/sites/fullprof/
http://www.ill.fr/sites/fullprof/
http://jana.fzu.cz
http://jana.fzu.cz
http://jana.fzu.cz
http://jana.fzu.cz
http://sinq.web.psi.ch/sinq/instr/hrpt/doc/magdif13.pdf
http://sinq.web.psi.ch/sinq/instr/hrpt/doc/magdif13.pdf
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Case study. Antiferromagnetic order 
in orthorhombic multiferroic TmMnO3

67

1. Experiment. q-range/resolution.

2. Finding the k-vector. Usually but not always easy. Profile 
matching

3. Symmetry analysis. Constructing the basis functions of 
one irreducible representation of the magnetic 
representation.

4. Fitting the data. In difficult cases ‘simulated annealing’ 
search of the solution is needed

steps in magnetic structure determination
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Experiment. q-range/resolution.
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DMC range at 4.5Å

HRPT 1.9Å

magnetic 
contribution
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Cf. resolution/q-range

70

DMC, 4.5Å

excellent resolution
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Step 2

71

Finding the propagation vector of 
magnetic structure (k-vector). 
Le Bail profile matching fit.
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T-dependence of Bragg peak positions

72
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Refining the propagation k-vector 
from profile matching fit

73

1 2 32 36 40

0.45

0.46

0.47

0.48

0.49

0.50

k x (r
.l.

u.
)

T (K)

k=[kx,0,0]

In the example we determine 
incommensurate structure
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Step 3

74

Symmetry analysis.
Classifying possible magnetic structures 
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Space Group G: Pnma, no.62
propagation vector k=[µ,0,0]

 New Journal of Physics 11, 043019 (2009)
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Constructing of normal modes of magnetic 
structure from irreps

75

Space Group G: Pnma, no.62
propagation vector k=[µ,0,0]

has 4 1D irreducible representations

 New Journal of Physics 11, 043019 (2009)

Case study of magnetic structure of multiferroic TbMnO3

symmetry
irreps

linear space
spanned by Mn spins
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Classifying possible magnetic structures
basis vectors/functions Sτ1, Sτ2, Sτ3, ... 

76

Magnetic representation is reduced to four 
one-dimensional irreps

3τ1 ⊕ 3τ2 ⊕ 3τ3 ⊕ 3τ4

g1 g2 g3 g4

τ1 1 a 1 a
τ2 1 a −1 −a
τ3 1 −a 1 −a
τ4 1 −a −1 a

Pnma, k=[0.45,0,0]
Mn in (4a)-position

a = eπikx
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Classifying possible magnetic structures
basis vectors/functions Sτ1, Sτ2, Sτ3, ... 

76

Magnetic representation is reduced to four 
one-dimensional irreps

3τ1 ⊕ 3τ2 ⊕ 3τ3 ⊕ 3τ4

g1 g2 g3 g4

τ1 1 a 1 a
τ2 1 a −1 −a
τ3 1 −a 1 −a
τ4 1 −a −1 a

Assuming that the phase transition goes according 
to one irreducible representation τ3 the spins of all 
four atoms are set only by 3 variables instead of 12! 

C1S
�
τ3 + C2S

��
τ3 + C3S

���
τ3

Mn-position       1                   2                   3                 4                

S�
τ3 = +1e1x − a∗e2x − 1e3x + a∗e4x

S��
τ3 = +1e1y + a∗e2y + 1e3y + a∗e4y

S���
τ3 = +1e1z + a∗e2z − 1e3z − a∗e4z

Pnma, k=[0.45,0,0]
Mn in (4a)-position

a = eπikx
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Steps 3-4 in practice

77

Solving/refining the magnetic structure 
by using one irreducible representation

1. construct basis functions for single irreducible 
representation irrep  (use BasIreps, SARAh, MODY)

2. plug them in the FULLPROF and try to fit the data. In 
difficult cases the Monte-Carlo simulated annealing 
search is required  

3. If the fit is bad go to 1 and choose different irrep. If 
the fit is good it is still better to sort out all irreps.
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Refinement of the data for τ3 

78

S�
τ3 = +1e1x − a∗e2x − 1e3x + a∗e4x

S��
τ3 = +1e1y + a∗e2y + 1e3y + a∗e4y

S���
τ3 = +1e1z + a∗e2z − 1e3z − a∗e4z

k=[0.45,0,0]

S(r) =
1
2
(C1S

�
τ3 + C2S

��
τ3 + C3S

���
τ3)e

2πikr + c.c.
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S�
τ3 = +1e1x − a∗e2x − 1e3x + a∗e4x

S��
τ3 = +1e1y + a∗e2y + 1e3y + a∗e4y

S���
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DMC, λ=4.5!
at T=35K
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φ can be fixed to any value. 
Experiment data are insensitive 
to φ.
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Visualization of the magnetic 
structure 

79

k=[0.46,0,0]

1

1
4

1

3
4

2

a cycloid structure propagating along x-direction

S�
τ3 = +1e1x − a∗e2x − 1e3x + a∗e4x

S���
τ3 = +1e1z + a∗e2z − 1e3z − a∗e4z

S(r) = Re [(C1S
�
τ3 + |C3| exp(iϕ)S���

τ3) exp(2πikr)]
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Visualization of the magnetic 
structure 
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k=[0.46,0,0]

1

1
4

1

3
4

2

a cycloid structure propagating along x-direction

S�
τ3 = +1e1x − a∗e2x − 1e3x + a∗e4x

S���
τ3 = +1e1z + a∗e2z − 1e3z − a∗e4z

S(r) = Re [(C1S
�
τ3 + |C3| exp(iϕ)S���

τ3) exp(2πikr)]

Propagation of the spin, e.g. for atom no. 1
S1(x) = C1 cos(kx)ex + |C3| cos(kx + ϕ)ez
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k=[0.46,0,0]

1

1
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for arbitrary φ: 
both direction and size of S1 are changed

1

4

x

z
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Visualization of the magnetic 
structure: xz-projection

81

k=[0.46,0,0]

1

1
4

1

4

x

z

for φ=0: 
only the size of S1 are changed

Propagation of the spin, e.g. for atom no. 1
S1(x) = (C1ex + |C3|ez) cos(kx)
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• Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell    

ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu

Web/computer resources to perform group theory 
symmetry analysis, in particular magnetic structures. 

Computer programs to construct symmetry adapted 
magnetic structures and fit the experimental data.

• Juan Rodríguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/ 
program BasIreps

• Vaclav Petricek, Michal Dusek (Prague) Jana2006 http://
jana.fzu.cz/

http://sinq.web.psi.ch/sinq/instr/hrpt/doc/magdif13.pdf
This lecture:

http://iso.byu.edu
http://iso.byu.edu
http://www.ill.fr/sites/fullprof/
http://www.ill.fr/sites/fullprof/
http://jana.fzu.cz
http://jana.fzu.cz
http://jana.fzu.cz
http://jana.fzu.cz
http://sinq.web.psi.ch/sinq/instr/hrpt/doc/magdif13.pdf
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1. several irreps involved, e.g. exchange multiplet
2. multi-k structures
3. spin domains, k-domains, chiral domains for 

single crystal data


