Symmetry constraints in solving magnetic structures by neutron diffraction: representation analysis and Shubnikov groups

Vladimir Pomjakushin
Laboratory for Neutron Scattering, PSI
This lecture:
http://sinq.web.psi.ch/sinq/instr/hrpt/doc/magdifl3.pdf
lecture from yesterday: Introduction to experimental neutron diffraction http://sinq.web.psi.ch/sinq/instr/hrpt/doc/hrptdiffl3.pdf

Purpose of this lecture is to show:

I. Basic principles of magnetic neutron diffraction.
2. Classification of the magnetic structures that are used in the literature, such as Shubnikov (or black-white) space groups and irreducible representation notations. Relation between two approaches.
3. How one can construct all possible symmetry adapted magnetic structures for a given crystal structure and a propagation vector (a point on the Brillouine zone) using representation (rep) analysis of magnetic structures. This way of description/construction is
 related to the Landau theory of second order phase transitions and applies not only to magnetic ordering, but generally to any type of phase transitions in crystals.

Literature on (magnetic) neutron scattering

Neutron scattering (general)
S.W. Lovesey, "Theory of Neutron Scattering from Condensed Matter", Oxford Univ. Press, 1987.Volume 2 for magnetic scattering. Definitive formal treatment
G.L. Squires, "Intro. to the Theory ofThermal Neutron Scattering", C.U.P., 1978, Republished by Dover, 1996. Simpler version of Lovesey.

All you need to know about magnetic neutron diffraction. Symmetry, representation analysis

Yu.A. Izyumov, V. E. Naish and R. P. Ozerov, "Neutron diffraction of magnetic materials", New York [etc.]: Consultants Bureau, I99I.

Literature on (magnetic) symmetry and magnetic neutron diffraction

All you need to know about magnetic neutron diffraction. Magnetic symmetry, representation analysis

Yu.A. Izyumov, V. E. Naish and R. P. Ozerov, "Neutron diffraction of magnetic materials", New York [etc.]: Consultants Bureau, I98I-I99I.

Groups, representation analysis, and applications in physics
J.P Elliott and P.G. Dawber
"Symmetry in physics", vol. I, I979 The Macmillan press LTD

Web/computer resources to perform group theory

 symmetry analysis, in particular magnetic structures.General tools for representation analysis, Shubnikov groups, 3D+n, and much more...
Web sites with a collection of software which applies group theoretical methods to the analysis of phase transitions in crystalline solids.

- Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu ISOTROPY Software Suite
Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics
and Astronomy, Brigham Young University, Provo, Utah 84606, USA,
- Bilbao Crystallographic Server bilbao crystallographic server

ISOTROPY Software Suite iso.byu.edu

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, stokesh@byu.edu

Description: The ISOTROPY software suite is a collection of software which applies group theoretical methods to the analysis of phase transitions in crystalline solids.
How to cite: ISOTROPY Software Suite, iso.byu.edu.

References and Resources

Isotropy subgroups and distortions

- ISODISTORT: Explore and visualize distortions of crystalline structures. Possible distortions include atomic displacements, atomic ordering, strain, and magnetic moments.
- ISOSUBGROUP: Coming soon!
- ISOTROPY: Interactive program using command lines to explore isotropy subgroups and their associated distortions.
- SMODES: Find the displacement modes in a crystal which brings the dynamical matrix to block-diagonal form, with the smalle possible blocks.
- FROZSL: Calculate phonon frequencies and displacement modes using the method of frozen phonons.

Space groups and irreducible representations

- ISOCIF: Create or modify CIF files.
- FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell.
- New! ISO-IR: Tables of Irreducible Representations. The 2011 version of IR matrices.
- ISO-MAG: Tables of magnetic space groups, both in human-readable and computer-readable forms.

Superspace Groups

- ISO(3+d)D: (3+d)-Dimensional Superspace Groups for $\mathrm{d}=1,2,3$
- ISO(3+1)D: Isotropy Subgroups for Incommensurately Modulated Distortions in Crystalline Solids: A Complete List for OneDimensional Modulations
- FINDSSG: Identify the superspace group symmetry given a list of symmetry operators.
- TRANSFORMSSG: Transform a superspace group to a new setting.

Phase Transitions

- COPL: Find a complete list of order parameters for a phase transition, given the space-group symmetries of the parent and subgroup phases.
- INVARIANTS: Generate invariant polynomials of the components of order parameters.

ISOTROPY Software Suite iso.byu.edu

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, stokesh@byu.edu

Description: The ISOTROPY software suite is a collection of software which applies group theoretical methods to the analysis of phase transitions in crystalline solids.
How to cite: ISOTROPY Software Suite, iso.byu.edu.

References and Resources

Isotropy subgroups and distortions

- ISODISTORT: Explbre and visualize distortions of crystalline structures. Possible distortions include atomic displacements, amic_ordering, strain, and magnetic moments.
- ISOSUBGROUP: Coming soon!
- ISOTROPY: Interactive program using command lines to explore isotropy subgroups and their associated distortions.
- SMODES: Find the displacement modes in a crystal which brings the dynamical matrix to block-diagonal form, with the smalle possible blocks.
- FROZSL: Calculate phonon frequencies and displacement modes using the method of frozen phonons.

Space groups and irreducible representations

- ISOCIF: Create or modify CIF files.
- FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell.
- New! ISO-IR: Tables of Irreducible Representations. The 2011 version of IR matrices.
- ISO-MAG: Tables of magnetic space groups, both in human-readable and computer-readable forms.

Superspace Groups

- ISO(3+d)D: (3+d)-Dimensional Superspace Groups for $\mathrm{d}=1,2,3$
- ISO(3+1)D: Isotropy Subgroups for Incommensurately Modulated Distortions in Crystalline Solids: A Complete List for OneDimensional Modulations
- FINDSSG: Identify the superspace group symmetry given a list of symmetry operators.
- TRANSFORMSSG: Transform a superspace group to a new setting.

Phase Transitions

- COPL: Find a complete list of order parameters for a phase transition, given the space-group symmetries of the parent and subgroup phases.
- INVARIANTS: Generate invariant polynomials of the components of order parameters.

Computer programs to construct symmetry adapted magnetic structures and fit the experimental data.

Workhorses: Computer programs for representation analysis to be used together with the diffraction data analysis programs to determine magnetic structure from neutron diffraction (ND) experiment.

- Juan Rodríguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/ Fullprof suite
- Vaclav Petricek, Michal Dusek (Prague) Jana2006 http:// jana.fzu.cz/
- Wiesława Sikora et al, http://www.fti.agh.edu.pl/~sikora/modyopis.htm program MODY
- Andrew S.Wills (UCL) http://www.ucl.ac.uk/chemistry/staffl academic_pages/andrew_wills program SARAh
-...

Overview of Lecture

Overview of Lecture

- Principles of magnetic neutron scattering/diffraction. Long range magnetic order seen by ND with some simple examples. 8-22

Overview of Lecture

- Principles of magnetic neutron scattering/diffraction. Long range magnetic order seen by ND with some simple examples. 8-22
- Basic crystallography. Symmetry elements. Space groups (SG) 23-27

Overview of Lecture

- Principles of magnetic neutron scattering/diffraction. Long range magnetic order seen by ND with some simple examples. 8-22
- Basic crystallography. Symmetry elements. Space groups (SG) 23-27
- Two ways of magnetic structure classification: "Shubnikov" vs. "reps analysis" -- Introduction 28-30

Overview of Lecture

- Principles of magnetic neutron scattering/diffraction. Long range magnetic order seen by ND with some simple examples. 8-22
- Basic crystallography. Symmetry elements. Space groups (SG) 23-27
- Two ways of magnetic structure classification: "Shubnikov" vs. "reps analysis" -- Introduction 28-30
- Intro to Shubnikov magnetic space groups 31-34

Overview of Lecture

- Principles of magnetic neutron scattering/diffraction. Long range magnetic order seen by ND with some simple examples. 8-22
- Basic crystallography. Symmetry elements. Space groups (SG) 23-27
- Two ways of magnetic structure classification: "Shubnikov" vs. "reps analysis" -- Introduction 28-30
- Intro to Shubnikov magnetic space groups 31-34
- Intro to group representations (reps) with example of magnetic reps 35-49. Classifying the magnetic configuration by irreducible representations irreps 50-54

Overview of Lecture

- Principles of magnetic neutron scattering/diffraction. Long range magnetic order seen by ND with some simple examples. 8-22
- Basic crystallography. Symmetry elements. Space groups (SG) 23-27
- Two ways of magnetic structure classification: "Shubnikov" vs. "reps analysis" -- Introduction 28-30
- Intro to Shubnikov magnetic space groups 31-34
- Intro to group representations (reps) with example of magnetic reps 35-49. Classifying the magnetic configuration by irreducible representations irreps 50-54
- irreps of SG. Reciprocal lattice. Propagation k-vector of $<$ magnetic $>$ structure/Brillouine zone points 55-62

Overview of Lecture

- Principles of magnetic neutron scattering/diffraction. Long range magnetic order seen by ND with some simple examples. 8-22
- Basic crystallography. Symmetry elements. Space groups (SG) 23-27
- Two ways of magnetic structure classification: "Shubnikov" vs. "reps analysis" -- Introduction 28-30
- Intro to Shubnikov magnetic space groups 31-34
- Intro to group representations (reps) with example of magnetic reps 35-49. Classifying the magnetic configuration by irreducible representations irreps 50-54
- irreps of SG. Reciprocal lattice. Propagation k-vector of $<$ magnetic $>$ structure/Brillouine zone points 55-62
- Magnetic Shubnikov groups. Comparison of two ways of magnetic structure classification/ determination: "Shubnikov" vs. "reps analysis" 63-65

Overview of Lecture

- Principles of magnetic neutron scattering/diffraction. Long range magnetic order seen by ND with some simple examples. 8-22
- Basic crystallography. Symmetry elements. Space groups (SG) 23-27
- Two ways of magnetic structure classification: "Shubnikov" vs. "reps analysis" -- Introduction 28-30
- Intro to Shubnikov magnetic space groups 31-34
- Intro to group representations (reps) with example of magnetic reps 35-49. Classifying the magnetic configuration by irreducible representations irreps 50-54
- irreps of SG. Reciprocal lattice. Propagation k-vector of $<$ magnetic $>$ structure/Brillouine zone points 55-62
- Magnetic Shubnikov groups. Comparison of two ways of magnetic structure classification/ determination: "Shubnikov" vs. "reps analysis" 63-65
- Case study (experimental) of modulated magnetic structure determination using k-vector reps formalism for classifying symmetry adopted magnetic modes 66-

Magnetic neutron scattering on an atom

Magnetic neutron scattering on an atom

Magnetic neutron scattering on an atom

$$
\frac{\hat{\delta}}{\substack{\hat{n} \\ \mathbf{n} \\ \boldsymbol{\mu}_{n}}}=2 \gamma \mu_{n} \frac{\hat{\sigma}}{2}
$$

Magnetic field from an electron

Magnetic neutron scattering on an atom

$$
\boldsymbol{\mu}_{n}=2 \gamma \mu_{n} \frac{\hat{\boldsymbol{\sigma}}}{2}
$$

Magnetic field from an electron

neutron-electron dipole interaction $V(\mathbf{R})=-\gamma \mu_{n} \hat{\boldsymbol{\sigma}} \mathbf{H}(\mathbf{R})$

Magnetic neutron scattering on an atom

$$
\boldsymbol{\mu}_{n}=2 \gamma \mu_{n} \frac{\hat{\boldsymbol{\sigma}}}{2}
$$

Magnetic field from an electron

neutron-electron dipole interaction $V(\mathbf{R})=-\gamma \mu_{n} \hat{\boldsymbol{\sigma}} \mathbf{H}(\mathbf{R})$
averaging over neutron
coordinates

$$
\underset{\mathbf{q}=\mathbf{k}^{\prime}-\mathbf{k}}{\left\langle\mathbf{k}^{\prime}\right| V(\mathbf{R})|\mathbf{k}\rangle}=\gamma r_{e} \hat{\boldsymbol{\sigma}} \frac{1}{q^{2}}\left[\mathbf{q} \times\left[\hat{\mathbf{s}}_{i} e^{i \mathbf{q r}_{i}} \times \mathbf{q}\right]\right]
$$

Magnetic neutron scattering on an atom

$$
\boldsymbol{\mu}_{n}=2 \gamma \mu_{n} \frac{\hat{\boldsymbol{\sigma}}}{2}
$$

Magnetic field from an electron

neutron-electron dipole interaction $V(\mathbf{R})=-\gamma \mu_{n} \hat{\boldsymbol{\sigma}} \mathbf{H}(\mathbf{R})$
averaging over neutron
coordinates

$$
\left\langle\mathbf{k}^{\prime}\right| V(\mathbf{R})|\mathbf{k}\rangle=\gamma r_{e} \hat{\boldsymbol{\sigma}} \frac{1}{q^{2}}[\mathbf{q} \times \underbrace{\left.\left.\hat{\mathbf{S}}_{i} e^{i \mathbf{q} \mathbf{r}_{i}} \times \mathbf{q}\right]\right]}_{\substack{\mathbf{q} \\ \text { magnetic } \\ \text { interaction } \\ \text { operator }}} \underbrace{\perp}_{\hat{\mathbf{Q}}}
$$

Magnetic neutron scattering on an atom

"magnetic scattering amplitude" $=\gamma r_{e}\left\langle\hat{\mathbf{Q}}_{\perp}\right\rangle$,

Magnetic neutron scattering on an atom

1. The size

Magnetic neutron scattering on an atom

1. The size

$$
\begin{aligned}
& \gamma r_{e}=-0.54 \cdot 10^{-12} \mathrm{~cm}=-5.4 \mathrm{fm}(\times S) \\
& \mathrm{fm}=\text { fermi }=10^{-13} \mathrm{~cm}
\end{aligned}
$$

Magnetic neutron scattering on an atom

1. The size

$$
\begin{aligned}
\gamma r_{e}=-0.54 \cdot 10^{-12} \mathrm{~cm}=-5.4 \mathrm{fm}(\times S) \\
\\
\mathrm{fm}=\text { fermi }=10^{-13} \mathrm{~cm}
\end{aligned}
$$

x-ray scattering length: $Z r_{e}$

Magnetic neutron scattering on an atom

1. The size

magnetic scattering intensity can be larger than the nuclear one

Magnetic neutron scattering on an atom

"magnetic scattering amplitude" $=\gamma r_{e}\left\langle\hat{\mathbf{Q}}_{\perp}\right\rangle$,

Magnetic neutron scattering on an atom

2. q-dependence

Magnetic neutron scattering on an atom

2. q-dependence

"magnetic scattering amplitude" $=\gamma r_{e}$

$\langle\hat{\mathbf{Q}}\rangle=\left\langle\sum_{i} \hat{\mathbf{r}}_{i} e^{i \mathbf{q} \mathbf{r}_{i}}\right\rangle=\mathbf{S} \int d \mathbf{r} \rho_{s}(\mathbf{r}) e^{i \mathbf{q} \mathbf{r}}$

Magnetic neutron scattering on an atom

2. q-dependence
"magnetic scattering amplitude" $=\gamma r_{e}\left\langle\hat{\mathbf{Q}}_{\perp}\right\rangle$,
Fourier image of the spin density in atom or magnetic form-factor

Magnetic neutron scattering on an atom

$$
\begin{aligned}
& " \text { magnetic scattering amplitude" }=\gamma r_{e}\left\langle\hat{\mathbf{Q}}_{\perp}\right\rangle \\
& \mathbf{Q}_{\perp}=\tilde{\mathbf{q}} \times \mathbf{Q} \times \tilde{\mathbf{q}}=[\tilde{\mathbf{q}} \times \mathbf{S} \times \tilde{\mathbf{q}}] f(q) \\
& \quad \tilde{\mathbf{q}}=\mathbf{q} / q
\end{aligned}
$$

Magnetic neutron scattering on an atom

3. geometry

$$
\begin{aligned}
& \text { "magnetic scattering amplitude" }=\gamma r_{e}\left\langle\hat{\mathbf{Q}}_{\perp}\right\rangle \\
& \mathbf{Q}_{\perp}=\tilde{\mathbf{q}} \times \mathbf{Q} \times \tilde{\mathbf{q}}=(\tilde{\mathbf{q}} \times \mathbf{S} \times \tilde{\mathbf{q}}] f(q) \\
& \tilde{\mathbf{q}}=\mathbf{q} / q
\end{aligned}
$$

Magnetic neutron scattering on an atom

3. geometry

$$
\begin{aligned}
& " \text { magnetic scattering amplitude" }=\gamma r_{e}\left\langle\hat{\mathbf{Q}}_{\perp}\right\rangle \\
& \mathbf{Q}_{\perp}=\tilde{\mathbf{q}} \times \mathbf{Q} \times \tilde{\mathbf{q}}=(\tilde{\mathbf{q}} \times \mathbf{S} \times \tilde{\mathbf{q}}] f(q) \\
& \quad \underset{\mathbf{q}}{\mathrm{q}}=\mathbf{q} / q
\end{aligned}
$$

$$
\left|\mathbf{Q}_{\perp}\right|=|\mathbf{S}| \sin (\varphi)
$$

Elastic scattering intensity

Neutron scattering cross-section (for unpolarized neutron beam)

$$
\frac{d \sigma}{d \Omega} \propto\left|\mathbf{Q}_{\perp}\right|^{2}
$$

Elastic scattering on a lattice of spins

Elastic scattering on a lattice of spins

Elastic scattering on a lattice of spins

Ipem80f-16_290K_osceti.dat,Ipern80f-16_15K_osecti.dat

Magnetic structure

Examples

Magnetic structure

Examples

Examples of magnetic structures. Propagation vector formalism $k \neq 0$

$\begin{gathered}\text { Magnetic moment } \\ \text { is a real quantity }\end{gathered} \quad \mathbf{S}\left(\mathbf{t}_{n}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{+2 \pi i \mathbf{t}_{n} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-2 \pi i \mathbf{t}_{n} \mathbf{k}}\right)$ Bloch waves
Fourie amplitude is complex $\mathbf{S}_{0}=\mathbf{S}_{x} e^{i \phi_{x}}+\mathbf{S}_{y} e^{i \phi_{y}}+\mathbf{S}_{z} e^{i \phi_{z}}$

Examples of magnetic structures. Propagation vector formalism $k \neq 0$

$\begin{gathered}\text { Magnetic moment } \\ \text { is a real quantity }\end{gathered} \quad \mathbf{S}\left(\mathbf{t}_{n}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{+2 \pi i \mathbf{t}_{n} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-2 \pi i \mathbf{t}_{n} \mathbf{k}}\right)$ Bloch waves
Fourie amplitude is complex $\mathbf{S}_{0}=\mathbf{S}_{x} e^{i \phi_{x}}+\mathbf{S}_{y} e^{i \phi_{y}}+\mathbf{S}_{z} e^{i \phi_{z}}$

$$
\mathrm{k}=[\mathrm{I} / 2, \mathrm{I} / 2] \mathrm{AFM}
$$

$$
\begin{aligned}
\mathbf{S}\left(\mathbf{t}_{n}\right) & =\mathbf{S}_{y} \sin \left(2 \pi \mathbf{t}_{n} \mathbf{k}\right) \\
& =\mathbf{S}_{y} \sin \left(\pi\left(t_{n x}+t_{n y}\right)\right)
\end{aligned}
$$

Examples of magnetic structures. Propagation vector formalism $k \neq 0$

$\underset{\text { Magnetic moment }}{\text { is a real quantity }} \quad \mathbf{S}\left(\mathbf{t}_{n}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{+2 \pi i \mathbf{t}_{n} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-2 \pi i \mathbf{t}_{n} \mathbf{k}}\right)$ Bloch waves
Fourie amplitude is complex $\mathbf{S}_{0}=\mathbf{S}_{x} e^{i \phi_{x}}+\mathbf{S}_{y} e^{i \phi_{y}}+\mathbf{S}_{z} e^{i \phi_{z}}$.
modulated (in)commensurate

Examples of magnetic structures. Propagation vector formalism $k \neq 0$

$\begin{gathered}\text { Magnetic moment } \\ \text { is a real quantity }\end{gathered} \quad \mathbf{S}\left(\mathbf{t}_{n}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{+2 \pi i \mathbf{t}_{n} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-2 \pi i \mathbf{t}_{n} \mathbf{k}}\right)$ Bloch waves $\underset{\text { (one can not avoid this) }}{\text { Fourie amplitude is complex }} \mathbf{S}_{0}=\mathbf{S}_{x} e^{i \phi_{x}}+\mathbf{S}_{y} e^{i \phi_{y}}+\mathbf{S}_{z} e^{i \phi_{z}}$
modulated (in)commensurate

$$
\mathbf{S}_{01}=\mathbf{S}_{x}+\mathbf{S}_{y} e^{\frac{i \pi}{2}}=\mathbf{S}_{x}+\stackrel{\rightharpoonup}{i} \mathbf{S}_{y}
$$

$$
\varphi_{n}=2 \pi i \mathbf{t}_{n} \mathbf{k}
$$

$$
\mathbf{S}\left(\mathbf{t}_{n}\right)=\mathbf{S}_{x} \cos \left(\varphi_{n}\right)+\mathbf{S}_{y} \sin \left(\varphi_{n}\right)
$$

Examples of magnetic structures. Propagation vector formalism $k \neq 0$

$\begin{gathered}\text { Magnetic moment } \\ \text { is a real quantity }\end{gathered} \quad \mathbf{S}\left(\mathbf{t}_{n}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{+2 \pi i \mathbf{t}_{n} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-2 \pi i \mathbf{t}_{n} \mathbf{k}}\right)$ Bloch waves $\underset{\text { (one can not avoid this) }}{\text { Fourie amplitude is complex }} \mathbf{S}_{0}=\mathbf{S}_{x} e^{i \phi_{x}}+\mathbf{S}_{y} e^{i \phi_{y}}+\mathbf{S}_{z} e^{i \phi_{z}}$
modulated (in)commensurate

Scattering from the lattice of spins.

Structure factor $F(q)$

In ND experiment we measure correlators of Fourier transform of magnetic lattice

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega} \propto\left(\mathbf{F}(\mathbf{q}) \cdot \mathbf{F}^{*}(\mathbf{q})+i \mathbf{P} \cdot\left[\mathbf{F}(\mathbf{q}) \times \mathbf{F}^{*}(\mathbf{q})\right]\right) \cdot \delta(\mathbf{H} \pm \mathbf{k}-\mathbf{q}) \\
& \text { structure factor } \\
& \text { polarized neutron } \\
& \text { (chiral) term. }
\end{aligned}
$$

Scattering from the lattice of spins.

Structure factor $F(q)$

In ND experiment we measure correlators of Fourier transform of magnetic lattice

$\left.\frac{d \sigma}{d \Omega} \propto \underset{\uparrow}{\left(\mathbf{F}(\mathbf{q}) \cdot \mathbf{F}^{*}(\mathbf{q})\right.}+i \mathbf{P} \cdot\left[\mathbf{F}(\mathbf{q}) \times \mathbf{F}^{*}(\mathbf{q})\right]\right) \cdot$	
\uparrowpolarized neutron (chiral) term.	$\delta(\mathbf{H} \pm \mathbf{k}-\mathbf{q})$ Bragg peak at $\mathbf{q}=\mathbf{H} \mp \mathbf{k}$

Scattering from the lattice of spins.

Structure factor $F(q)$

In ND experiment we measure correlators of Fourier transform of magnetic lattice

Sum runs over all atoms in zeroth cell

Example of modulated structure and diffraction pattern

Example of modulated structure and single crystal diffraction

4-arms k-vector stars
$\left\{\mathbf{k}_{1}\right\}=\left\{\left[\frac{2}{5}, \frac{1}{5}, 1\right]\right\}$
$\left\{\mathbf{k}_{2}\right\}=\left\{\left[\frac{1}{5}, \frac{2}{5}, \overline{1}\right]\right\}$
superstructure satellites

the mesh is for the parent $14 / \mathrm{mmm}$ cell $\mathrm{T}=300 \mathrm{~K}$, (hk0) plane of $\mathrm{Csy}_{y} \mathrm{Fe}_{2-\mathrm{x}} \mathrm{Se}_{2}$

Example of modulated structure and single crystal diffraction

4-arms k-vector stars
superstructure satellites

$$
\begin{gathered}
\left\{\mathbf{k}_{1}\right\}=\left\{\left[\frac{2}{5}, \frac{1}{5}, 1\right]\right\} \\
\left\{\mathbf{k}_{2}\right\}=\left\{\left[\frac{1}{5}, \frac{2}{5}, \overline{1}\right]\right\}
\end{gathered}
$$

the mesh is for the parent $14 / \mathrm{mmm}$ cell $\mathrm{T}=300 \mathrm{~K}$, (hk0) plane of $\mathrm{Csy}_{y} \mathrm{Fe}_{2-\mathrm{x}} \mathrm{Se}_{2}$

Example of modulated structure and single crystal diffraction

4-arms k-vector stars
superstructure satellites
$\left\{\mathbf{k}_{1}\right\}=\left\{\left[\frac{2}{5}, \frac{1}{5}, 1\right]\right\}$
the mesh is for the parent $14 / \mathrm{mmm}$ cell $\mathrm{T}=309 \mathrm{~K}$, (hkO) plane of $\mathrm{Csy}_{y} \mathrm{Fe}_{2-\mathrm{x}} \mathrm{Se}_{2}$

Example of complex magnetic structure

Antiferromagnetic three sub-lattice ordering in $\mathrm{Tb}_{14} \mathrm{Au}_{51}$

P6/m

Example of complex magnetic structure

Antiferromagnetic three sub-lattice ordering in $\mathrm{Tb}_{14} \mathrm{Au}_{51}$

P6/m

k-vector=[1/3, I/3, 0]

PHYSICAL REVIEW B 72, 134413 (2005)

Some legitimate questions

I. How do we describe/classify/predict magnetic symmetries and structures?
2. How do we construct all symmetry allowed magnetic structures for a given crystal structure?

Magnetic structure/symmetry seen by ND

Magnetic interactions are described by QM Hamiltonian with quantum spin operators

$$
\hat{H}=-\sum_{i, j} J_{i j} \hat{\mathbf{s}}_{i} \cdot \hat{\mathbf{s}}_{j}+\sum_{i} D_{i} \hat{s}_{z}^{2}+\ldots
$$

In a diffraction experiment the problem is reduced and we observe only the spin expectation values: <> averaging over all states (wave function ψ) of the scatterer.

$$
\mathbf{s}_{i}=\left\langle\hat{\mathbf{s}}_{i}\right\rangle=s_{x} \mathbf{e}_{\boldsymbol{x}}+s_{y} \mathbf{e}_{\boldsymbol{y}}+s_{z} \mathbf{e}_{\boldsymbol{z}}
$$

Magnetic structure that we observe by ND is an ordered set of classical axial vectors $\mathbf{s}_{i}=\left\langle\hat{\mathbf{s}}_{i}\right\rangle$ that can be directed at any angle with respect to crystal axes and field.
In the representation symmetry analysis we deal with the classical spins transforming as axial vectors under symmetry operations of space groups such as rotations, inversion, etc.

Atomic structure of any 3D crystal can be described by one of 230 3D Space* groups

* E.S. Fedorov 1853 - 1919.
"Symmetry of regular figures" (1890)

Artur Moritz
Schöenflies 1853-1928.
"Kristallsysteme
Und Kristallstruktur" (1891)

Basic crystallography (3 slides)

230 3D Space* groups

Groups of transformations/motions of three dimensional homogeneous discreet space into itself

Two kinds of transformations/motions $=1$. rotations

$$
\begin{array}{llllllll}
\text { e.g: } 4_{z}^{+} & 2_{z} & 4_{z}^{-} & -1 & -4_{z}^{+} & m_{z} & -4_{z}^{-}
\end{array}
$$

2. lattice translations $\mathbf{t}=n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}$ (14 Bravias groups)

Space group $\sim($ semi $)$ product point crystallographic group and Bravias group.

* E.S. Fedorov (1890) A.Schoenflies (1890)

230 space groups. New symmetry elements

Product of 32 point crystallographic groups and 14 Bravias groups

230 space groups. New symmetry elements

Product of 32 point crystallographic groups and 14 Bravias groups

Screw axes or axes of screw rotations $=$ rotation + translation. e.g. $2_{1}, 3_{1}, 3_{2}, \ldots$

$$
\begin{aligned}
& \alpha_{s}=2 \pi / N, N=2,3,4,6 \\
& t_{s}=\frac{q}{N} t, \quad q=1,2,3,4,6
\end{aligned}
$$

230 space groups. New symmetry elements

Product of 32 point crystallographic groups and 14 Bravias groups

Screw axes or axes of screw rotations $=$ rotation + translation. e.g. $2_{1}, 3_{1}, 3_{2}, \ldots$

$$
\begin{aligned}
& \alpha_{s}=2 \pi / N, N=2,3,4,6 \\
& t_{s}=\frac{q}{N} t, \quad q=1,2,3,4,6
\end{aligned}
$$

Glide-reflection planes $=$
mirror reflection $m+$ translation by $t / 2$, a, b, n

International Tables

Pnma

$D_{2 h}^{16}$
$P 2_{1} / n 2_{1} / m 2_{1} / a$
mm m
No. 62

Origin at $\overline{1}$ on $12_{1} 1$
Asymmetric unit $\quad 0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{4} ; \quad 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
(4) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{4}, \frac{1}{4}$
(5) $\overline{1} \quad 0,0,0$
(6) $a \quad x, y, \frac{1}{4}$
(7) $m x, \frac{1}{4}, z$
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity, Wyckoff letter,
Site symmetry
$8 \quad d \quad 1$
(1) x, y, z
(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$
(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$

| 4 | c | .m. | $x, \frac{1}{4}, z$ | $\bar{x}+\frac{1}{2}, \frac{3}{4}, z+\frac{1}{2}$ | $\bar{x}, \frac{3}{4}, \bar{z}$ | $x+\frac{1}{2}, \frac{1}{4}, \bar{z}+\frac{1}{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | b | $\overline{1}$ | $0,0, \frac{1}{2}$ | $\frac{1}{2}, 0,0$ | $0, \frac{1}{2}, \frac{1}{2}$ | $\frac{1}{2}, \frac{1}{2}, 0$ |
| 4 | a | $\overline{1}$ | $0,0,0$ | $\frac{1}{2}, 0, \frac{1}{2}$ | $0, \frac{1}{2}, 0$ | $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ |

(5) $\bar{x}, \bar{y}, \bar{z}$
(6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$
(7) $x, \bar{y}+\frac{1}{2}, z$
(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2} \quad h k 0: h=2 n$
$h 00: h=2 n$
$0 k 0: k=2 n$
$00 l: l=2 n$
Special: as above, plus
no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$

Reflection conditions

General:

Orthorhombic

Patterson symmetry Pmmm

International Tables

Pnma

Schoenflies symbol mmm

No. 62
$P 2_{1} / n 2_{1} / m 2_{1} / a$

Orthorhombic

Patterson symmetry Pmmm

Origin at $\overline{1}$ on $12_{1} 1$
Asymmetric unit $\quad 0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{4} ; \quad 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
(4) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{4}, \frac{1}{4}$
(5) $\overline{1} \quad 0,0,0$
(6) $a \quad x, y, \frac{1}{4}$
(7) $m x, \frac{1}{4}, z$
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity, Wyckoff letter, Site symmetry
(1) x, y, z
(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$
(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$
(7) $x, \bar{y}+\frac{1}{2}, z$
h00: $h=2 n$
$0 k 0$: $k=2 n$
$00 l: l=2 n$
Special: as above, plus
no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$

Hermann-Mauguin, short

International Tables

Pnma
No. 62

Schoenflies symbol
mmm

Orthorhombic

$$
P 2_{1} / n 2_{1} / m 2_{1} / a
$$

Hermann-Mauguin
Origin at $\overline{1}$ on $12_{1} 1$
Asymmetric unit $\quad 0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{4} ; \quad 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
(4) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{4}, \frac{1}{4}$
(5) $\overline{1} \quad 0,0,0$
(6) $a \quad x, y, \frac{1}{4}$
(7) $m x, \frac{1}{4}, z$
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity, Wyckoff letter, Site symmetry
(1) x, y, z
(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$
(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(5) $\bar{x}, \bar{y}, \bar{z}$
(6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$
(7) $x, \bar{y}+\frac{1}{2}, z$
(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$

Reflection conditions
$8 \quad d \quad 1$
Coordinates
General

$$
\begin{array}{ll}
0 k l: & k+l=2 n \\
h k 0: & h=2 n \\
h 00: & h=2 n \\
0 k 0: & k=2 n \\
00 l: l=2 n
\end{array}
$$

Special: as above, plus

| 4 | c | .m. | $x, \frac{1}{4}, z$ | $\bar{x}+\frac{1}{2}, \frac{3}{4}, z+\frac{1}{2}$ | $\bar{x}, \frac{3}{4}, \bar{z}$ | $x+\frac{1}{2}, \frac{1}{4}, \bar{z}+\frac{1}{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | b | $\overline{1}$ | $0,0, \frac{1}{2}$ | $\frac{1}{2}, 0,0$ | $0, \frac{1}{2}, \frac{1}{2}$ | $\frac{1}{2}, \frac{1}{2}, 0$ |
| 4 | a | $\overline{1}$ | $0,0,0$ | $\frac{1}{2}, 0, \frac{1}{2}$ | $0, \frac{1}{2}, 0$ | $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ |

no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$

Hermann-Mauguin, short

International Tables

Pnma
No. 62

Schoenflies symbol
mmm
$P 2_{1} / n 2_{1} / m 2_{1} / a$
Orthorhombic

Patterson symmetry Pmmm
Hermann-Mauguin
Origin at $\overline{1}$ on $12_{1} 1$
Asymmetric unit $\quad 0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{4} ; \quad 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
(4) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{4}, \frac{1}{4}$
(5) $\overline{1} \quad 0,0,0$
(6) $a \quad x, y, \frac{1}{4}$
(7) $m x, \frac{1}{4}, z$
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$
zeroth block of SG

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity, Wyckoff letter, Site symmetry
$8 \quad d \quad 1$
(1) x, y, z
(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$
(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(5) $\bar{x}, \bar{y}, \bar{z}$
(6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$
(7) $x, \bar{y}+\frac{1}{2}, z$
(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$
$0 k l: k+l=2 n$
$h k 0: h=2 n$
$h 00$: $h=2 n$
$0 k 0: k=2 n$
$00 l: l=2 n$
Special: as above, plus
no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$
Reflection conditions

General:

Hermann-Mauguin, short

International Tables

Schoenflies symbol
mmm
No. 62

$$
P 2_{1} / n 2_{1} / m 2_{1} / a
$$

Orthorhombic

Hermann-Mauguin
Origin at $\overline{1}$ on $12_{1} 1$
Asymmetric unit $\quad 0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{4} ; \quad 0 \leq z \leq 1$
Symmetry operations
(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
(4) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{4}, \frac{1}{4}$
(5) $\overline{1} \quad 0,0,0$
(6) $a \quad x, y, \frac{1}{4}$
(7) $m x, \frac{1}{4}, z$
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$
zeroth block of SG

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions

Multiplicity, Wyckoff letter,
Site symmetry

8	d	1	(1) x, y, z	(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$	(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$	(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(5) $\bar{x}, \bar{y}, \bar{z}$	(6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$	(7) $x, \bar{y}+\frac{1}{2}, z$	(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$			

Reflection conditions
general position:
rotation matrix + translation
$\left\{h \mid \tau_{h}\right\}$
$00 l: l=2 n$
Special: as above, plus
no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$

Two ways of description of magnetic structures

Magnetic structure is an axial vector function $\mathbf{S}(\mathbf{r})$ defined on the discreet system of points (atoms), e.g. $\mathbf{S}(\mathbf{r})=\mathbf{s}\left(\mathbf{r}_{1}\right) \oplus \mathbf{s}\left(\mathbf{r}_{2}\right) \oplus \mathbf{s}\left(\mathbf{r}_{3}\right) \oplus \mathbf{s}\left(\mathbf{r}_{4}\right)$

Two ways of description of magnetic structures

Magnetic structure is an axial vector function $\mathbf{S}(\mathbf{r})$ defined on the discreet system of points (atoms), e.g. $\mathbf{S}(\mathbf{r})=\mathbf{s}\left(\mathbf{r}_{1}\right) \oplus \mathbf{s}\left(\mathbf{r}_{2}\right) \oplus \mathbf{s}\left(\mathbf{r}_{3}\right) \oplus \mathbf{s}\left(\mathbf{r}_{4}\right)$

1. $\mathbf{g S}(\mathbf{r})=\mathbf{S}(\mathbf{r})$ to itself, where $\mathrm{g} \in$ subgroup of $\mathrm{SG} \otimes 1^{\prime}, l^{\prime}=$ spin/time reversal, SG (space group)
or
2. $\mathbf{g S}(\mathbf{r})=\mathbf{S}^{\prime}(\mathbf{r})$ to different function defined on the same system of points, $g \in S G$

$r)=S(r)$ to itself, Way of description of magnetic $\otimes 1^{\prime}, 1^{\prime}=$ spin reversal, SG (space group)
 strucłures

$\mathbf{r})=\mathbf{S}^{\prime}(\mathbf{r})$ to different function defined on the e system of points, $g \in S G$

```
Two ways of description of magnetic 1. \(\underset{\mathbf{S C}}{\mathbf{S}}(\mathbf{r})=\mathbf{S}(\mathbf{r})\) to itself, where \(\mathrm{g} \in\) subgroup of \(\mathrm{SG} \otimes 1\) ', 1'=spin reversal, SG (space group) structures
. \(\mathbf{g S}(\mathbf{r})=\mathbf{S}^{\prime}(\mathbf{r})\) to different function defined on the same system of points, \(g \in S G\)
```

1. Magnetic or Shubnikov groups MSG. Historically the first way of description. A group that leaves $\mathbf{S}(\mathbf{r})$ invariant under a subgroup of $\mathrm{G} \otimes 1^{\prime}$. Identifying those symmetry elements that leave $S(r)$ invariant.
Similar to the space groups (SG 230). The MSG symbol looks similar to SG one, e.g. I4/m'

Two ways of description of magnetic

```
1.gS(r)=S(r) to itself, where g\in subgroup of
```

1.gS(r)=S(r) to itself, where g\in subgroup of
SG\otimes1', l'=spin reversal, SG (space group)
SG\otimes1', l'=spin reversal, SG (space group)
or
or
2. gS(r)= S'(r) to different function defined on the
2. gS(r)= S'(r) to different function defined on the
same system of points, g\inSG

```
    same system of points, g\inSG
```

87.1.733	14/m
87.2.734	14/m1'
87.3.735	$14 / \mathrm{m}$
87.4.736	14/m'
87.5.737	$14^{\prime} / \mathrm{m}^{\prime}$
87.6.738	$1 \mathrm{p} 4 / \mathrm{m}$
87.7.739	$1 \mathrm{P} 41 / \mathrm{m}$
87.8.740	$1{ }^{\text {P }} 4 / \mathrm{m}$
87.9.741	$1 \mathrm{P} 4^{\prime} / \mathrm{m}^{\prime}$

Two ways of description of magnetic

```
1.gS(r)=S(r) to itself, where g\in subgroup of
    SG\otimes1', 1'=spin reversal, SG (space group)
    or
2. gS(r) = S'(r) to different function defined on the
    same system of points,g\inSG
```

1. Magnetic or Shubnikov groups MSG. Historically the first way of description. A group that leaves $\mathbf{S}(\mathbf{r})$ invariant under a subgroup of $\mathrm{G} \otimes 1$ '. Identifying those symmetry elements that leave $S(r)$ invariant.
Similar to the space groups (SG 230). The MSG symbol looks
2. Representation analysis. How does $\mathbf{S}(\mathbf{r})$ transform
87.4.736
87.5.737 $\quad 14 / m^{\prime}$ under $g \in G$ (space group)?
87.8.740
$I_{p} 4 / m^{\prime}$
87.9.741 $\quad \mathrm{I}_{\mathrm{P}} 4^{\prime} / \mathrm{m}^{\prime}$
$\underline{\mathbf{S}(\mathbf{r}) \text { is transformed to } \mathbf{S}^{\mathrm{i}}(\mathbf{r}) \text { under } g \in \mathrm{G} \text { according to a }}$ single irreducible representation* τ_{i} of G. Identifying/ classifying all the functions $\mathbf{S}^{\mathrm{i}}(\mathbf{r})$ that appears under all symmetry operators of the space group G
[^0]
Two ways of description of magnetic

1. Magnetic or Shubnikov groups MSG. Historically the first way of description. A group that leaves $\mathbf{S}(\mathbf{r})$ invariant under a subgroup of $\mathrm{G} \otimes 1$ '. Identifying those symmetry elements that 87.4.736 14/m' leave $S(r)$ invariant.
Similar to the space groups (SG 230). The MSG symbol looks similar to SG one, e.g. $14 / m^{\prime}$
2. Representation analysis. How does $\mathbf{S}(\mathbf{r})$ transform 87.8.740
$I_{p} 4 / m^{\prime}$ under $\mathrm{g} \in \mathrm{G}$ (space group)?
87.9.741 $\quad \mathrm{I}_{\mathrm{P}} 4^{\prime} / \mathrm{m}^{\prime}$
$\underline{\mathbf{S}(\mathbf{r}) \text { is transformed to } \mathbf{S}^{\mathrm{i}}(\mathbf{r}) \text { under } g \in \mathrm{G} \text { according to a }}$ single irreducible representation* τ_{i} of G. Identifying/ classifying all the functions $\mathbf{S}^{\mathrm{i}}(\mathbf{r})$ that appears under all I4/m, $\mathrm{k}=0$ has 81 D irreps $\tau_{1}, \ldots \tau_{8}$. symmetry operators of the space group G
$\bar{*}$ each group element $g-->$ matrix $\tau(g)$

	h_{1}	h_{14}	h_{4}	h_{15}	h_{25}	h_{38}	h_{28}	h_{39}
τ, ψ	1	4_{z}^{+}	2_{z}	4_{z}^{-}	-1	-4_{z}^{+}	m_{z}	-4_{z}^{-}
τ_{2}	1	1	1	1	-1	-1	-1	-1
τ_{3}	1	i	-1	$-i$	1	i	-1	$-i$
τ_{5}	1	-1	1	-1	1	-1	1	-1
τ_{7}	1	$-i$	-1	i	1	$-i$	-1	i

Magnetic space groups and representation analysis: competing or friendly concepts?

In 1960th-70th often opposed

E.F.Bertaut, CNRS, Grenoble

Representation Analysis
W.Opechovski, UBC, Vancouver Shubnikov magnetic space groups

Nowdays
(Representation Analysis) and (Magnetic space groups) are complementary and in case $\mathrm{k}=0$ or commensurate (e.g 1/2) provide identical description of magnetic symmetry.

antisymmetry: Heesh (1929), Shubnikov (1945). groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955)

antisymmetry: Heesh (1929), Shubnikov (1945). groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955)

antisymmetry: Heesh (1929), Shubnikov (1945). groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

Magnetic symmetry. 1651 3D-Shubnikov (Sh or Ш) space groups

antisymmetry: Heesh (1929), Shubnikov (1945). groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

Magnetic symmetry. 1651 3D-Shubnikov (Sh or Ш) space groups

antisymmetry: Heesh (1929), Shubnikov (1945). groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

Magnetic symmetry. 1651 3D-Shubnikov (Sh or Ш) space groups

230 Single-color magnetic groups no antielements
antisymmetry: Heesh (1929), Shubnikov (1945). groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

Magnetic symmetry. 1651 3D-Shubnikov (Sh or Ш) space groups

antisymmetry: Heesh (1929), Shubnikov (1945).
groups: Zamorzaev (1953, 1957); Belov, Neronova, Smirnova (1955)
spin reversal: Landau and Lifschitz (1957)

Examples of Sh groups

59	Pmmn	62	Pnma
	Pm'mn		Pn'ma
	Pmmn ${ }^{\prime}$		Pnm'a
	* Pm'm ${ }^{\prime}$		Pnma'
	*Pmm' ${ }^{\prime}$		* Pn'm ${ }^{\prime}$ a
	$P m^{\prime} m^{\prime} n^{\prime}$		*Pnm'a ${ }^{\text {a }}$
	$P_{2 c} m m n$ $P_{2} \cdot m^{\prime} m n$		* Prn'ma'
	${ }_{P_{2 c} c^{\prime} m^{\prime} m^{\prime} n}$		$P n^{\prime} m^{\prime} a^{\prime}$

Examples of Sh groups

$$
59 \begin{aligned}
& P m m n \\
& P m^{\prime} m n \\
& P m m n^{\prime} \\
& { }^{*} P m^{\prime} m^{\prime} n \\
& { }^{*} P m m^{\prime} n^{\prime} \\
& P m^{\prime} m^{\prime} n^{\prime} \\
& P_{2 c} m m n \\
& P_{2 c} m^{\prime} m n \\
& P_{2 c} m^{\prime} m^{\prime} n
\end{aligned}
$$

62 Pima
Pn'ma
Pima
Pima'

* Pn'm ${ }^{\prime}$ a
*Pnm'a

*Pn'ma'
$P n^{\prime} m^{\prime} a^{\prime}$

Ferromagnetic groups: point symmetry allows FM orientation of spins
Only 275 FM groups out of 1651...

Examples of Sh groups

Example of Shubnikov group. Magnetic strucłure of Iron based superconductor KFeSe

$I 4 / m, \mathrm{k}=0$ has 81 D irreps $\tau_{1}, \ldots \tau_{8}$.
4 real irreps <--> Shubnikov groups of $14 / m$ 4 complex irreps

Example of Shubnikov group. Magnetic strucłure of Iron based superconductor KFeSe

I4/m, $\mathrm{k}=0$ has 81 D irreps $\tau_{1}, \ldots \tau_{8}$.
4 real irreps <--> Shubnikov groups of $14 / m$ 4 complex irreps

"Disadvantages" Specifics of Shubnikov Shgroup description

"Disadvantages" Specifics of Shubnikov Shgroup description

Specifics 1: Sh group that describes the magnetic structure is not necessarily made from the parent G. Thus, it is not an ultimately practical...

"Disadvantages" Specifics of Shubnikov Shgroup description

Specifics 1: Sh group that describes the magnetic structure is not necessarily made from the parent G. Thus, it is not an ultimately practical...

Example 1:

there are no cubic ferromagnetic Sh-groups. "problems" with cubic ferromagnets Fe, Ni, EuO, EuS, ... One can find lower symmetry ferromagnetic group, e.g. tetragonal Sh -group I4/mm'm' for Fe ($\mathrm{Im}-3 \mathrm{~m}$)

"Disadvantages" Specifics of Shubnikov Shgroup description

Specifics 1: Sh group that describes the magnetic structure is not necessarily made from the parent G. Thus, it is not an ultimately practical...

Example 1:

there are no cubic ferromagnetic Sh-groups. "problems" with cubic ferromagnets Fe, Ni, EuO, EuS, ...
One can find lower symmetry ferromagnetic group, e.g. tetragonal Sh-group I4/mm'm' for Fe ($\mathrm{Im}-3 \mathrm{~m}$)

Example 2:

CrCl_{2} orthorhombic space group: Pnnm.
No Sh group derived from Pnnm describes CrCl_{2} magnetic structure
Cr-atoms in 2a-position

"Disadvantages" Specifics of Shubnikov Shgroup description

Specifics 1: Sh group that describes the magnetic structure is not necessarily made from the parent G. Thus, it is not an ultimately practical...

Example 1:

there are no cubic ferromagnetic Sh-groups. "problems" with cubic ferromagnets Fe, Ni, EuO, EuS, ...
One can find lower symmetry ferromagnetic group, e.g. tetragonal Sh-group I4/mm'm' for Fe ($\mathrm{Im}-3 \mathrm{~m}$)

Example 2:

CrCl_{2} orthorhombic space group: Pnnm.
No Sh group derived from Pnnm describes CrCl_{2} magnetic structure
Cr-atoms in 2a-position

Specifics 2: 3D Sh do not describe modulated structures.

* No rotations on non-crystallographic angle - no helix
* Linear orthogonal transformations preserve the spin size - no SDW

"Disadvantages" Specifics of Shubnikov Shgroup description

Specifics 1: Sh group that describes the magnetic structure is not necessarily made from the parent G. Thus, it is not an ultimately practical...

Example 1:

there are no cubic ferromagnetic Sh-groups. "problems" with cubic ferromagnets Fe, Ni, EuO, EuS, ...
One can find lower symmetry ferromagnetic group, e.g. tetragonal Sh-group I4/mm'm' for Fe ($\mathrm{Im}-3 \mathrm{~m}$)

Example 2:

CrCl_{2} orthorhombic space group: Pnnm.
No Sh group derived from Pnnm describes CrCl_{2} magnetic structure
Cr-atoms in 2a-position

Specifics 2: 3D Sh do not describe modulated structures.

* No rotations on non-crystallographic angle - no helix
* Linear orthogonal transformations preserve the spin size - no SDW

Introduction to representation theory with relatively simple example of magnetic representation. Classification of magnetic structures by irreducible representations irreps of group

Why irreducible representations of space group is so important for magnetic structure?

Symmetry in QM

$\hat{H}(\boldsymbol{r}), \boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}, \ldots r_{n}\right)$, vector space with dimension n $\psi(r)$ arbitrary wave function

Symmetry in QM

$\hat{H}(\boldsymbol{r}), \boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}, \ldots r_{n}\right)$, vector space with dimension n $\psi(r)$ arbitrary wave function
G - group of coordinate transformation, $\mathrm{T}\left(\mathrm{G}_{\mathrm{a}}\right)$ - induced transformations in ψ-space $T\left(G_{a}\right) \psi(\mathbf{r})=\psi^{\prime}(\mathbf{r})=\psi\left(G_{a}^{-1} \mathbf{r}\right)$

Symmetry in QM

$\hat{H}(\boldsymbol{r}), \boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}, \ldots r_{n}\right)$, vector space with dimension n $\psi(\boldsymbol{r})$ arbitrary wave function
G - group of coordinate transformation, $\mathrm{T}\left(\mathrm{G}_{\mathrm{a}}\right)$ - induced transformations in ψ-space $T\left(G_{a}\right) \psi(\mathbf{r})=\psi^{\prime}(\mathbf{r})=\psi\left(G_{a}^{-1} \mathbf{r}\right)$
$T\left(G_{a}\right) H T^{-1}\left(G_{a}\right)=H^{\prime} \quad$ if $H=H^{\prime}: G$ is called symmetry group of the Hamiltonian

Symmetry in QM

$\hat{H}(\boldsymbol{r}), \boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}, \ldots r_{n}\right)$, vector space with dimension n $\psi(\boldsymbol{r})$ arbitrary wave function
G - group of coordinate transformation, $\mathrm{T}\left(\mathrm{G}_{\mathrm{a}}\right)$ - induced transformations in ψ-space $T\left(G_{a}\right) \psi(\mathbf{r})=\psi^{\prime}(\mathbf{r})=\psi\left(G_{a}^{-1} \mathbf{r}\right)$
$T\left(G_{a}\right) H T^{-1}\left(G_{a}\right)=H^{\prime} \quad$ if $H=H^{\prime}: G$ is called symmetry group of the Hamiltonian

$$
\begin{aligned}
& \quad \text { eigenvalues/functions } \\
& \hat{H} \psi_{v}=E_{v} \psi_{v} \quad \Rightarrow E_{v}, \psi_{v}{ }^{1}, \psi_{v}{ }^{2}, \ldots \psi_{v}{ }^{l_{v}}
\end{aligned}
$$

Symmetry in QM

$\hat{H}(\boldsymbol{r}), \boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}, \ldots r_{n}\right)$, vector space with dimension n $\psi(r)$ arbitrary wave function
G-group of coordinate transformation, $\mathrm{T}\left(\mathrm{G}_{\mathrm{a}}\right)$ - induced transformations in ψ-space $T\left(G_{a}\right) \psi(\mathbf{r})=\psi^{\prime}(\mathbf{r})=\psi\left(G_{a}^{-1} \mathbf{r}\right)$
$T\left(G_{a}\right) H T^{-1}\left(G_{a}\right)=H^{\prime} \quad$ if $H=H^{\prime}: G$ is called symmetry group of the Hamiltonian

$$
\begin{aligned}
& \text { eigenvalues/functions } \\
& \hat{H} \psi_{v}=E_{v} \psi_{v} \quad \Rightarrow E_{v}, \psi_{v}{ }^{l}, \psi_{v}{ }^{2}, \ldots \psi_{v}{ }^{l_{v}} \\
& E_{v}, \psi_{v}{ }^{l v} \text { can be classified by irreps } \tau_{i j}{ }^{v} \\
& \text { degeneracy } l_{v} \text { is } \geq \text { dimension of } \tau_{i j}{ }^{v} \\
& \text { rep } \Rightarrow_{\Sigma_{\oplus}} \text { irreps: } T_{i j}=\sum_{\oplus} n_{\nu} \tau_{i j}^{\nu} \\
& \text { For example: } \\
& \text { * Crystal field splitting } \\
& \text { * Molecular vibrations } \\
& \text { * Phonons } \\
& \text { * Magnetic structure } \\
& \text {... e.v. }
\end{aligned}
$$

Example: point group 32

Point group Hermann-Mauguin symbol 32 (D_{3} Schoenflies symbol) e.g Quartz

or regular triangle

Multiplication table, isomorphism

Point group 32 (D_{3} Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp.
hex $\longrightarrow 1 \quad 3^{1} \quad 3^{2} \quad 2_{u} \quad 2_{\mathrm{y}} \quad 2_{\mathrm{x}} \quad$ axes in xy-plane

Multiplication table, isomorphism

Point group $32\left(\mathrm{D}_{3}\right.$ Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp.
hex $\longrightarrow 1 \quad 3^{1} \quad 3^{2} \quad 2_{\mathrm{u}} \quad 2_{\mathrm{y}} 2_{\mathrm{x}} \quad$ axes in xy-plane
multiplication table

	g_{1}	g_{2}	\cdots	g_{n}
g_{1}	g_{1}^{2}	$g_{1} g_{2}$	\ldots	$g_{1} g_{n}$
g_{2}	$g_{2} g_{1}$	g_{2}^{2}	\cdots	$g_{2} g_{n}$
\cdot	\cdot	\cdot		\cdot
\cdot	\cdot	\cdot		\cdot
\cdot	\cdot	\cdot		\cdot
g_{n}	$g_{n} g_{1}$	$g_{n} g_{2}$		g_{n}^{3}

Multiplication table, isomorphism

Point group 32 (D_{3} Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp.
hex $\longrightarrow 1 \quad 3^{1} \quad 3^{2} \quad 2_{u} \quad 2_{\mathrm{y}} 2_{\mathrm{x}} \quad$ axes in xy-plane
multiplication table

$$
R_{4} R_{1}=R_{3}
$$

Multiplication table, isomorphism

Point group 32 (D_{3} Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plane
$\begin{array}{lllll}\text { hex } & 3^{1} & 3^{2} & 2 \mathrm{u} & 2 \mathrm{y}\end{array} 2_{\mathrm{x}}$

Multiplication table, isomorphism

Point group 32 (D_{3} Schoenflies symbol)
e.g regular triangle

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plane hex $\longrightarrow 133^{1} \quad 3^{2} \quad 2 \mathrm{u} 2 \mathrm{y} 2 \mathrm{x}$

Two groups are isomorphous if they have the same multiplication table Quartz $32 D_{3}$
Ammonia molecule $3 m C_{3 v}$

Group representations: formal definition

If we can find a set of square matrices (in general linear operators) $T\left(g_{a}\right)$ in a vector space L, which correspond to the elements g_{a} of group G and have the same multiplication table, i.e. $T\left(g_{a}\right) T\left(g_{b}\right)=T\left(g_{a} g_{b}\right)$ then this set of matrices is said to form a matrix 'representation' of the group G in space L.
n matrices $l \mathrm{x} l . n$ is order of G
multiplication table

	g_{1}	g_{2}	\cdots	g_{n}
g_{1}	g_{1}^{2}	$g_{1} g_{2}$	\ldots	$g_{1} g_{n}$
g_{2}	$g_{2} g_{1}$	g_{2}^{2}	\cdots	$g_{2} g_{n}$
\cdot	\cdot	\cdot		\cdot
\cdot	\cdot	\cdot		\cdot
g_{n}	$g_{n} g_{1}$	$g_{n} g_{2}$		g_{n}^{3}

$$
T\left(g_{1}\right)=\left(\begin{array}{ccccc}
t_{11}^{1} & t_{12}^{1} & t_{13}^{1} & \ldots & t_{1 l}^{1} \\
t_{21}^{1} & t_{22}^{1} & t_{23}^{1} & \ldots & t_{2 l}^{1} \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
t_{l 1}^{1} & t_{l 2}^{1} & t_{l 3}^{1} & \ldots & t_{l l}^{1}
\end{array}\right), T\left(g_{2}\right)=\left(\begin{array}{ccccc}
t_{11}^{2} & t_{12}^{2} & t_{13}^{2} & \ldots & t_{1 l}^{2} \\
t_{21}^{2} & t_{22}^{2} & t_{23}^{2} & \ldots & t_{2 l}^{2} \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
t_{l 1}^{2} & t_{l 2}^{2} & t_{l 3}^{2} & \ldots & t_{l l}^{2}
\end{array}\right), T\left(g_{3}\right)=\ldots
$$

Dimension of representation is equal to the dimension of the vector space

Linear vector spaces

3-dimensional space of particle displacement (or magnetic moment)

$$
\mathbf{S}=\sum_{j=x, y, z} s_{j} \mathbf{e}_{j}
$$

Linear vector spaces

3-dimensional space of particle displacement (or magnetic moment)

$$
\mathbf{S}=\sum_{j=x, y, z} s_{j} \mathbf{e}_{j}
$$

3 N -dimensional space of all possible displacements (or magnetic moments)
Function ψ is defined on N discreet points

$$
\psi=\sum_{n=1}^{N} \sum_{j=x, y, z} s_{j n} \mathbf{e}_{j n}
$$

$$
\left(\begin{array}{c}
s_{x 1} \\
s_{y 1} \\
s_{z 1} \\
s_{x 2} \\
s_{y 2} \\
s_{z 2} \\
\ldots \\
\ldots \\
\ldots \\
s_{x N} \\
s_{y N} \\
s_{z N}
\end{array}\right)
$$

Induced representation of group in "magnetic" linear space.

To construct the representation one has to know the rules of transformations of the vector in LS under group symmetry elements.

3 N -dimensional space of magnetic moments defined on N discreet points

$$
\psi=\sum_{n=1}^{N} \sum_{j=x, y, z} s_{j n} \mathbf{e}_{j n}
$$

3 N by 3 N matrices given by group transformations different ψ-vectors form a magnetic representation of group.

We split the problem:

Induced representation of group in "magnetic" linear space.

To construct the representation one has to know the rules of transformations of the vector in LS under group symmetry elements.

3 N -dimensional space of magnetic moments defined on N discreet points

$$
\psi=\sum_{n=1}^{N} \sum_{j=x, y, z} s_{j n} \mathbf{e}_{j n}
$$

$\left(\begin{array}{c}s_{x 1} \\ s_{y 1} \\ s_{z 1} \\ s_{x 2} \\ s_{y 2} \\ s_{z 2} \\ \cdots \\ \cdots \\ s_{x N} \\ s_{y N} \\ s_{z N}\end{array}\right)$

3 N by 3 N matrices given by group transformations different ψ-vectors form a magnetic representation of group.

We split the problem:

1. 3D space of spin rotations
2. N -dimentional space of positions/sites

Point groups. Classical spin rotations in 3D space

$$
\begin{aligned}
& \text { 3-dimensional vector space of } \mathbf{s}=\sum_{j=x, y, z} s_{j} \mathbf{e}_{j} \\
& \text { classical spin }
\end{aligned}
$$

Rotation matrices can be used to construct 3dimensional representation matrices of proper rotations

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Point groups. Classical spin rotations in 3D space

$$
\begin{aligned}
& \text { 3-dimensional vector space of } \mathbf{s}=\sum_{j=x, y, z} s_{j} \mathbf{e}_{j} \\
& \text { classical spin }
\end{aligned}
$$

Rotation matrices can be used to construct 3dimensional representation matrices of proper rotations

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

For improper rotations such as inversion (I) or mirror plane we should remember that spin is an axial vector.
$\mathbf{S}="[\mathbf{v} \times \mathbf{r}] "$
$\overline{\mathrm{I}} \mathbf{S}=\mathbf{S}$

Point groups. Classical spin rotations in 3D space

$$
\begin{aligned}
& \text { 3-dimensional vector space of } \mathbf{s}=\sum_{j=x, y, z} s_{j} \mathbf{e}_{j} \\
& \text { classical spin }
\end{aligned}
$$

Rotation matrices can be used to construct 3dimensional representation matrices of proper rotations

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

For improper rotations such as inversion (I) or mirror plane we should remember that spin is an axial vector.
$\mathbf{S}="[\mathbf{v} \times \mathbf{r}] "$
īs $=\mathbf{S}$

Point groups. Classical spin rotations in 3D space

$$
\begin{aligned}
& \text { 3-dimensional vector space of } \mathbf{s}=\sum_{j=x, y, z} s_{j} \mathbf{e}_{j} \\
& \text { classical spin }
\end{aligned}
$$

Rotation matrices can be used to construct 3dimensional representation matrices of proper rotations

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

For improper rotations such as inversion (I) or mirror plane we should remember that spin is an axial vector.
$\mathbf{S}="[\mathbf{v} \times \mathbf{r}] "$

īs $=\mathbf{S}$

Induced representation of Point group 32 in 3D rotation space of spin S

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plane

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

1. 3-dimensional representation

Induced representation of Point group 32 in 3D rotation space of spin S

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plane

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

1. 3-dimensional representation
$\mathrm{T}\left(\mathrm{R}_{1}\right)=\left(\begin{array}{rrr}-\frac{1}{2} & -\sqrt{ } \frac{3}{4} & 0 \\ \sqrt{ } \frac{3}{4} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right) \mathrm{T}\left(\mathrm{R}_{2}\right)=\left(\begin{array}{rrr}-\frac{1}{2} & \sqrt{ } \frac{3}{4} & 0 \\ -\sqrt{ } \frac{3}{4} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right) \mathrm{T}\left(\mathrm{R}_{3}\right)=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right) \ldots$ etc

Induced representation of Point group 32 in 3D rotation space of spin S

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plane

$$
\varphi_{z}\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

1. 3-dimensional representation
$T\left(R_{1}\right)=\left(\begin{array}{rrr}-\frac{1}{2} & -\sqrt{ } \frac{3}{4} & 0 \\ \sqrt{ } \frac{3}{4} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right) \mathrm{T}\left(R_{2}\right)=\left(\begin{array}{rrr}-\frac{1}{2} & \sqrt{ } \frac{3}{4} & 0 \\ -\sqrt{\frac{3}{4}} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right) \mathrm{T}\left(\mathrm{R}_{3}\right)=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right) \ldots$ etc
2. By taking the one dimensional space of vector \mathbf{e}_{z} alone we may generate very simple one-dimensional representation

$$
\begin{aligned}
& \mathrm{T}^{(2)}\left(\mathrm{R}_{1}\right)=1, \mathrm{~T}^{(2)}\left(\mathrm{R}_{2}\right)=1, \mathrm{~T}^{(2)}\left(\mathrm{R}_{3}\right)=-1, \mathrm{~T}^{(2)}\left(\mathrm{R}_{4}\right)=-1, \\
& \mathrm{~T}^{(2)}\left(\mathrm{R}_{5}\right)=-1, \mathrm{~T}^{(2)}(\mathrm{E})=1
\end{aligned}
$$

Representation in sites space for point group 32

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plar

Representation in sites space for point group 32

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plar

Representation in sites space for point group 32

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plar

$\mathrm{b} \Rightarrow \mathrm{a}$
$\mathrm{c} \Rightarrow \mathrm{b}$
$\mathrm{a} \Rightarrow \mathrm{c}$

Representation in sites space for point group 32

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plar
Let us assume we have 3 atoms/spins a, b, c in the sites 1,2,3
3-dimensional linear space of atom/spin sites. Note, not the 3D xyz, but labeled sites.
element R_{1} permutes

$$
\begin{aligned}
& \mathrm{b} \Rightarrow \mathrm{a} \\
& \mathrm{c} \Rightarrow \mathrm{~b} \\
& \mathrm{a} \Rightarrow \mathrm{c}
\end{aligned}
$$

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Representation in sites space for point group 32

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plar

$\mathrm{b} \Rightarrow \mathrm{a}$
$\mathrm{c} \Rightarrow \mathrm{b}$
$\mathrm{a} \Rightarrow \mathrm{c}$

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
b \\
c \\
a
\end{array}\right)
$$

Representation in sites space for point group 32

6 symmetry elements (rotations):
$\mathrm{R} 0=\mathrm{E}, \mathrm{R}_{1}=2 \pi / 3, \mathrm{R}_{2}=4 \pi / 3$ around $\mathrm{z}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5},=\pi$ around resp. axes in xy-plar

the atoms

$$
\begin{aligned}
& \mathrm{b} \Rightarrow \mathrm{a} \\
& \mathrm{c} \Rightarrow \mathrm{~b} \\
& \mathrm{a} \Rightarrow \mathrm{c}
\end{aligned} \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
b \\
c \\
a
\end{array}\right)
$$

permutation $(\mathrm{n}=3)$ representation of group 32

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Product of two representations of group

Product of two representations of group

Direct (tensor) matrix product $U \otimes V=\left[\begin{array}{cccccc}u_{1,1} V & u_{1,2} V & \cdots \\ u_{2,1} V & u_{2,2} V & \\ \vdots & & \ddots\end{array}\right]=\left[\begin{array}{ccccc}u_{1,1} v_{1,1} & u_{1,1} v_{1,2} & \cdots & u_{1,2} v_{1,1} & u_{1,2} v_{1,2} \\ u_{1,1} 1 & \cdots & u_{2,1} & u_{1,1} v_{2,2} & \\ u_{1,2} v_{2,1} & u_{1,2} v_{2,2} & \\ \vdots & & \ddots & & \\ u_{2,1} v_{1,1} & u_{2,1} v_{1,2} & & & \\ u_{2,1} v_{2,1} & u_{2,1} v_{2,2} & & & \\ \vdots & & \\ \text { givension a new rep with dimension } m \times \mathbf{n}\end{array}\right]$
permutation ($\mathrm{n}=3$) representation of group 32

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Product of two representations of group

permutation ($\mathrm{n}=3$) representation of group 32

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

$\otimes \quad$ Rotation matrices for point groun 32

$$
\mathrm{T}\left(\mathrm{R}_{1}\right)=\left(\begin{array}{rrr}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} & 0 \\
\sqrt{\frac{3}{4}} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{T}\left(\mathrm{R}_{2}\right)=\left(\begin{array}{rrr}
-\sqrt{\frac{1}{2}} & \sqrt{\frac{3}{4}} & 0 \\
-\sqrt{\frac{3}{4}} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{T}\left(\mathrm{R}_{3}\right)=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \ldots \text { etc }
$$

Product of two representations of group

gives a new rep with dimension $m \times n$ and new vector space!
permutation ($\mathrm{n}=3$) representation of group 32

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

\otimes
Rotation matrices for point groun 32

Reducibility

A study of possible representations of even a simple group like D_{3} seems to be a scaring task...
$T\left(R_{1}\right)=\left(\begin{array}{ccccccccc}0 & 0 & 0 & -1 / 2 & -1 / 2 \sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 / 2 \sqrt{3} & 1 / 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 / 2 & -1 / 2 \sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 \sqrt{3} & 1 / 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ -1 / 2 & -1 / 2 \sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 / 2 \sqrt{3} & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \quad T\left(R_{3}\right)=\left(\begin{array}{ccccccccc}0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Reducibility

A study of possible representations of even a simple group like D_{3} seems to be a scaring task...

BUT!

All representations can be built up from a finite number of 'distinct' irreducible representations. There is an easy way of finding the decomposition.
$T\left(R_{1}\right)=\left(\begin{array}{ccccccccc}0 & 0 & 0 & -1 / 2 & -1 / 2 \sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 / 2 \sqrt{3} & 1 / 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 / 2 & -1 / 2 \sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1-2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ -1 / 2 & -1 / 2 \sqrt{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 / 2 \sqrt{3} & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \quad T\left(R_{3}\right)=\left(\begin{array}{ccccccccc}0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Reduction of any representation of group to block diagonal shape

Representation (dimension=n) of a group G in linear space L is reducible to a blockdiagonal shape that is a direct sum of irreducible square matrices $\tau_{1}, \tau_{2}, \ldots$ For each element G_{a} the representation has the shape:

Reduction of any representation of group to block diagonal shape

Representation (dimension=n) of a group G in linear space L is reducible to a blockdiagonal shape that is a direct sum of irreducible square matrices $\tau_{1}, \tau_{2}, \ldots$ For each element G_{a} the representation has the shape:

τ_{i} is irreducible if: It is impossible to find a new basis such that non-diagonal elements of any τ_{i} in the new basis are zero for all elements G_{a}.

Reduction of any representation of group to block diagonal shape

Representation (dimension=n) of a group G in linear space L is reducible to a blockdiagonal shape that is a direct sum of irreducible square matrices $\tau_{1}, \tau_{2}, \ldots$ For each element G_{a} the representation has the shape:

One can divide space L into the sum of subspaces L_{i} each of which is invariant and irreducible. $S_{\mathrm{\tau}}$ is a vector from L_{i} and is transformed by matrices $\tau_{i}\left(G_{a}\right)$.

Reduction of any representation of group to block diagonal shape

Representation (dimension=n) of a group G in linear space L is reducible to a blockdiagonal shape that is a direct sum of irreducible square matrices $\tau_{1}, \tau_{2}, \ldots$ For each element G_{a} the representation has the shape:

group G

One can divide space L into the sum of subspaces L_{i} each of which is invariant and irreducible. $S_{\mathrm{\tau}}$ is a vector from L_{i} and is transformed by matrices $\tau_{\mathrm{i}}\left(G_{a}\right)$.

S_{ci} are linear combinations of n basis functions of L with some coefficients
space L under actions of $G a$

Reduction of any representation of group to block diagonal shape

Representation (dimension $=\mathrm{n}$) of a group G in linear space L is reducible to a blockdiagonal shape that is a direct sum of irreducible square matrices $\tau_{1}, \tau_{2}, \ldots$ For each element G_{a} the representation has the shape:

$$
\tau_{1}, \tau_{2}, \tau_{3} \ldots \text { group } G
$$

structures of these matrixes depend solely on group G and are independent on the choice of L .

One can divide space L into the sum of subspaces L_{i} each of which is invariant and irreducible. $S_{\mathrm{\tau}}$ is a vector from L_{i} and is transformed by matrices $\tau_{\mathrm{i}}\left(G_{a}\right)$.

S_{ci} are linear combinations of n basis functions of L with some coefficients

Irreducible representations (irreps) of point group $32\left(D_{3}\right)$

	1	3^{1}	3^{2}	2 u	2 y	2 x
Group element						
Representation						

Irreducible representations (irreps) of point group 32 (D_{3})

Our magnetic 9x9 representation splits up in:

Classification of normal modes of a magnet

The crystal has symmetry group G

$$
H=\sum_{\mathbf{R}, \mathbf{R}^{\prime}, \alpha, \beta} J_{\alpha, \beta}\left(\mathbf{R}, \mathbf{R}^{\prime}\right) s_{\alpha}(\mathbf{R}) s_{\beta}\left(\mathbf{R}^{\prime}\right) \quad(\alpha, \beta=x, y, z)
$$

3 N -dimensional space of expectation values of the spins $\langle\psi| \mathbf{s}|\psi\rangle$ defined on N discreet points

$$
\sum_{n=1}^{N} \sum_{\alpha=x, y, z} s_{\alpha n} \mathbf{e}_{\alpha n}
$$

induced magnetic representation of group G

$$
T_{i j}\left(G_{a}\right)
$$

Classification of normal modes of a magnet

The crystal has symmetry group G

$$
H=\sum_{\mathbf{R}, \mathbf{R}^{\prime}, \alpha, \beta} J_{\alpha, \beta}\left(\mathbf{R}, \mathbf{R}^{\prime}\right) s_{\alpha}(\mathbf{R}) s_{\beta}\left(\mathbf{R}^{\prime}\right) \quad(\alpha, \beta=x, y, z)
$$

3 N -dimensional space of expectation values of the spins $\langle\psi| \mathbf{s}|\psi\rangle$ defined on N discreet points

$$
\sum_{n=1}^{N} \sum_{\alpha=x, y, z} s_{\alpha n} \mathbf{e}_{\alpha n}
$$

induced magnetic representation of group G

$$
T_{i j}\left(G_{a}\right)
$$

S_{zi} called normal modes or basis functions, corresponding to $E_{v}, \psi_{v}{ }^{l v}$ can be classified by irreps τ^{ν} of group G

$$
\operatorname{rep} \Rightarrow \Sigma_{\oplus} \text { irreps: } \quad T_{i j}=\sum_{\oplus} n_{\nu} \tau_{i j}^{\nu} \quad\left(\begin{array}{ccccc}
\tau_{1} & 0 & 0 & \ldots & 0 \\
0 & \tau_{2} & 0 & \ldots & 0 \\
0 & 0 & \tau_{3} & \ldots & 0 \\
. & . & . & . & \\
. & . & . & . & \\
0 & 0 & 0 & &
\end{array}\right)\left(\begin{array}{c}
S_{\tau 1} \\
S_{\tau 2} \\
S_{\tau 3} \\
. \\
\cdot
\end{array}\right)
$$

Normal modes of magnetic configurations for spins sitting on the triangle corners

Point group 32
$\operatorname{irrep} \tau_{1}$
1D linear subspace of 9-dimensional space

$$
S_{\tau 1}=-1 \cdot \mathbf{e}_{x a}+1 \cdot \mathbf{e}_{x b}+1 \cdot \mathbf{e}_{y b}-1 \cdot \mathbf{e}_{y c}
$$

Normal mode for irrep τ_{1}

One parameter instead of 9 is enough to describe the structure!

Normal modes of magnetic configurations for spins sitting on the triangle corners

Point group 32 irrep τ_{1}

Space group P321, no. 150
1D linear subspace of 9-dimensional space
$S_{\tau 1}=-1 \cdot \mathbf{e}_{x a}+1 \cdot \mathbf{e}_{x b}+1 \cdot \mathbf{e}_{y b}-1 \cdot \overrightarrow{\mathbf{e}_{y c}}$
Normal mode for irrep τ_{1}

One parameter instead of 9 is enough to describe the structure!

Normal modes of magnetic configurations for spins sitting on the triangle corners

Point group 32
τ_{2} enters 2 times

Normal mode 1

Normal mode 2

Normal modes of magnetic configurations for spins sitting on the triangle corners

Point group 32
τ_{2} enters 2 times
Normal mode 1
Normal mode 2

Normal modes of magnetic configurations for spins sitting on the triangle corners

Point group 32
τ_{2} enters 2 times
Space group P321, no. 150
Normal mode 1

Landau theory of phase transitions says that only one irrep (+c.c.) is becoming critical and is needed to describe the ordered structure

Landau theory of phase transitions says that only one irrep (+c.c.) is becoming critical and is needed to describe the ordered structure

Real example: Antiferromagnetic three sub-lattice ordering in $\mathrm{Tb}_{14} \mathrm{Au}_{5 \mid}$

Great simplification!

Zeroth cell contains $\mathbf{1 4}$ spins $=>14 * 3=42$ parameters.

[^1]
Landau theory of phase transitions says that only one

 irrep (+c.c.) is becoming critical and is needed to describe the ordered structureReal example: Antiferromagnetic three sub-lattice ordering in $\mathrm{Tb}_{14} \mathrm{Au}_{51}$

Great simplification!

PHYSICAL REVIEW B 72, 134413 (2005)

Zeroth cell contains $\mathbf{1 4}$ spins $=>14 * 3=42$ parameters.
one irrep
Only 3 independent spins are needed!

irreps of space groups SG. Some hisłory and an introduction

O. V. Kovalev, "Representations of the Crystallographic Space Groups: irreducible representations, induced representations, and corepresentations" 1961- (Gordon and Breach Science Publishers, 1993), 2nd ed.
S.C. Miller and W.F Love, "Tables of Representations of the Crystallographic Space Groups and corepresentations of Magnetic space groups (Colorado, 1967)

Harold T. Stokes and Dorian M. Hatch, "Isotropy Subgroups of the 230 Space Groups," (World Scientific, Singapore, 1988).

ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, http://stokes.byu.edu/iso

Bloch waves, irreps of Bravias Lattice group

Space group G contains translation (t) BL group $T . \quad \mathbf{t}=n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}$

Bloch waves, irreps of Bravias Lattice group

Space group G contains translation (t) BL group $T . \mathbf{t}=n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}$

Bloch waves $\quad \psi(\mathbf{r})=u(\mathbf{r}) e^{i \mathbf{k r}}, u\left(\mathbf{r}+\mathbf{t}_{L}\right)=u(\mathbf{r}) \quad$ three $\psi(\mathbf{r})$ can describe magnetic structure

$$
\mathbf{S}\left(\mathbf{t}_{n}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{i \mathbf{t}_{n} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-i \mathbf{t}_{n} \mathbf{k}}\right)
$$

$$
\mathrm{S}_{\mathrm{x}}(\mathbf{r}), \mathrm{S}_{\mathrm{y}}(\mathbf{r}), \mathrm{S}_{\mathrm{z}}(\mathbf{r}) ; \mathrm{u}(\mathrm{r})<->\text { zeroth cell }
$$

r runs over discreet points given by atoms

Bloch waves, irreps of Bravias Lattice group

Space group G contains translation (t) BL group $T . \mathbf{t}=n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}$

Representation theory

wave vector or propagation vector $\mathbf{k}=\left(p_{1} \mathbf{b}_{1}+p_{2} \mathbf{b}_{2}+p_{3} \mathbf{b}_{3}\right)$
sort out/enumerate all irreps of $T \in G$
Matrices of irrep number $\mathbf{k}: D^{\mathbf{k}}(\mathbf{t})=\exp (-i \mathbf{k} \mathbf{t}) \quad T(\mathbf{t}) \rightarrow \exp (-i \mathbf{k} \mathbf{t})$

Bloch waves $\quad \psi(\mathbf{r})=u(\mathbf{r}) e^{i \mathbf{k r}}, u\left(\mathbf{r}+\mathbf{t}_{L}\right)=u(\mathbf{r}) \quad$ three $\psi(\mathbf{r})$ can describe magnetic structure

$$
\mathbf{S}\left(\mathbf{t}_{n}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{i \mathbf{t}_{n} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-i \mathbf{t}_{n} \mathbf{k}}\right)
$$

$$
\mathrm{S}_{\mathrm{x}}(\mathbf{r}), \mathrm{S}_{\mathrm{y}}(\mathbf{r}), \mathrm{S}_{\mathrm{z}}(\mathbf{r}) ; \mathrm{u}(\mathrm{r})<->\text { zeroth cell }
$$

r runs over discreet points given by atoms

Bloch waves, irreps of Bravias Lattice group

Space group G contains translation (t) BL group $T . \mathbf{t}=n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}$

Representation theory

wave vector or propagation vector
$\mathbf{k}=\left(p_{1} \mathbf{b}_{1}+p_{2} \mathbf{b}_{2}+p_{3} \mathbf{b}_{3}\right)$
sort out/enumerate all irreps of $T \in G$
Matrices of irrep number $\mathbf{k}: D^{\mathbf{k}}(\mathbf{t})=\exp (-i \mathbf{k} \mathbf{t}) \quad T(\mathbf{t}) \rightarrow \exp (-i \mathbf{k} \mathbf{t})$

Bloch wave $\psi(\mathbf{r})$ is a basis function of irrep \mathbf{k} of BL translation group

Bloch waves $\quad \psi(\mathbf{r})=u(\mathbf{r}) e^{i \mathbf{k r}}, u\left(\mathbf{r}+\mathbf{t}_{L}\right)=u(\mathbf{r}) \quad \begin{aligned} & \text { three } \psi(\mathbf{r}) \text { can describe magnetic structure }\end{aligned}$

$$
\mathbf{S}\left(\mathbf{t}_{n}\right)=\frac{1}{2}\left(\mathbf{S}_{0} e^{i \mathbf{t}_{n} \mathbf{k}}+\mathbf{S}_{0}^{*} e^{-i \mathbf{t}_{n} \mathbf{k}}\right)
$$

$$
\mathrm{S}_{\mathrm{x}}(\mathbf{r}), \mathrm{S}_{\mathrm{y}}(\mathbf{r}), \mathrm{S}_{\mathrm{z}}(\mathbf{r}) ; \mathrm{u}(\mathrm{r})<->\text { zeroth cell }
$$

$$
\mathbf{r} \text { runs over discreet points given by atoms }
$$

The k-vector types and Brillouin zones of the space groups

propagation vector $=$ a point on/inside Brillouine zone Brillouine zone of Pmmm (Γ_{0})

A.P. Cracknell, B.L. Davis, S.C. Miller and W.F. Love (1979) (abbreviated as CDML)
Kovalev O.V (1986) (1993) Representations of the
Crystallographic Space Groups (London: Gordon and Breach)

Kovalev	k-vector label Wyckoff position				
		CDML			ITA
k_{19}	GM	0,0,0	1	a	mmm
k_{20}	X	1/2,0,0	1	b	mmm
k_{22}	Z	0,0,1/2	1	c	mmm
k_{24}	U	1/2,0,1/2	1	d	mmm
k_{21}	Y	0,1/2,0	1	e	mmm
k_{25}	S	1/2,1/2,0	1	f	mmm
...	T	0,1/2,1/2	1	g	mmm
...	R	1/2,1/2,1/2		h	mmm

SM	u, 0,0	2	i	2mm
A	u,0,1/2	2	j	2mm
C	u,1/2,0	2	k	2mm
E	u,1/2,1/2	2	1	2mm
DT	0,u,0	2	m	m2m
B	0,u,1/2	2	n	m2m
D	1/2,u,0	2	0	m2m
P	1/2,u,1/2	2	p	m2m
LD	0,0,u	2	q	mm2
H	0,1/2,u	2	r	mm2
G	1/2,0,u	2	S	mm2
Q	1/2,1/2,u	2	t	mm2

K	$0, u, v$	4	u	$m .$.

Basis functions of space group irrep

Propagation vector \mathbf{k}
+

$\underset{\text { Space group elements }}{\text { zeroth cell }} \mathrm{S}$ in \longrightarrow| irrep with number $v: \tau^{\mathbf{k} v}$ |
| :--- |
| symmetry elements g are |
| represented by matrixes $\mathrm{d}^{\mathbf{k v}}(\mathrm{g})$ |
| $\left(l_{v} \times l_{v}\right.$ matrixes) with dim= l_{v} |

Basis functions of space group irrep

Propagation vector \mathbf{k} $+$
Space group elements g in zeroth cell
irrep with number $v: \tau^{\mathbf{k} v}$ symmetry elements g are represented by matrixes $\mathrm{d}^{\mathrm{kv}}(\mathrm{g})$ $\left(l_{v} \times l_{v}\right.$ matrixes $)$ with $\operatorname{dim}=l_{v}$

Symmetry group of propagation vector, examples of star $\{k\}$

| Pnma | $D_{2 h}^{16}$ | $m m m$ |
| :--- | :--- | :--- | | Orthorhombic |
| ---: |
| No. 62 |

Symmetry operations
(1) 1
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
$\begin{aligned} & \text { (4) } 2\left(\frac{1}{2}, 0,0\right) \\ & \text { (8) } n\left(0, \frac{1}{4}, \frac{1}{4}\right. \\ & n\left(\frac{1}{2}, \frac{1}{2}\right) \\ & \frac{1}{4}, y, z\end{aligned}+T\left(n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}\right)$

$\begin{array}{l}\text { Manyfold of all non-equivalent } h \mathbf{k}=\text { propagation } \\ \text { vector star }\{\mathbf{k}\}\end{array}$

Little group $\mathrm{G}_{\mathrm{k}} \in G$ leave \boldsymbol{k} invariant
(1) 1
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$
$\mathrm{G}_{\mathrm{k}}=$ 'P1n1'

Symmetry group of propagation vector, examples of star $\{k\}$

Pnma	$D_{2 h}^{16}$	$m m m$	Orthorhombic
No. 62	$P 2_{1} / n 2_{1} / m 2_{1} / a$		Paterson symmetry $P m m m$

Symmetry operations
(1) 1
(5) $\overline{1} \quad 0,0,0$
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
$\begin{aligned} & \text { (4) } 2\left(\frac{1}{2}, 0,0\right) \\ & \text { (8) } n\left(0, \frac{1}{4}, \frac{1}{4}\right. \\ & n\left(\frac{1}{2}, \frac{1}{2}\right) \\ & \frac{1}{4}, y, z\end{aligned}+T\left(n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}\right)$
Manyfold of all non-equivalent $h \mathbf{k}=$ propagation
vector star $\{\mathbf{k}\}$

Little group $\mathrm{G}_{\mathrm{k}} \in G$ leave \boldsymbol{k} invariant
(1) 1
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z \quad \mathrm{G}_{\mathrm{k}}=G$

$$
\mathrm{G}_{\mathrm{k}}=' P \ln 1 '
$$

Symmetry group of propagation vector, examples of star $\{k\}$

| Pnma | $D_{2 h}^{16}$ | $m m m$ |
| :--- | :--- | ---: | | Orthorhombic |
| ---: |
| No. 62 |

Symmetry operations
(1) 1
(5) $\overline{1} \quad 0,0,0$
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
$\begin{aligned} & \text { (4) } 2\left(\frac{1}{2}, 0,0\right) \\ & \text { (8) } n\left(0, \frac{1}{4}, \frac{1}{4}\right. \\ & n\left(\frac{1}{2}, \frac{1}{2}\right) \\ & \frac{1}{4}, y, z\end{aligned}+T\left(n_{1} \mathbf{t}_{1}+n_{2} \mathbf{t}_{2}+n_{3} \mathbf{t}_{3}\right)$
Manyfold of all non-equivalent $h \mathbf{k}=$ propagation
vector star $\{\mathbf{k}\}$

Little group $\mathrm{G}_{\mathrm{k}} \in G$ leave \boldsymbol{k} invariant
(1) 1
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$

$$
\mathrm{G}_{\mathrm{k}}=' P \ln 1 '
$$

Space group irreps, examples dimensions up to 6 (cf. 3 for point groups)

Space group irreps, examples

 dimensions up to 6 (cf. 3 for point groups)

Space group irreps, examples

 dimensions up to 6 (cf. 3 for point groups)

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Paramagnetic crystallographic space group (PSG)
Propagation vector of magnetic structure \mathbf{k}

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Paramagnetic crystallographic space group $(P S G)$	Propagation vector of magnetic structure \mathbf{k}
magnetic symmetry	Constresentation basis functions (normal modes)

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Paramagnetic crystallographic space group $(P S G)$

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Relation of magnetic Shubnikov symmetry and irreducible representation of space group

Comparison of Shubnikov and representation analysis: same symmetry adapted solutions.

I4/m, $\mathrm{k}=0$ has 81 D irreps $\tau_{1}, \ldots \tau_{8}$.
4 real irreps <--> Shubnikov groups of $I 4 / m$
One unit cell with Fe
4 complex irreps

Comparison of Shubnikov and representation analysis: same symmetry adapted solutions.

I4/m, $\mathrm{k}=0$ has 81 D irreps $\tau_{1}, \ldots \tau_{8}$.
4 real irreps <--> Shubnikov groups of $I 4 / m$
One unit cell with Fe
4 complex irreps

Web/computer resources to perform group theory symmetry analysis, in particular magnetic structures.

- Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu ISOTROPY Software Suite
Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics
and Astronomy, Brigham Young University, Provo, Utah 84606, USA,
Computer programs to construct symmetry adapted magnetic structures and fit the experimental data.
- Juan Rodríguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/ program BasIreps
- Vaclav Petricek, Michal Dusek (Prague) Jana2006 http:// jana.fzu.cz/

This lecture:
http://sinq.web.psi.ch/sinq/instr/hrpt/doc/magdifl3.pdf

Case study. Antiferromagnetic order in orthorhombic multiferroic TmMnO_{3} steps in magnetic structure determination

Case study. Antiferromagnetic order in orthorhombic multiferroic TmMnO_{3} steps in magnetic structure determination
I. Experiment. q-range/resolution.

Case study. Antiferromagnetic order in orthorhombic multiferroic TmMnO_{3} steps in magnetic structure determination

I. Experiment. q-range/resolution.
2. Finding the k-vector. Usually but not always easy. Profile matching

Case study. Antiferromagnetic order in orthorhombic multiferroic TmMnO_{3} steps in magnetic structure determination

I. Experiment. q-range/resolution.
2. Finding the k-vector. Usually but not always easy. Profile matching
3. Symmetry analysis. Constructing the basis functions of one irreducible representation of the magnetic representation.

Case study. Antiferromagnetic order in orthorhombic multiferroic TmMnO_{3} steps in magnetic structure determination

I. Experiment. q-range/resolution.
2. Finding the k-vector. Usually but not always easy. Profile matching
3. Symmetry analysis. Constructing the basis functions of one irreducible representation of the magnetic representation.
4. Fitting the data. In difficult cases 'simulated annealing' search of the solution is needed

Step 1

Experiment. q-range/resolution.

cf. resolution/q-range

HRPT I.9Å

magnetic contribution

Cf. resolution/q-range

Słep 2

Finding the propagation vector of magnetic structure (k-vector). Le Bail profile matching fit.

T-dependence of Bragg peak positions

Refining the propagation k-vector from profile matching fit

Refining the propagation k-vector from profile matching fit

Step 3

Symmetry analysis. Classifying possible magnetic structures

Constructing of normal modes of magnetic structure from irreps

Case study of magnetic structure of multiferroic TbMnO_{3}

Space Group G: Pnma, no. 62 propagation vector $\mathrm{k}=[\mu, 0,0]$

Constructing of normal modes of magnetic structure from irreps

Case study of magnetic structure of multiferroic TbMnO_{3}

Space Group G: Pnma, no. 62 propagation vector $\mathrm{k}=[\mu, 0,0]$

has 4 1D irreducible representations

Constructing of normal modes of magnetic structure from irreps

Case study of magnetic structure of multiferroic TbMnO_{3}

Space Group G: Pnma, no. 62 propagation vector $\mathrm{k}=[\mu, 0,0]$

has 4 1D irreducible representations

Classifying possible magnetic structures basis vectors/functions $S_{T 1}, S_{T 2}, S_{T 3}$,

Pnma, $\mathrm{k}=[0.45,0,0]$
Mn in (4a)-position
Magnetic representation is reduced to four one-dimensional irreps

$$
\begin{aligned}
& 3 \tau_{1} \oplus 3 \tau_{2} \oplus 3 \tau_{3} \oplus 3 \tau 4 \\
& \begin{array}{ccccc}
& g_{1} & g_{2} & g_{3} & g_{4} \\
\tau_{1} & 1 & a & 1 & a \\
\tau_{2} & 1 & a & -1 & -a \\
\tau_{3} & 1 & -a & 1 & -a \\
\tau_{4} & 1 & -a & -1 & a
\end{array} \\
& a=e^{\pi i k_{x}}
\end{aligned}
$$

Classifying possible magnetic structures basis vectors/functions $S_{T 1}, S_{T 2}, S_{T 3}$,

Pnma, $\mathrm{k}=[0.45,0,0]$
Mn in (4a)-position
Magnetic representation is reduced to four one-dimensional irreps

$$
\begin{aligned}
& 3 \tau_{1} \oplus 3 \tau_{2} \oplus 3 \tau_{3} \oplus 3 \tau 4 \\
& 0,0, \frac{1}{2} \quad \frac{1}{2}, \frac{1}{2}, 0 \\
& \text { Mn-position I } \\
& \begin{array}{cccccc}
& g_{1} & g_{2} & g_{3} & g_{4} & \text { Mn-positio } \\
\tau_{1} & 1 & a & 1 & a & \text { M } \\
\tau_{2} & 1 & a & -1 & -a & \\
\tau_{3} & 1 & -a & 1 & -a & \\
\tau_{4} & 1 & -a & -1 & a &
\end{array} \\
& S_{\tau 3}^{\prime}=+1 \mathbf{e}_{1 x}-a^{*} \mathbf{e}_{2 x}-1 \mathbf{e}_{3 x}+a^{*} \mathbf{e}_{4 x} \\
& S_{\tau 3}^{\prime \prime}=+1 \mathbf{e}_{1 y}+a^{*} \mathbf{e}_{2 y}+1 \mathbf{e}_{3 y}+a^{*} \mathbf{e}_{4 y} \\
& S_{\tau 3}^{\prime \prime \prime}=+1 \mathbf{e}_{1 z}+a^{*} \mathbf{e}_{2 z}-1 \mathbf{e}_{3 z}-a^{*} \mathbf{e}_{4 z} \\
& a=e^{\pi i k_{x}}
\end{aligned}
$$

Classifying possible magnetic structures basis vectors/functions $S_{T 1}, S_{T 2}, S_{T 3}$,

Pnma, $\mathrm{k}=[0.45,0,0]$
Mn in (4a)-position
Magnetic representation is reduced to four one-dimensional irreps

$$
\begin{array}{ccccccc}
& 3 \tau_{1} \oplus 3 \tau_{2} \oplus & \left.\tau_{3}\right) \oplus 3 \tau 4 & 0,0, \frac{1}{2} & \frac{1}{2}, \frac{1}{2}, 0 & 0, \frac{1}{2}, \frac{1}{2} \\
& g_{1} & g_{2} & g_{3} & g_{4} & \text { Mn-position } & \mathbf{l} \\
\tau_{1} & 1 & a & 1 & a & & \\
\tau_{2} & 1 & a & -1 & -a & & \\
\tau_{3} & 1 & -a & 1 & -a & & S_{\tau 3}^{\prime}=+1 \mathbf{e}_{1 x}-a^{*} \mathbf{e}_{2 x}-1 \mathbf{e}_{3 x}+a^{*} \mathbf{e}_{4 x} \\
\tau_{4} & 1 & -a & -1 & a & & S_{\tau 3}^{\prime \prime}=+1 \mathbf{e}_{1 y}+a^{*} \mathbf{e}_{2 y}+1 \mathbf{e}_{3 y}+a^{*} \mathbf{e}_{4 y} \\
& & & & S_{\tau 3}^{\prime \prime \prime}=+1 \mathbf{e}_{1 z}+a^{*} \mathbf{e}_{2 z}-1 \mathbf{e}_{3 z}-a^{*} \mathbf{e}_{4 z}
\end{array}
$$

$$
a=e^{\pi i k_{x}}
$$

Assuming that the phase transition goes according to one irreducible representation T 3 the spins of all four atoms are set only by 3 variables instead of I2!

Steps 3-4 in practice

Solving/refining the magnetic structure by using one irreducible representation

Steps 3-4 in practice

Solving/refining the magnetic structure by using one irreducible representation
I. construct basis functions for single irreducible representation irrep (use Baslreps, SARAh, MODY)

Steps 3-4 in practice

Solving/refining the magnetic structure by using one irreducible representation
I. construct basis functions for single irreducible representation irrep (use BasIreps, SARAh, MODY)
2. plug them in the FULLPROF and try to fit the data. In difficult cases the Monte-Carlo simulated annealing search is required

Steps 3-4 in practice

Solving/refining the magnetic structure by using one irreducible representation

1. construct basis functions for single irreducible representation irrep (use Baslreps, SARAh, MODY)
2. plug them in the FULLPROF and try to fit the data. In difficult cases the Monte-Carlo simulated annealing search is required
3. If the fit is bad go to I and choose different irrep. If the fit is good it is still better to sort out all irreps.

Refinement of the data for T_{3}

$$
\begin{aligned}
& \mathbf{S}(\mathbf{r})=\frac{1}{2}\left(C_{1} S_{\tau 3}^{\prime}+C_{2} S_{\tau 3}^{\prime \prime}+C_{3} S_{\tau 3}^{\prime \prime \prime}\right) e^{2 \pi i \mathbf{k} r}+c . c . \\
& S_{\tau 3}^{\prime}=+1 \mathbf{e}_{1 x}-a^{*} \mathbf{e}_{2 x}-1 \mathbf{e}_{3 x}+a^{*} \mathbf{e}_{4 x} \\
& \mathbf{k}=[0.45,0,0] \\
& S_{\tau 3}^{\prime \prime}=+1 \mathbf{e}_{1 y}+a^{*} \mathbf{e}_{2 y}+1 \mathbf{e}_{3 y}+a^{*} \mathbf{e}_{4 y} \\
& S_{\tau 3}^{\prime \prime \prime}=+1 \mathbf{e}_{1 z}+a^{*} \mathbf{e}_{2 z}-1 \mathbf{e}_{3 z}-a^{*} \mathbf{e}_{4 z}
\end{aligned}
$$

Refinement of the data for T_{3}

$$
\mathbf{S}(\mathbf{r})=\frac{1}{2}\left(C_{1} S_{\tau 3}^{\prime}+C_{2} S_{\tau 3}^{\prime \prime \prime}+C_{3} S_{\tau 3}^{\prime \prime \prime}\right) e^{2 \pi i \mathbf{k} r}+c . c .
$$

Visualization of the magnetic structure

a cycloid structure propagating along x-direction

$$
\begin{aligned}
& \mathbf{S}(\mathbf{r})=\operatorname{Re}\left[\left(C_{1} S_{\tau 3}^{\prime}+\left|C_{3}\right| \exp (i \varphi) S_{\tau 3}^{\prime \prime \prime}\right) \exp (2 \pi i \mathbf{k} \boldsymbol{r})\right] \\
& S_{\tau 3}^{\prime}=+1 \mathbf{e}_{1 x}-a^{*} \mathbf{e}_{2 x}-1 \mathbf{e}_{3 x}+a^{*} \mathbf{e}_{4 x} \\
& S_{\tau 3}^{\prime \prime \prime}=+1 \mathbf{e}_{1 z}+a^{*} \mathbf{e}_{2 z}-1 \mathbf{e}_{3 z}-a^{*} \mathbf{e}_{4 z}
\end{aligned}
$$

Visualization of the magnetic structure

a cycloid structure propagating along x-direction

$\mathbf{S}(\mathbf{r})=\operatorname{Re}\left[\left(C_{1} S_{\tau 3}^{\prime}+\left|C_{3}\right| \exp (i \varphi) S_{\tau 3}^{\prime \prime \prime}\right) \exp (2 \pi i \mathbf{k} \boldsymbol{r})\right]$
$S_{\tau 3}^{\prime}=+1 \mathbf{e}_{1 x}-a^{*} \mathbf{e}_{2 x}-1 \mathbf{e}_{3 x}+a^{*} \mathbf{e}_{4 x}$
Propagation of the spin, e.g. for atom no. I
$S_{\tau 3}^{\prime \prime \prime}=+1 \mathbf{e}_{1 z}+a^{*} \mathbf{e}_{2 z}-1 \mathbf{e}_{3 z}-a^{*} \mathbf{e}_{4 z} \quad \begin{aligned} & \text { Propagation of the spin, e.g. for atom no. I } \\ & \mathbf{S}_{1}(x)=C_{1} \cos (k x) \mathbf{e}_{x}+\left|C_{3}\right| \cos (k x+\varphi) \mathbf{e}_{z}\end{aligned}$

Visualization of the magnetic structure: xz-projection

for arbitrary φ :
both direction and size of S_{I} are changed

Visualization of the magnetic structure: xz-projection

for arbitrary φ :
both direction and size of S_{I} are changed

Propagation of the spin, e.g. for atom no. I

$$
\mathbf{S}_{1}(x)=C_{1} \cos (k x) \mathbf{e}_{x}+\left|C_{3}\right| \cos (k x+\varphi) \mathbf{e}_{z}
$$

Visualization of the magnetic structure: xz-projection

for $\varphi=0$:
only the size of S_{I} are changed
Propagation of the spin, e.g. for atom no. I

$$
\mathbf{S}_{1}(x)=\left(C_{1} \mathbf{e}_{x}+\left|C_{3}\right| \mathbf{e}_{z}\right) \cos (k x)
$$

Web/computer resources to perform group theory symmetry analysis, in particular magnetic structures.

- Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell ISODISTORT: ISOTROPY Software Suite, http://iso.byu.edu ISOTROPY Software Suite
Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics
and Astronomy, Brigham Young University, Provo, Utah 84606, USA,
Computer programs to construct symmetry adapted magnetic structures and fit the experimental data.
- Juan Rodríguez Carvajal (ILL) et al, http://www.ill.fr/sites/fullprof/ program BasIreps
- Vaclav Petricek, Michal Dusek (Prague) Jana2006 http:// jana.fzu.cz/

This lecture:
http://sinq.web.psi.ch/sinq/instr/hrpt/doc/magdifl3.pdf

further complications

further complications

1. several irreps involved, e.g. exchange multiplet
2. multi-k structures
3. spin domains, k-domains, chiral domains for single crystal data

[^0]: *each group element g--> matrix $\tau(g)$

[^1]: PHYSICAL REVIEW B 72, 134413 (2005)

