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neutron diffraction experiments performed during 1946-1951 for 
which C.G. Shull was honoured with the Nobel Prize in 1994. We 
will perform neutron diffraction experiment with MnS using powder 
diffractometer HRPT/SINQ. From the analysis of the nuclear and 
magnetic Bragg peak intensities and positions we will verify the 
crystal and magnetic structures of manganese sulfide MnS and 
determine the size of the magnetic moment on manganese.
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pending upon the relative orientations of the atomic and
neutron magnetic moments. It is to be emphasized that
the square of D in Eq. (5) is a classical or numerical
square, in contrast to the quantum mechanical square
which appeared in Eq. (3) describing paramagnetic
scattering. In oriented, magnetic lattice scattering, only
a single-spin state is existent, and, hence, the square
of the amplitude involves S rather than S(S+1).
The term q' in Eq. (5) depends upon the relative

orientation of the two unit vectors e and x, where e is
the scattering vector given by

where h and k' are the incident and scattered wave
vectors, and x is a unit vector along the direction of
alignment of the atomic magnetic moments. H-J show
that

so that
q= eX (eXx),

q'=1—(e x)'.
It is seen that q' can attain values between 0 and 1 and,
for the particular case where x is randomly directed,

q' (random) =-', .
This dependence of q' upon the relative directions of
scattering and magnetization has been given a direct
experimental test in the scattering from magnetized,
ferromagnetic substances, " and these data show the
correctness of the above formulation.
The differential scattering cross section F' determines

what is available for coherent neutron scattering but
tells nothing about the angular distribution of scattered
intensity from a magnetic lattice. Details of the scat-
tered intensity in the diGraction pattern will be deter-
mined (as in x-ray or electron diffraction) by the crystal
structure factors, and from the experimental deter-
mination of these factors, one can hope to establish the
magnetic lattice. It is interesting to note that according
to Eq. (5) there is no coherent interference between the
magnetic and nuclear portions of the scattering, and
that in essence the two intensities of scattering are
merely additive. This is a consequence of the treatment
for unpolarized incident neutron radiation and would
not be the situation if the neutron magnetic moments
were all aligned in the incident beam. For the latter
case, the differential scattering cross section contains
cross terms between the nuclear and magnetic ampli-
tudes in addition to the above square terms.
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dered sample was contained in a thin walled cylindrical
capsule held within a low temperature cryostat. Both
patterns were taken of the same sample before and
after introduction of liquid nitrogen coolant. The room
temperature pattern shows both magnetic diffuse scat-
tering and the Debye-Scherrer diffraction peaks at
positions indicated for nuclear scattering. There should
be coherent nuclear scattering at both all-odd and
all-even reQection positions from this NaCl-type lattice,
and since the signs of the nuclear scattering amplitudes
are opposite for Mn and for 0, the odd reflections, (111)
and (311),are strong whereas the even reflections, (200)
and (220), are very weak. When the material is cooled
to a low temperature, there is no change in the nuclear
scattering pattern, '" but the magnetic scattering has
now become concentrated in Debye-Scherrer peaks at
new positions. As can be seen from the 6gure, these
extra magnetic reQections cannot be indexed on the
basis of the conventional chemical unit cell of edge
length 4.426A. The innermost reQection for this cell is
the (100), falling at about 132"in angle, and there exists
a strong magnetic reQection inside of this angle at about
11~". It is possible to index the magnetic reQections,
however, on the basis of a cubic unit cell whose axial
length is just twice the above, or 8.85A. For this cell
the magnetic reQections are all-odd, intensity being
observed at the (111),(311), (331), and (511)positions.
The (311) ~ is on the shoulder of the (111)„,~, as can
be seen from the asymmetry of this reQection.
This twice-enlarged magnetic unit cell indicates that

successive manganese ions along the cube axis directions
are oriented differently, so that the repetition distance
(for identical scattering power) along the axis is 8.85A

MaO

As already mentioned, MnO is thought to be anti-
ferromagnetic below its Curie temperature of j.20'K;
and Fig. 4 shows neutron powder diffraction patterns
taken for this material at 300'K and at 80'K. The pow-
"Shull, %'ollan, and Strauser, Phys. Rev. 81, 483 (1951}.See

also discussion by D. J. Hughes and M. T. Surgy, Phys. Rev. 81,
498 (1951}.
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Fzo. 4. Neutron diGraction patterns for MnO taken at liquid
nitrogen and room temperatures. The patterns have been cor-
rected for the various forms of extraneous, di6'use scattering
mentioned in the text. Four extra antiferromagnetic rejections
are to be noticed in the low temperature pattern.

" The nuclear intensities will increase by a few percent due
to a slight increase in the Debye-%aller temperature factor.
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Neutron scattering and diffraction studies on a series of paramagnetic and antiferromagnetic substances
are reported in the present paper. The paramagnetic diffuse scattering predicted by Halpern and Johnson
has been studied, resulting in the determination of the magnetic form factor for Mn++ ions. From the form
factor, the radial distribution of the electrons in the 3d-shell of Mn~ has been determined, and this is com-
pared with a theoretical distribution of Dancoff. Antiferromagnetic substances are shown to produce strong,
coherent scattering effects in the diffraction pattern. The antiferromagnetic reflections have been used to
determine the magnetic structure of the material below the antiferromagnetic Curie temperature. For some
substances the magnetic unit cell is found to be larger than the chemical unit cell. The temperature de-
pendence of the antiferromagnetic intensities has been studied, and the directional effects which characterize
neutron scattering by aligned atomic moments have been used to determine the moment alignment with
respect to crystallographic axes. From studies with magnetic ions possessing both orbital and spin moments,
it is found that the antiferromagnetic intensities contain partial orbital moment components along with the
spin moment component. The degree of orbital moment contribution agrees satisfactorily with that pre-
dicted by models of lattice quenching.

INTRODUCTION The present paper is concerned with measurements on
the scattering or diffraction pattern which is obtained
when monochromatic neutrons are incident upon a sub-
stance whose atoms possess magnetic moments. Experi-
mental data will be presented for the scattering by
various paramagnetic and antiferromagnetic materials,
and the interpretation will be given in terms of a mag-
netic lattice with spin and orbital moment alignment.
In a second paper in preparation, we shall extend the
discussion to include scattering by magnetized and
unmagnetized ferromagnetic materials, treating also
some of the neutron polarization phenomena which are
associated with ferromagnetic scattering.

AGNKTIC scattering effects with neutrons
- ~ were 6rst investigated theoretically by Bloch, '

Schwinger, ' and Halpern and co-workers. ' The early
theoretical developments focused upon the interpreta-
tion of experiments designed to determine the value of
the neutron's magnetic moment through its interaction
with the experimentally known and theoretically
understood magnetic moments of various atoms and
ions in paramagnetic and ferromagnetic substances.
Since this time, however, more powerful resonance
techniques have been applied which give high precision
in the determination of the neutron magnetic moment,
and, in consequence, present-day interest in magnetic
scattering effects with neutrons has been directed
toward a more complete understanding of the basic
phenomena which characterize magnetic media.
Early experimentation on neutron scattering by

paramagnetic materials was performed by Whitaker
and co-workers4 in a series of transmission and scat-
tering type experiments. Because of the relative weak-
ness and heterogeneous nature of the neutron beams
from their Ra™Besource, coupled with the complexity
of crystal scattering effects, only general, qualitative
conclusions couM be drawn from the data. The more
recent work at this laboratory' and at Columbia Uni-
versity by Ruderman' has shown unambiguously the
general features of paramagnetic scattering as predicted
theoretically by Halpern and Johnson' and has yielded
information on the nature of the magnetic form factor.

SCATTERING OF NEUTRONS BY PARAMAGNETIC
SUBSTANCES

The theory of neutron scattering by a true paramag-
netic substance has been given in detail by Halpern and
Johnson. In such a substance, there exist permanent
magnetic moments at individual atomic sites caused by
unbalanced electronic moments within the atoms, and
these atomic moments are completely uncoupled to
each other and directed in random orientation. Because
of this randomness the substance will display no per-
manent macroscopic magnetic moment. Application
of an external magnetic 6eld will, however, disturb the
randomness and cause partial alignment of the atomic
moments, so that an induced macroscopic magnetic
moment is evidenced. Thermal disordering effects tend
to oppose the alignment caused by the magnetic GeM,
and Langevin showed that the magnetic susceptibility
(induced moment per unit Geld) should vary inversely
with absolute temperature, as erst determined experi-
mentally by Curie. This can be described by the well-
known Curie law,

' F. Bloch, Phys. Rev. 50, 259 (1936).' J. S. Schwinger, Phys. Rev. 51, 544 (1937)'O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939);
O. Halpern and T. Holstein, Phys. Rev. 59, 960 (1941);Halpern,
Hamermesh, and Johnson, Phys. Rev. 59, 981 (1941).

4 M. D. Khitaker, Phys. Rev. 52, 384 (1937);Whitalmr, Beyer,
and Dunning, Phys. Rev. 54, 771 (1938); M. D. Whitaker and
W. C. Bright, Phys. Rev. 57„1076(1940); 60, 280 (1941).

~ C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949).' I. W. Ruderman, Phys. Rev. 76, 1572 (1949).
where x is the magnetic susceptibility, T the absolute
temperature, and C~ the Curie constant which is

333
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HRPT/SINQ nowadays 
λ=1.15Å, MnO @ 2K.  
Rhombohedral distortions are explicitly seen
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pending upon the relative orientations of the atomic and
neutron magnetic moments. It is to be emphasized that
the square of D in Eq. (5) is a classical or numerical
square, in contrast to the quantum mechanical square
which appeared in Eq. (3) describing paramagnetic
scattering. In oriented, magnetic lattice scattering, only
a single-spin state is existent, and, hence, the square
of the amplitude involves S rather than S(S+1).
The term q' in Eq. (5) depends upon the relative

orientation of the two unit vectors e and x, where e is
the scattering vector given by

where h and k' are the incident and scattered wave
vectors, and x is a unit vector along the direction of
alignment of the atomic magnetic moments. H-J show
that

so that
q= eX (eXx),

q'=1—(e x)'.
It is seen that q' can attain values between 0 and 1 and,
for the particular case where x is randomly directed,

q' (random) =-', .
This dependence of q' upon the relative directions of
scattering and magnetization has been given a direct
experimental test in the scattering from magnetized,
ferromagnetic substances, " and these data show the
correctness of the above formulation.
The differential scattering cross section F' determines

what is available for coherent neutron scattering but
tells nothing about the angular distribution of scattered
intensity from a magnetic lattice. Details of the scat-
tered intensity in the diGraction pattern will be deter-
mined (as in x-ray or electron diffraction) by the crystal
structure factors, and from the experimental deter-
mination of these factors, one can hope to establish the
magnetic lattice. It is interesting to note that according
to Eq. (5) there is no coherent interference between the
magnetic and nuclear portions of the scattering, and
that in essence the two intensities of scattering are
merely additive. This is a consequence of the treatment
for unpolarized incident neutron radiation and would
not be the situation if the neutron magnetic moments
were all aligned in the incident beam. For the latter
case, the differential scattering cross section contains
cross terms between the nuclear and magnetic ampli-
tudes in addition to the above square terms.
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dered sample was contained in a thin walled cylindrical
capsule held within a low temperature cryostat. Both
patterns were taken of the same sample before and
after introduction of liquid nitrogen coolant. The room
temperature pattern shows both magnetic diffuse scat-
tering and the Debye-Scherrer diffraction peaks at
positions indicated for nuclear scattering. There should
be coherent nuclear scattering at both all-odd and
all-even reQection positions from this NaCl-type lattice,
and since the signs of the nuclear scattering amplitudes
are opposite for Mn and for 0, the odd reflections, (111)
and (311),are strong whereas the even reflections, (200)
and (220), are very weak. When the material is cooled
to a low temperature, there is no change in the nuclear
scattering pattern, '" but the magnetic scattering has
now become concentrated in Debye-Scherrer peaks at
new positions. As can be seen from the 6gure, these
extra magnetic reQections cannot be indexed on the
basis of the conventional chemical unit cell of edge
length 4.426A. The innermost reQection for this cell is
the (100), falling at about 132"in angle, and there exists
a strong magnetic reQection inside of this angle at about
11~". It is possible to index the magnetic reQections,
however, on the basis of a cubic unit cell whose axial
length is just twice the above, or 8.85A. For this cell
the magnetic reQections are all-odd, intensity being
observed at the (111),(311), (331), and (511)positions.
The (311) ~ is on the shoulder of the (111)„,~, as can
be seen from the asymmetry of this reQection.
This twice-enlarged magnetic unit cell indicates that

successive manganese ions along the cube axis directions
are oriented differently, so that the repetition distance
(for identical scattering power) along the axis is 8.85A

MaO

As already mentioned, MnO is thought to be anti-
ferromagnetic below its Curie temperature of j.20'K;
and Fig. 4 shows neutron powder diffraction patterns
taken for this material at 300'K and at 80'K. The pow-
"Shull, %'ollan, and Strauser, Phys. Rev. 81, 483 (1951}.See

also discussion by D. J. Hughes and M. T. Surgy, Phys. Rev. 81,
498 (1951}.
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" The nuclear intensities will increase by a few percent due
to a slight increase in the Debye-%aller temperature factor.
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Neutron scattering and diffraction studies on a series of paramagnetic and antiferromagnetic substances
are reported in the present paper. The paramagnetic diffuse scattering predicted by Halpern and Johnson
has been studied, resulting in the determination of the magnetic form factor for Mn++ ions. From the form
factor, the radial distribution of the electrons in the 3d-shell of Mn~ has been determined, and this is com-
pared with a theoretical distribution of Dancoff. Antiferromagnetic substances are shown to produce strong,
coherent scattering effects in the diffraction pattern. The antiferromagnetic reflections have been used to
determine the magnetic structure of the material below the antiferromagnetic Curie temperature. For some
substances the magnetic unit cell is found to be larger than the chemical unit cell. The temperature de-
pendence of the antiferromagnetic intensities has been studied, and the directional effects which characterize
neutron scattering by aligned atomic moments have been used to determine the moment alignment with
respect to crystallographic axes. From studies with magnetic ions possessing both orbital and spin moments,
it is found that the antiferromagnetic intensities contain partial orbital moment components along with the
spin moment component. The degree of orbital moment contribution agrees satisfactorily with that pre-
dicted by models of lattice quenching.

INTRODUCTION The present paper is concerned with measurements on
the scattering or diffraction pattern which is obtained
when monochromatic neutrons are incident upon a sub-
stance whose atoms possess magnetic moments. Experi-
mental data will be presented for the scattering by
various paramagnetic and antiferromagnetic materials,
and the interpretation will be given in terms of a mag-
netic lattice with spin and orbital moment alignment.
In a second paper in preparation, we shall extend the
discussion to include scattering by magnetized and
unmagnetized ferromagnetic materials, treating also
some of the neutron polarization phenomena which are
associated with ferromagnetic scattering.

AGNKTIC scattering effects with neutrons
- ~ were 6rst investigated theoretically by Bloch, '

Schwinger, ' and Halpern and co-workers. ' The early
theoretical developments focused upon the interpreta-
tion of experiments designed to determine the value of
the neutron's magnetic moment through its interaction
with the experimentally known and theoretically
understood magnetic moments of various atoms and
ions in paramagnetic and ferromagnetic substances.
Since this time, however, more powerful resonance
techniques have been applied which give high precision
in the determination of the neutron magnetic moment,
and, in consequence, present-day interest in magnetic
scattering effects with neutrons has been directed
toward a more complete understanding of the basic
phenomena which characterize magnetic media.
Early experimentation on neutron scattering by

paramagnetic materials was performed by Whitaker
and co-workers4 in a series of transmission and scat-
tering type experiments. Because of the relative weak-
ness and heterogeneous nature of the neutron beams
from their Ra™Besource, coupled with the complexity
of crystal scattering effects, only general, qualitative
conclusions couM be drawn from the data. The more
recent work at this laboratory' and at Columbia Uni-
versity by Ruderman' has shown unambiguously the
general features of paramagnetic scattering as predicted
theoretically by Halpern and Johnson' and has yielded
information on the nature of the magnetic form factor.

SCATTERING OF NEUTRONS BY PARAMAGNETIC
SUBSTANCES

The theory of neutron scattering by a true paramag-
netic substance has been given in detail by Halpern and
Johnson. In such a substance, there exist permanent
magnetic moments at individual atomic sites caused by
unbalanced electronic moments within the atoms, and
these atomic moments are completely uncoupled to
each other and directed in random orientation. Because
of this randomness the substance will display no per-
manent macroscopic magnetic moment. Application
of an external magnetic 6eld will, however, disturb the
randomness and cause partial alignment of the atomic
moments, so that an induced macroscopic magnetic
moment is evidenced. Thermal disordering effects tend
to oppose the alignment caused by the magnetic GeM,
and Langevin showed that the magnetic susceptibility
(induced moment per unit Geld) should vary inversely
with absolute temperature, as erst determined experi-
mentally by Curie. This can be described by the well-
known Curie law,

' F. Bloch, Phys. Rev. 50, 259 (1936).' J. S. Schwinger, Phys. Rev. 51, 544 (1937)'O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939);
O. Halpern and T. Holstein, Phys. Rev. 59, 960 (1941);Halpern,
Hamermesh, and Johnson, Phys. Rev. 59, 981 (1941).

4 M. D. Khitaker, Phys. Rev. 52, 384 (1937);Whitalmr, Beyer,
and Dunning, Phys. Rev. 54, 771 (1938); M. D. Whitaker and
W. C. Bright, Phys. Rev. 57„1076(1940); 60, 280 (1941).

~ C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949).' I. W. Ruderman, Phys. Rev. 76, 1572 (1949).
where x is the magnetic susceptibility, T the absolute
temperature, and C~ the Curie constant which is
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Some experimental details of neutron 
diffraction experiment at HRPT/SINQ
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The spallation neutron source 
SINQ is a continuous source - the 
first and the only of its kind in the 
world - with a flux of about 1014 n/
cm2/s. Beside thermal neutrons, a 
cold moderator of liquid deuterium 
(cold source) slows neutrons down 
and shifts their spectrum to lower 
energies. 



Zuoz 2005                                                       Kurt Clausen, 15.8.2005

Spallation
30 - 35 MeV/useful neutron (Hg  1.3 GeV protons)

Ideally suited for pulsed operation.

10-22 sec

10-18 sec

Spallation, SINQ 590MeV protons, 
Pb target

9

Neutron yield

Calculated, from G.J. Russell, Spallation physics–an overview, Proceedings of ICANS-XI

Reactor

spallation
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SINQ hall

SINQ
Elephant 
200tons

Elephant is:

Shielding of the direct 
neutron beam also from 
fast neutrons for 
diffraction instruments



Neutron (thermal) flux from the D2O 
moderator, Maxwellian at 90oC (HRPT,TRICS)
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primary beam collimator(s): 
6’, 12’, 24’, 30’

mosaic spread of the 
monochromator  15’ 

slit system for 
monochromatic beam

and 
sample diameter

α1

α2

α3

horizontal angular divergence control

HRPT layout High Resolution Powder Diffractometer 
for Thermal Neutrons
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HRPT layout

neutron monochromator
fixed 120 take off angle

2θ=120o

� = 2 d sin (✓)
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High Resolution Powder Diffractometer 
for Thermal Neutrons
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Ge single crystal 
monochromator, 7 motors

Focusing 
system
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Flux after monochromator 
y-scale is in a.u.

Intensity of Bragg scattering from big 
single crystal:  Lorentz factor, 
extinction, geometry, …

for fixed monochromator take-
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Approximate crystal and magnetic structures 
of MnS below Néel temperature 
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neutron diffraction experiment (λ=const)
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Magnetic structure
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Examples

0th cell

k=[0,0]
AFM

S01 = Sx + Sy

1

2

S02 = �S01

0th cell

k=[0,0]
FM

S01 = Sx + Sy

1
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Magnetic moment 
below a phase transition

0th cell with many atoms in general

S01

S02

k=[1/2,1/2]

E.g., atom1

atom2

S01 = e
y

S02 = e
x

S1(tn) = Ce
y

cos(⇡(t
nx

+ t
ny

))

S2(tn) = Ce
x

cos(⇡(t
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+ t
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))

S(tn) = Re
�
CS0e

2⇡itnk
�

⇠ cos(2⇡tnk+ ')

amplitude or 
mixing 
coefficients 

magnetic mode

tn

Examples of magnetic structures. Propagation vector formalism k≠0. 
Magnetic mode S0 is specified in zeroth block of the cell == parent 

cell without centering translations

tn = n·1 or n·½



Approximate crystal and magnetic structures 
of MnS below Néel temperature 
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k=[1/2,1/2,1/2]

½½0

½0½

0½½

cubic, Fm-3m: Mn-atom in (000), 
three other Mn-atoms are generated 
by F-centering translations

single propagation vector



V. Pomjakushin, Symmetry constraints in magnetic structures PSI’13

Scattering from magnetic structure 
with propagation vector k

24

Bragg peak at
q = H⌥ k

In ND experiment we measure correlators of Fourier transform of magnetic lattice

polarized neutron 
(chiral) term. structure factor

d⇥

d�
⇤ (F(q) · F⇤(q) + iP · [F(q)⇥ F⇤(q)]) · �(H± k� q)

F(q) /
X

j

S0?j · exp(iqrj)

-

- -
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Practicum problems

25

	 11	

MAGNETIC	ORDER	IN	MnS	

	
5.	Practical	course	at	SINQ	
	
5.1	Manganese	sulfide	MnS	
	
	
-	rock	salt	crystal	structure	
-	ionic	crystal:		Mn2+,	S2-	
	
	

	
	
	
-	lattice	constant	a	=	5.199	Å	at	T	=	4.2	K	
-	space	group	"#3#	
-	electronic	configuration	of	Mn2+:		3d5	

-	Néel	temperature	TN	=	161	K	
-	long-range	antiferromagnetic	order:	antiferromagnetic	stacking	along	(111)	of	
ferromagnetic	planes	
-	therefore	doubling	of	the	magnetic	unit	cell	with	respect	to	the	crystallographic	unit	cell	
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Task 1: positions of nuclear Bragg peaks, indexing of the peaks

	 12	

	
5.2	Neutron	diffraction	of	MnS	at	room	temperature	
	
	
% = 2()*+ sin /)*+ 	 	 	 	 Bragg	law	
	
	 %:	neutron	wavelength,	()*+:	d-spacing	of	scattering	plane	ℎ!1	
	 /)*+:	(half)	scattering	angle	of	reflection	ℎ!1	in	diffraction	pattern	
	
()*+ =

2

ℎ3 + !3 + 13
	

	
	 2:	cubic	lattice	constant,	ℎ, !, 1	indices	of	scattering	plane	
	

6)*+ =
27

2
(ℎ, !, 1)	

	
corresponding	vector	in	reciprocal	space	

	
	
Tasks:	
	
-	measure	a	diffraction	pattern	of	MnS	at	T	=	300	K	in	the	paramagnetic	state	
	
-determine	peak	positions	:,	d-spacings	and	indices	(ℎ, !, 1)	for	all	observed	peaks	
	
	
	
	
Coherent	elastic	cross	section	for	nuclear	neutron	diffraction:	
	
(;

(Ω
~ ">?@A

3
B(C − 6)*+)

>?@A

	

	 C:	scattering	vector,	6)*+:	reciprocal	lattice	vector	defining	scattering	planes	
	 B(C − 6)*+)		→		peak	position	given	by	crystal	lattice	(unit	cell)	
	 ">?@A:	structure	factor	of	unit	cell	

">?@A = E
FG
HI>?@A·FG

FG

	

	 (I:	atomic	coordinate	of	i-th	atom	in	real	space,	sum	runs	over	all	atoms	in	unit	cell	
	 E

FG
:	scattering	length	of	atom	at	position	(I 	

	
Intensity	~	 ">?@A

3			→		peak	intensity	is	mainly	given	by	arrangement	of	atoms	in	unit	cell	
	

For all measurements at HRPT we will use D= 1.886£
( i )

=

(2)

Ike EE (3)
: a node of reciprocal lattice

@ ±a . )
9 > Tntl 50k

•

first 4

• /-4LQIE'veIQT-
Iino
x

y
(

.iBi⇐'
"5)

,

we anne
's

;Efgt*gtgfg
(5)

The sum runs over all

atoms in unit cell
.
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Nuclear peaks

All the calculations/fits of experimental integrated intensities and peak 
positions will be done with ‘fit’ program under HRPT linux-computer

MnS, λ=1.886Å Iztlohkd



28

Task 2a: Calculation of structure factors and Bragg peak intensities and comparison 
with experiment

	 13	

	
For	cylindrical	geometry	of	the	powder	sample	container	the	integrated	intensity	of	the	
scattered	neutrons	of	the	Bragg	peak	at	 C 	is	given	by	
	

K C = L · M / · N / ·
(;
(Ω = L · M / · N / · "3(C) · #O1P	

	
C:	scale	factor,		M / :	absorption	factor,		N / :	Lorentz	factor,		mult:	multiplicity	
	

N / =
1

sin / sin 2/	
	
The	Lorentz	factor	N / 	is	a	geometrical	correction	depending	on	the	scattering	geometry.	
	
	
	
	
	
	
For	MnS:	 	 ERS =		-3.73	fm,		EU =		2.85	fm	
	
(-vectors:	 	 Mn:		 (V=	a(0,	0,	0)	 	 (3=	a(0,	½,	½)	
	 	 	 	 (W=	a(½,	0,	½)	 	 (X=	a(½,	½,	0)	

	 	 S:		 (Y=	a(½,	½,	½)		 (Z=	a(½,	0,	0)	
	 	 	 	 ([=	a(0,	½,	0)	 	 (\=	a(0,	0,	½)	
	
	
	
Tasks:	
	
-	calculate	 ">?@A

3	for	(ℎ, !, 1)		=	(1,1,1),		calculate	the	multiplicity	
	
-	calculate	 ">?@A

3	for	(ℎ, !, 1)		=	(2,0,0),		calculate	the	multiplicity	
	
-	compare	ratio	of		K(6VVV)	/	K(63]])	with	the	measured	intensity	ratio	
	
	
	 	

IKO ) is measured in the experiment
,

see

formulated"3Y
: A (0 ¥1 ( 6)

;femto or fermi

1fm= to "cm= eo
'

I

f) F.
centering .

(8)

•

:
1

1 1 1
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.
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Task 2b: Calculation of structure factors and Bragg peak intensities and comparison 
with experiment

	 13	
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scattered	neutrons	of	the	Bragg	peak	at	 C 	is	given	by	
	

K C = L · M / · N / ·
(;
(Ω = L · M / · N / · "3(C) · #O1P	

	
C:	scale	factor,		M / :	absorption	factor,		N / :	Lorentz	factor,		mult:	multiplicity	
	

N / =
1

sin / sin 2/	
	
The	Lorentz	factor	N / 	is	a	geometrical	correction	depending	on	the	scattering	geometry.	
	
	
	
	
	
	
For	MnS:	 	 ERS =		-3.73	fm,		EU =		2.85	fm	
	
(-vectors:	 	 Mn:		 (V=	a(0,	0,	0)	 	 (3=	a(0,	½,	½)	
	 	 	 	 (W=	a(½,	0,	½)	 	 (X=	a(½,	½,	0)	

	 	 S:		 (Y=	a(½,	½,	½)		 (Z=	a(½,	0,	0)	
	 	 	 	 ([=	a(0,	½,	0)	 	 (\=	a(0,	0,	½)	
	
	
	
Tasks:	
	
-	calculate	 ">?@A

3	for	(ℎ, !, 1)		=	(1,1,1),		calculate	the	multiplicity	
	
-	calculate	 ">?@A

3	for	(ℎ, !, 1)		=	(2,0,0),		calculate	the	multiplicity	
	
-	compare	ratio	of		K(6VVV)	/	K(63]])	with	the	measured	intensity	ratio	
	
	
	 	

Igo
) is measured in the experiment

,
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assume : ACQ )=1 ( 6)

;femto or fermi

1fm= to "cm=eo
' I

(8)

�2�

said ,
GD

,

...

•

:
1 1 1 1
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Izt
20) is measured in the experiment |Q→f- 4YTt0
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, . p assume : ACQ )=1 (6)

;femto or fermi
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Task 3: Indexing of the magnetic Bragg peaks. Calculation of magnetic structure 
factors and determination of the value and direction of the Mn-spins.

	
5.3	Neutron	diffraction	of	MnS	in	the	magnetically	ordered	state	
	
	
	
Tasks:	
	
-	measure	a	neutron	diffraction	pattern	of	MnS	at	T	=	50	K	in	the	magnetically	ordered	state	
	
-	compare	this	date	with	the	paramagnetic	pattern	at	room	temperature	
	
-	index	the	magnetic	peaks,	i.e.	find	(ℎ, !, 1)	for	each	magnetic	peak	
	
-	based	on	the	indices,	what	is	the	magnetic	unit	cell	compared	to	the	crystallographic	one	
	
-	which	magnetic	structure,	i.e.	which	arrangement	of	the	magnetic	moments,	is	compatible	
with	the	magnetic	unit	cell	
	
	
	
	
	
	

�3�
y

or lower T

•

•

first 3

• -

•
•

eq.

( no ) for kztztz) magnetic peak determine µ→ .

-

Consider f 11 ( up In calculations

• Which direction of A can be excluded

?n



31

Task 3: Indexing of the magnetic Bragg peaks. Calculation of magnetic structure 
factors and determination of the value and direction of the Mn-spins.

	 14	

	
	
Coherent	elastic	cross	section	for	collinear	antiferromagnetic	order	
	
(;
(Ω	~ "R,)*+

3B(C − 6R,)*+)
>^,?@A

	

	
	 "R,)*+:	antiferromagnetic	structure	factor	
	
	
	
	
The	intensity	of	the	magnetic	Bragg	peak	at	 CR 	is	
	
K CR = L · M / · N / · "R_ 3 · #O1P	
	
where		

"R_ =
1
2 ]̀ HIa^·bc

d

ed_								and				e_ = 	 e −
CR(e · CR)

CR3
		

where	e	is	the	magnetic	moment	in	units	eh	and	 ]̀	=	-0.54·10-12	cm,		CR ≡ 	 6R,)*+ 	
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