

Neutron Ramsey Experiments at BOA

Florian Piegsa

ETH Zürich - Institute for Particle Physics

Paul Scherrer Institut – February, 22th 2013 BOA – Meeting

outline

A brief word on MSANS

- Ramsey's technique adapted to neutrons
- Search for exotic interactions (at NARZISS)

Test beam time at BOA (November 2012)

Beam time request & Conclusion

.

MSANS

- Idea: extend the q range without loosing in intensity.
- MSANS-S/N at BOA was limited due to fast neutron background to approx. 1-2 x 10⁻³.
- Accesible q-range down to 2×10^{-3} nm⁻¹ (at λ =1 nm), compared to 1 x 10⁻² nm⁻¹ (SANS-I).
- Performed succesful test last year at SANS-II: S/N about 2 x 10^{-4} at λ =0.5 nm.
- Would be maybe interested to do additional experiments at BOA, if the fast neutron background can be reduced.

Ramsey's technique of separated oscillatory fields

Ramsey technique (Nobel Prize 1989)

Ramsey, Phys. Rev. 78 (1950) 695

Piegsa – PSI 22.02.2013 – BOA Meeting

Magnetic and Pseudo-magnetic interaction

Piegsa – PSI 22.02.2013 – BOA Meeting

exotic interactions ?

new interaction – new exchange boson

In general a new force is described by a set of dimensionless coupling constants and its interaction range λ_c .

new scalar boson (spin 0)

new vector boson (spin 1)

probe the exotic interaction (spin 1)

- use polarised neutrons as 'probe'
- and a non-magnetic macroscopic bulk matter as 'source' (Al, Cu, glass ...)

Piegsa & Pignol, Jour. Phys. Conf. Ser. **340** (2012) 012043

'two beam' - method

Search for axial-axial coupling:

• Two beam-method helps to compensate for drifts (field, spin flippers, temperature, etc.).

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Piegsa – PSI 22.02.2013 – BOA Meeting

Ramsey setup at Narziss (PSI)

Ramsey setup at Narziss (PSI)

obtained Ramsey patterns

''full'' Ramsey signal
(about 2 hours / 90 kHz ≈ 3 mT)

measuring time about 5 min sinusodial-fit: $\sigma_{\phi} \approx 1.4^{\circ}$

important: phase-stability

result - copper sample

- (only) about 12 hours of data taking
- fit same data for different fixed λ_c leads to upper limits for g_A^2

$$\varphi_{AA}(\Delta y) = l \frac{g_A^2}{4} N \frac{\hbar}{m_{\rm n}c} \lambda_c e^{-\Delta y/\lambda_c}$$

result - axial-axial coupling

"standard fit"

fit taking beam width into account

 $g_{\rm A}^2 < 6 \ge 10^{-13}$ @ $\lambda_{\rm c} = 1 \text{ mm}$ (95 C.L.)

Piegsa & Pignol, PRL **108** (2012) 181801 Princeton: Vasilakis et al., PRL **103** (2009) 261801

Piegsa – PSI 22.02.2013 – BOA Meeting

Test beam time at BOA

one week in November 2012

idea: more intensity – better sensitivity

 completely new setup to measure exotic interactions (g_A² & g_sg_p) and vxE-effect

Together with: M. Fertl, K. Kirch, J. Krempel & G. Pignol

impressions

- Magn. field of about 150 μT, actively stabilized to about 1-2 nT
- Very sensitive to magn. environment (e.g. sample table !!)
- Two beam method
- Work with a white beam or with Be-filter
- Trouble with adiabatic spin-flipper
- Trouble with own RF-flippers (problem seems to be fixed)
- g_A², g_sg_p and vxE accesible with same setup !

high voltage test in the lab (v x E)

- Electrode distance 5-6 mm
- Voltage up to 7 kV (Power supply limit no sparks)
- Leakage current < 50 nA
- Produce electric field of more than 1 MV/m in air
- This corresponds to 10 nT, for v = 1000m/s

conclusion & beam time request

- What do we want to do ?
 - Search for exotic Interactions (at least 10 times better sensitivity than at Narziss)
 - Measure relativistic v x E-effect (using slow neutrons)
- How ?
 - new approx. 2 m long Ramsey apparatus with about 80 cm long samples/electrodes
 - new RF spinflippers (length: 25 cm) and work at 150 µT (stab. by fluxgates to 1-2 nT)
- Why BOA ?
 - high intensity polarized beam more statistics
 - comfortable setup possibilities (sample tables / spin-flipper / polarizers / ...)

• What is important ?

- adiabtic spin-flipper and Be-Filter !!
- magn. field environment but we stabilize for drifts/changes
- option to filter high energy neutrons (background)
- new spin analyser for imaging (??), monochromator improvement (??), stablized temperatures (???)
- Beam Time Request: **3 weeks between two shut-downs** to obtain enough statistics preferably: **17.6. 7.7.** or 9.9. 29.9. (or 7.10. 27.10.)