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Abstract  18 
Purpose: Life Cycle Impact Assessment (LCIA) has traditionally applied charac-19 
terization factors (CFs) to elementary flows (nodes) in isolation, treating impacts 20 
as fixed properties of substances, regardless of where and how they occur within 21 
the life cycle network. While recent advances have introduced regionalized 22 
LCIA methods and GIS-based spatial modeling frameworks, these remain diffi-23 
cult to operationalize in routine assessments and are often limited to node-level 24 
differentiation. This paper presents a methodological advancement in LCIA: the 25 
application of CFs at the level of edges—the resolved biosphere and techno-26 
sphere flows between processes.  27 
Methods: Shifting the CF unit from nodes to edges enables CFs to reflect the full 28 
context of each exchange, including the geographic origin and destination, the 29 
identity of the supplier and consumer, and prospective, scenario-dependent pa-30 
rameters. The method offers a flexible, intermediate solution between 31 



traditional node-based LCIA and full spatially explicit models, supporting na-32 
tional and subnational regionalization without requiring high-resolution GIS in-33 
tegration. 34 
Results: The approach is implemented in the open-source Python library edges, 35 
which extends the Brightway LCA framework to support context-sensitive and 36 
symbolic CFs. We illustrate its capabilities through four applications: 1) Region-37 
alized LCIA, using the AWARE water scarcity method with dynamic handling 38 
of region aggregation and disaggregation; 2) Technosphere-based LCIA, via a 39 
new implementation of the GeoPolRisk indicator, which assigns CFs based on 40 
country-to-country commodity trade relationships; and scenario-sensitive pro-41 
spective LCIAs, enabling alignment with climate scenarios, where CFs are de-42 
fined by symbolic expressions that depend on scenario-specific variables, with 43 
application 3) focusing on global warming potential based on atmospheric gas 44 
concentration, and application 4) addressing fossil resource scarcity through dy-45 
namic fossil fuels extraction rates.  46 
Conclusions: Together, these examples demonstrate how exchange-resolved 47 
LCIA expands the methodological space of impact modeling, offering a scalable, 48 
context-aware framework for regional, relational, and future-oriented life cycle 49 
assessments.  50 



1 Introduction 51 

Life Cycle Impact Assessment (LCIA) translates emissions and resource use into 52 
environmental impacts by applying characterization factors (CFs). Traditionally, 53 
CFs are applied to elementary flows at the node level—that is, to substances such 54 
as “carbon dioxide, fossil” or “water, from well”—regardless of the flow’s context 55 
within the life cycle network. This conventional approach treats impacts as 56 
inherent properties of elementary flows, detached from the relationships that 57 
cause them. 58 
 59 
Over the past two decades, efforts to improve the spatial representativeness of 60 
LCIA have led to the development of regionalized methods, such as EDIP2003 61 
(Hauschild and Potting 2005), Accumulated Exceedance (Seppälä et al. 2006), 62 
AWARE (Boulay et al. 2018), ImpactWorld+ (Bulle et al. 2019), and LC-IMPACT 63 
(Francesca Verones et al. 2020). These approaches assign CFs to specific regions 64 
(e.g., countries, grid cells, or even watersheds), allowing LCIA to account for 65 
spatial variability in fate, exposure, or vulnerability. However, integrating such 66 
methods into full life cycle studies has remained a challenge, as CFs are still 67 
typically applied to aggregated biosphere flows, after the resolution of the 68 
inventory has discarded crucial contextual information. 69 
 70 
A common workaround LCA software (e.g., Simapro, OpenLCA) adopted has 71 
been introducing region-specific elementary flows—such as creating separate 72 
flows like “Water, DE” or “Water, FR” to represent country-specific water 73 
withdrawals. This approach allows geographically differentiated CFs to be 74 
applied within node-based frameworks. However, it is inherently inefficient and 75 
unscalable. Representing global spatial variability would require duplicating 76 
elementary flows relevant to the impact assessment method for potentially 77 
hundreds of regions, leading to a proliferation of flows, increased database 78 
complexity, and a higher risk of manual and systemic modeling errors. 79 
Moreover, this strategy treats geographic information as part of the flow (node) 80 
identity rather than as a separate, context-dependent exchange (edge) attribute. 81 
 82 
A key step toward addressing these limitations was proposed by Mutel & 83 
Hellweg (2009), introducing a computational framework for applying region-84 
specific CFs across extensive inventories by matching the geographic metadata 85 
of emitting processes before inventory aggregation. This advance made it 86 
possible to conduct regionalized LCIA using only the location data already 87 
embedded in life cycle databases. Mutel et al. (2012) further extended this 88 



framework by introducing geographic information system (GIS)-based tools to 89 
bridge mismatched spatial units between inventories and CFs, proposing spatial 90 
mapping matrices and methods for assessing uncertainty and spatial resolution. 91 
Together, these studies established the feasibility of integrating geographic 92 
structure into LCA workflows in a systematic way. 93 
 94 
Yang & Heijungs (2017) generalized this approach further by proposing a multi-95 
regional algebraic formulation of LCA, where both the technosphere and 96 
biosphere matrices are indexed by region. Their model captured where emissions 97 
occur and how materials and impacts are transferred across space, highlighting 98 
the need to account for relational structure (i.e., trade) in regionalized 99 
assessments. 100 
More recently, Li et al. (2021) proposed a universal GIS-LCA framework based 101 
on an extensive literature review, emphasizing consistent spatial referencing and 102 
a harmonized geospatial layer across all phases of LCA. Their vision supports full 103 
spatial traceability—potentially down to high-resolution grids—but assumes 104 
access to GIS data, spatial overlays, and detailed geographic inventories. 105 
 106 
While these contributions have significantly advanced the field, they illustrate 107 
a methodological spectrum—from fully generic, location-neutral LCIA to 108 
spatially explicit, GIS-integrated models. However, fully generic approaches—109 
where CFs are applied to elementary flows without spatial or contextual 110 
differentiation—can obscure significant regional or sectoral variations. 111 
Conversely, highly detailed GIS-based models, although scientifically robust, 112 
often require data and computational resources that limit their practical 113 
adoption, as evidenced by their limited uptake in current LCA practice. Our 114 
work offers a pragmatic intermediate solution along this spectrum. We propose 115 
a generalization of LCIA that shifts the focus from so-called “elementary flows” 116 
(e.g., “Water, from lake”) to consider instead exchanges (e.g., “Water, from lake 117 
à maize grain production {US}”), treating the edge between the supplying and 118 
consuming node as the unit of impact characterization. In this exchange-based 119 
approach, CFs can be defined not only by the flow’s substance and quantity, but 120 
also by: 1) the location of both supplying and consuming nodes (supporting 121 
national and subnational regionalization); 2) the identity or type of actors 122 
involved (e.g., industrial classification, activity type); and 3) external parameters 123 
or scenarios, such as climate policy targets or atmospheric composition. Practical 124 
examples of such a framework include differentiating impacts from water use for 125 
agricultural and industrial purposes, and further refining the CF selection based 126 
on the consuming process’s location. Another example is to link an exchange to 127 
a parameterized CF, such as the global warming impact of methane as a function 128 



of its atmospheric concentration, which is defined by a scenario. These examples, 129 
and others, are further detailed throughout this work. 130 
 131 
This method captures more context than node-based models while avoiding the 132 
complexity and data intensity of GIS-based LCIA. It supports regionalized LCIA 133 
with national and subnational resolution. Still, it does not depend on fine-134 
grained spatial data or GIS layers as input, making it more accessible and scalable 135 
for routine assessments. 136 
 137 
Moreover, exchange-based LCIA transcends geographic differentiation. It allows 138 
CFs to rely on technosphere structure (e.g., supply chains, country-to-country 139 
flows) and be represented as symbolic functions of external parameters, 140 
facilitating scenario- and policy-sensitive assessments. 141 
 142 
These capabilities are implemented in the open-source Python library edges, 143 
which integrates with the Brightway framework (Mutel 2017). While tools like 144 
brightway2-regional focus on region-matching for biosphere flows using GIS, 145 
edges enables exchange-specific CFs across both the biosphere and 146 
technosphere, parameterized or symbolic CFs, and a modular mapping system 147 
for handling aggregated (e.g., “RER”) or dynamic regions such as “RoW” (Rest of 148 
the World) and “RoE” (Rest of Europe). 149 
 150 
We demonstrate the methodological potential of this approach through four 151 
illustrative applications: 1) Regionalized LCIA, using the AWARE method for 152 
water scarcity impact assessment, with logic for disaggregating and aggregating 153 
exchanges by region. 2) Technosphere-aware LCIA, via a new implementation 154 
of the GeoPolRisk indicator (Koyamparambath et al. 2024), where impacts 155 
depend on the origin-destination pair in resource supply chains. Finally, two 156 
scenario-based prospective LCIA applications: 3) the use of symbolic 157 
characterization factors for CH4 and N2O that dynamically respond to scenario-158 
specific atmospheric concentrations and time horizon parameters, and 4) the 159 
recalculation of surplus fossil fuel production costs based on projected extraction 160 
volumes and marginal costs. 161 
 162 
Although the approach primarily draws on foundational insights from Mutel & 163 
Hellweg (2009) and, to some extent, those of Mutel et al. (2012) and Yang & 164 
Heijungs (2017), it introduces a novel modeling layer that enables context-165 
aware, exchange-level impact assessment—without the overhead of full GIS in-166 
tegration. In doing so, it helps bridge the gap between theoretical advances in 167 
spatial modeling and practical applications in prospective and regionalized LCA. 168 
 169 



In the following sections, we present the technical foundations of exchange-170 
resolved LCIA, describe the edges implementation, and illustrate its application 171 
in the four domains mentioned above. 172 

2 Method 173 

Traditional LCIA applies CFs to elementary flows using either a vector or a 174 
diagonal matrix, where each flow (e.g., “Water, from lake”) is assigned a single 175 
CF that remains invariant to context. Consequently, this structure cannot 176 
differentiate between the same substance emitted in different regions or flows 177 
arising from various supply chain relationships. 178 
 179 
We propose an approach in which CFs are assigned at the level of exchanges—180 
the directed links between supplying and consuming nodes in the LCI graph. 181 
Each exchange includes information such as flow quantity, information about 182 
the supplying and consuming nodes, such as the matrix they belong to (biosphere 183 
or technosphere), and their respective location, if relevant. Together with other 184 
optional scenario parameters (e.g., CO₂ concentration, time horizon), this 185 
information can be used to apply CFs that better fit the context of the exchange. 186 

2.1 Node vs. Edge-based LCIA 187 

In conventional LCIA, the impact vector h for a given functional unit is 188 
computed using the standard matrix formulation (Heijungs and Suh 2002): 189 

 190 
ℎ = 	𝑄	 ∙ 𝐵	 ∙ 𝐴!" 	 ∙ 𝑓 191 

 192 
where: 193 
• 𝑓	(𝑝 × 1)	is	the	functional	unit	vector,	or	demand	vector;	194 
• 𝐴	(𝑝 × 𝑝)		is	the	technosphere	matrix;	195 
• 𝐵	(𝑞 × 𝑝)	is	the	biosphere	matrix;	196 
• 𝑄	(𝑞 × 1)		is	a	vector	of	CFs,	one	per	elementary	flow;	197 
• And	ℎ	is	the	impact	vector.	198 
	199 

This	formulation	is	equivalent	to	the	matrix	product:	200 
	201 



ℎ = 	1# ∙ 𝑄 ∙ 𝑋 ∙ 𝑓	202 
	203 

where:	204 
• 𝑋	(𝑞 × 𝑝) = 	𝐵	 ∙ 𝐴!" 	is	 the	 inventory	 matrix,	 where	 each	 column	205 
corresponds	to	a	process	and	each	row	to	an	elementary	flow	206 
• 𝑄 = 𝑑𝑖𝑎𝑔(𝑐),	a	diagonal	matrix	of	CFs	207 
	208 

In our exchange-resolved LCIA approach, we instead apply a non-diagonal, 209 
rectangular CF matrix, referred to as E	(𝑞 × 𝑝), to the full inventory matrix 210 
𝑋	(𝑞 × 𝑝), characterizing each flow per activity, to obtain the impact matrix H: 211 

 212 

𝐻 =	VV𝐸$%
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𝑋$% =	V(𝐸 ∘ 𝑋) 213 

 214 
This formulation enables the same elementary flow to receive different CFs 215 
depending on: 216 
• The supplying node attributes (e.g., its location, activity classification code, 217 

unit, associated matrix type); 218 
• The consumer node attributes (same as above); 219 
• Any external parameters included in CF definitions (e.g., concentration, 220 

time horizon, amount emitted). 221 
 222 

It generalizes the conventional LCIA formulation by allowing each exchange to 223 
be characterized uniquely, and serves as a foundation for flexible impact 224 
modeling. 225 

 226 
The exchange-resolved method also enables the characterization of 227 
technosphere exchanges—i.e., intermediate flows between activities. This is 228 
particularly relevant for indicators relating to supply risks (e.g., GeoPolRisk), 229 
where impacts depend on the supply chain relationships between countries or 230 
sectors. To support this, we construct a technosphere exchange matrix, 𝑇	(p	x	p), 231 
that represents the quantity of each intermediate product exchanged between 232 
activities. This matrix is derived from the technosphere matrix 𝐴 and the supply 233 
array s. The latter represents the scaling of each activity required to meet the 234 
functional unit: 235 

 236 
𝑇 = (−𝐴	 ∘ 𝑀) ∙ 𝑑𝑖𝑎𝑔(𝑠) 237 

where: 238 
• 𝑀 ∈ {0, 1}&×&  is a binary mask matrix where 𝑀$% = 1  if 𝐴$% < 0 , and 0 239 

otherwise, 240 
• 𝑑𝑖𝑎𝑔(𝑠) is a diagonal matrix of the supply array s, defined as 𝑠 = 	𝐴!" ∙ 𝑓. 241 



 242 
The characterization step is similar to that of characterizing biosphere 243 
exchanges: 244 
 245 

𝐻 =	VV𝐸$%

&
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𝑇$% =	V(𝐸 ∘ 𝑇) 246 

 247 
 248 
Hence, compared to traditional LCA terminology, this framework expands the 249 
meaning of "characterization factor" to allow for the characterization of 250 
technosphere flows. 251 

2.2 Exchange matching 252 

Definitions of CFs are matched to exchanges using criteria that enable the 253 
identification of specific supplying-consuming node pairs, such as: 254 
 255 
• Node name or substring (e.g., "Water") 256 
• Node matrix (biosphere or technosphere) 257 
• Node metadata (e.g., location, classification) 258 

 259 
This logic applies to supplying and consuming nodes, allowing directional 260 
differentiation (e.g., CFs specific to Swiss exports to Germany). 261 

 262 
To support regionalized LCIA, exchanges are mapped to CF regions through: 263 
• Direct matching (this includes matching to aggregated regions such as 264 

"Asia" or "RER"); 265 
• Association: the CF of a region, if missing, is defined as the CF of the closest 266 

matching region (i.e., usually a region that contains it, e.g., “Canada” for 267 
“Québec”); 268 
• Dynamic resolution: the CF for relative regions (e.g., RoW) is computed 269 

based on uncovered areas. A weighted average CF is calculated from the CF of 270 
all non-overlapping regions, excluding those for which region-specific 271 
inventories exist; 272 
• Fallbacks: if no regional match is found, unmatched exchanges receive a 273 

global average CF. 274 
 275 



For composite regions, CFs can be calculated on-the-fly and with dynamic 276 
extent: CFs for composite inventory regions (e.g., “RER”) are calculated as the 277 
weighted average of the CFs of the areas they comprise, using weighting keys 278 
such as resource consumption, population, or GDP, or any other weighting key 279 
provided by the LCIA method. 280 
 281 
The weighting key can vary in cases of association, aggregation, and dynamic 282 
resolution, depending on the population, country-level emissions, resource 283 
consumption, or GDP. For example, in the case of AWARE 2.0, the national 284 
water demand in 2019 is used. 285 

2.3 Characterization factors evaluation 286 

Characterization factors are evaluated dynamically and inserted into the 287 
characterization matrix E  before obtaining the characterized inventory matrix 288 
H. The value of the CF can be: 289 
• Numeric (e.g., 28) 290 
• Symbolic (e.g., “28 * (1 + 0.001 * (co2ppm - 410))”), with co2ppm being a 291 

parameter with its value changing across scenarios 292 
• Supplied externally via a function call 293 

2.4 Software Implementation: The edges Python Library 294 

The method presented in this paper is implemented in the open-source Python 295 
library edges. Built on the Brightway framework, edges enables exchange-re-296 
solved LCIA by applying CFs directly to inventory exchanges using flexible 297 
matching rules, as described above. 298 
 299 
Characterization factors can be defined in JSON or programmatically, and 300 
worked examples are available in the online repository. Edges is released under 301 
the MIT license and is actively maintained by PSI. At the time of writing, edges 302 
implements regionalized factors for AWARE 2.0, IMPACT World+ 2.1, and 303 
GeolPolRisk 1.0. 304 



2.5 Examples 305 

The Results section presents four use cases to illustrate the exchange-resolved 306 
characterization approach. They highlight different capabilities of the method: 307 
regionalization, technosphere-based modeling, and scenario-based prospective 308 
assessment. The first two use cases have a current reference year (2025), while 309 
the two last use cases are evaluated from 2020 to 2100. For each of the four cases, 310 
hydrogen production is modeled using Proton Exchange Membrane (PEM) wa-311 
ter electrolysis. Inventories are based on Gerloff (2021), adapted to a French con-312 
text and receive an input of offshore wind power from the ecoinvent 3.10.1 cut-313 
off database (Wernet et al. 2016) – see Table 1. The resulting environmental 314 
burdens are entirely allocated to the produced hydrogen; oxygen, the other out-315 
put of the water electrolysis process, is assumed to be released to the atmosphere 316 
and thus considered a by-product with an economic value of zero. Inventories 317 
are available as part of the electronic SI material. While energy storage would 318 
ideally be included to account for the intermittency of the offshore wind supply, 319 
it is omitted here for simplicity. This omission does not affect the validity of the 320 
findings illustrated in the use cases. 321 
 322 
Table 1: Inventories for producing one kilogram of hydrogen with water electrolysis using a 323 
PEM electrolyzer. Original source: 1 MW PEM electrolyzer by Gerloff (2021). Lifetime and 324 
efficiency are further refined with data from the manufacturer's specifications and the In-325 
dWEDe project report (Smolinka et al. 2018). A water consumption of 14 liters per kg of hy-326 
drogen is assumed (Simoes et al. 2021), which accounts for losses due to evaporation and 327 
cleaning. Ultrapure water treated by a single pass reverse osmosis was modelled using inven-328 
tories from (Gonzales-Calienes et al. 2022).  329 

Process Hydrogen production, gaseous, 30 bar, from PEM electrolysis, using offshore wind power 

Reference product Hydrogen, gaseous, 30 bar 

Location FR 

Unit Kilogram 

Exchanges 
 

Name Quantity Location Unit Reference product 

 Output 

hydrogen production, gaseous,  

30 bar, from PEM electrolysis,  

from grid electricity 

1.00E+00 FR Kilogram hydrogen, gaseous, 30 bar 

Oxygen 8.00E+00  Kilogram  

 Inputs 



electrolyzer production, 1MWe,  

PEM, Stack 

1.35E-06 RER Unit electrolyzer, 1MWe, PEM, Stack 

electrolyzer production, 1MWe,  

PEM, Balance of Plant 

3.37E-07 RER Unit electrolyzer, 1MWe, PEM, Balance of Plant 

treatment of electrolyzer stack,  

1MWe, PEM 

-1.35E-06 RER Unit used fuel cell stack, 1MWe, PEM 

treatment of electrolyzer balance  

of plant, 1MWe, PEM 

-3.37E-07 RER Unit used fuel cell balance of plant, 1MWe, PEM 

electricity production, wind,  

1-3MW turbine, offshore 

5.40E+01 FR Kilowatt-hour electricity, high voltage 

deionized water production,  

via reverse osmosis, from river  

1.40E+01 FR Kilogram water, deionized 

Occupation, industrial area 6.07E-04  Square meter·year  

Transformation, from  

industrial area 

3.04E-05  Square meter  

Transformation, to  

industrial area 

3.04E-05  Square meter  

330 

2.5.1 Use Case 1: Regionalized LCIA with AWARE 331 

The first example focuses on regionalized LCIA using the AWARE 2.0 water 332 
scarcity LCIA method (Boulay et al. 2018; Seitfudem et al. 2025). The indicator 333 
assesses the potential impacts of water consumption on other water users. Its 334 
core variable estimates the relative amount of water remaining in a watershed 335 
after human and ecosystem demands are met, expressing results as a scarcity-336 
weighted water consumption factor. AWARE CFs at the watershed level with a 337 
monthly resolution are a generic indicator of the potential to deprive other water 338 
users of water. AWARE's applicability is enhanced by spatially aggregated an-339 
nual factors, such as for entire countries. The current implementation of 340 
AWARE 2.0 in edges includes 512 unique CFs. Since they are spatiotemporal 341 
aggregations, they reflect the geographic context of freshwater consumption and 342 
the consumption pattern, both spatially and temporally. The following example 343 
specifies the CF for freshwater uptake in Armenia (ISO country code: "AM"): 344 
 345 
 346 
{ 347 
    "supplier": { 348 
       "name": "Water, lake", 349 
       "categories": [ 350 



          "natural resource", 351 
          "in water" 352 
       ], 353 
       "matrix": "biosphere" 354 
    }, 355 
    "consumer": { 356 
       "location": "AM", 357 
       "matrix": "technosphere", 358 
       "classifications": { 359 
          "CPC": [ 360 
             "01" 361 
          ] 362 
      } 363 
    }, 364 
    "value": 88.6, 365 
    "weight": 799882000, 366 
    "uncertainty": { 367 
       "distribution": "discrete_empirical", 368 
       "parameters": { 369 
          "values": [ 370 
             84.5, 371 
             87.9 372 
          ], 373 
          "weights": [ 374 
             0.031, 375 
             0.969 376 
         ] 377 
      }, 378 
      "negative": 0 379 
   } 380 
} 381 
 382 
This definition assigns a CF of 88.6 m3 world-eq./m3 freshwater to any ex-383 
change where the supplying node belongs to the biosphere matrix and is la-384 
beled "Water, lake" (in the "natural resource" compartment), and the consum-385 
ing node is a technosphere process situated in Armenia.The Central Product 386 
Classification (CPC) field value “CPC: 01” indicates that this CF only applies to 387 
consumers with the corresponding CPC category (i.e., “01” relates to agricul-388 
tural activities). Aiming for closer representing the spatiotemporal distribution 389 
of water consumption in CF aggregations, AWARE provides different aggre-390 
gated factors for agricultural and non-agricultural activities. High spatiotem-391 
poral heterogeneity is typical for the water consumption of agricultural activ-392 
ities, with irrigation often being limited to a few months. For the annual 393 
averages presented in Armenia’s example above, watersheds and months are 394 
consequentially weighted by irrigation water consumption. In the same fash-395 
ion, edges provides AWARE CFs for non-agricultural activities and activities 396 
for which the type cannot be determined. Hence, exchanges are not only dis-397 
criminated against based on the consumer's location but also the consumer's 398 
type (i.e., seasonality and spatial pattern of water consumption in this case).  399 
The weight field provides a reference freshwater consumption volume for the 400 
area (annual, in m³/year), used when aggregating or disaggregating regional 401 



CFs—e.g., to compute weighted averages for larger or composite regions (e.g., 402 
RER, RoW). 403 

 404 
In addition to the spatial and sectoral resolution of the CFs, the method supports 405 
the representation of uncertainty or variability via probability distributions. 406 
Each CF can be supplemented with an uncertainty field, which describes the 407 
statistical distribution of potential CF values rather than relying on a single de-408 
terministic point estimate. Several types of distributions are supported, including 409 
normal, lognormal, gamma, beta, triangular, uniform, and discrete empirical. 410 
These distributions are defined by standard parameters (e.g., mean, scale, shape, 411 
minimum, maximum) and are used for Monte Carlo sampling to generate 412 
pseudo-random values for error propagation. In the example above, the spatial 413 
variability of watersheds within a country is represented using the "discrete_em-414 
pirical" distribution. This approach is particularly well-suited for watershed-spe-415 
cific CFs derived from multiple data sources or seasonal profiles. Rather than 416 
assuming a continuous parametric distribution, the discrete empirical type de-417 
fines a set of possible CF values (corresponding to the individual watersheds of 418 
the region) and their associated weighted probabilities of providing water. In this 419 
case, the two watersheds of Armenia are associated with two CF values—84.5 420 
and 87.9—each given a respective weight of 3.1% and 96.9%, based on the re-421 
spective watersheds’ annual irrigation water consumption. When sampling dur-422 
ing LCIA, one of these values is drawn according to its likelihood, allowing for 423 
the capture of spatial and seasonal variability or model uncertainty (when avail-424 
able) without imposing an arbitrary statistical shape. In this case, the risk would 425 
be, in regions with a limited number of watersheds, to draw CF values for wa-426 
tersheds that do not exist. However, note that this example does not account for 427 
the inherent uncertainty of the CF value for a specific watershed, as AWARE 2.0 428 
does not yet carry uncertainty data. Rather, it considers the uncertainty as to 429 
which watershed will provide freshwater to the consuming process within a 430 
country. For other regions that comprise numerous watersheds (i.e., n>10), par-431 
ametric distributions have been fitted, such as the case of California (see Fig. 1). 432 
When aggregated to form regional or global indicators, these probability distri-433 
butions contribute to a more robust and transparent impact assessment. How-434 
ever, two main limitations of this approach are worth discussing: 1) It is cur-435 
rently unable to calculate probability distributions for composite regions (e.g., 436 
RoW). 2) To capture spatial variability in watershed-level CFs while maintaining 437 
LCA robustness (Mutel et al. 2019), we aggregate CFs from watersheds to regions 438 
in edges. However, this can reduce precision for smaller regions—e.g., certain 439 



Indian and U.S. states—where seasonal water use patterns in the region-specific 440 
portion of a watershed differ from the watershed as a whole. In 59 regions, over 441 
half of water consumption showed >10% discrepancy between the annual wa-442 
tershed CF and the (unpublished) annual CF of the watershed’s region-specific 443 
portion. In such cases, we opted for deterministic AWARE values instead of 444 
Monte Carlo sampling. This issue stems from using annual rather than monthly 445 
CFs, reflecting a modeling constraint rather than a limitation of the AWARE 446 
method. 447 
 448 
Furthermore, although not used here, edges also supports nested distributions: 449 
for example, had uncertainty data at the watershed level been available, it could 450 
have been combined with a discrete distribution. Hence, at the country level, a 451 
watershed would be picked according to consumption-weighted probabilities, 452 
and after that, pseudo-random values would be drawn from the watershed-spe-453 
cific distribution. 454 

 455 
Finally, to ensure consistent uncertainty treatment for correlated flows (such 456 
as water uptake and release in the same location), edges generates shared sam-457 
pled vectors for each unique CF distribution. This preserves correlation be-458 
tween exchanges, such as when a water flow appears as both an input and out-459 
put (e.g., in water use modeling). For instance, in the hydrogen system, two 460 
exchanges—“Water, surface water” (i.e., release) and “Water, natural resource 461 
in water” (i.e., uptake) point to a consuming node located in the United Arab 462 
Emirates. They share the same discrete empirical distribution (since the water 463 
is withdrawn and released in the same region), with possible watershed-spe-464 
cific values like 7.56, 13.4, 33.7, etc. By caching a single sample vector (e.g., 465 
[27.6, 7.56, 33.7, ...]) and applying signs only after sampling, we ensure they 466 
receive the same values in the same order, respecting their contextual direction 467 
(i.e., consumption or release), before being multiplied by the exchange amount. 468 
This avoids decorrelation artifacts in Monte Carlo analyses and enables reliable 469 
uncertainty propagation across symmetrical exchanges. 470 

 471 



 472 
Fig. 1 – Fitted parametric distribution over the watershed-specific CF values for California, 473 
USA, for unspecified water consumption type. It is a Weibull distribution of mean 73.9 474 
fitted over the CFs of 65 watersheds. 475 

2.5.2 Use Case 2: Technosphere-based LCIA with GeoPolRisk 476 

The second use case demonstrates how exchange-resolved LCIA can be extended 477 
beyond biosphere flows to characterize technosphere exchanges—i.e., interme-478 
diate product flows between activities. We illustrate this using the GeoPolRisk 479 
indicator (Gemechu et al. 2016; Koyamparambath et al. 2024). The indicator 480 
quantifies the geopolitical risks associated with the extraction of mineral re-481 
sources. It assigns characterization factors based on the likelihood and severity 482 
of supply disruptions in producing countries due to political instability, conflict, 483 
or governance issues. 484 
 485 
Initially, GeoPolRisk CFs were applied to raw material elementary flows (Ko-486 
yamparambath et al., 2024), limiting the ability to account for the geographic 487 
locations of resource suppliers and consumers. Moreover, elementary flows do 488 
not necessarily represent the marketable materials at risk. This stems from (i) the 489 
pre-allocation of multi-output mining processes in databases such as ecoinvent, 490 
which can create imbalances between elementary and intermediate product 491 
flows for a given material, as well as (ii) losses during processing stages. The edges 492 
method addresses both limitations by applying location-specific CFs directly to 493 
technosphere exchanges. GeoPolRisk CFs were extended to the intermediate 494 
product level using the geopolrisk-py library (Koyamparambath et al., 2024), 495 
which enables the generation of country-to-country CFs. Those were then 496 
mapped to ecoinvent’s nomenclature. Hence, the method offers CFs based on 497 
country-to-country trade relationships of abiotic resources in its detailed form. 498 

 499 



An example CF definition is shown below: 500 
 501 

{ 502 
  "supplier": { 503 
    "name": "aluminium production", 504 
    "reference product": "aluminium", 505 
      "location": "AU", 506 
      "operator": "startswith", 507 
      "matrix": "technosphere", 508 
      "excludes":[ 509 

"alloy", 510 
"liquid", 511 
"market" 512 
] 513 

  }, 514 
  "consumer": { 515 
      "location": "CA", 516 
      "matrix": "technosphere" 517 
  }, 518 
  "value": 2.420e-4 519 
} 520 
 521 
This CF definition assigns a supply risk value, expressed in kg copper-eq./kg, to 522 
exchanges where primary aluminium is supplied by Australia ("AU") and con-523 
sumed in Canada ("CA"). The CF reflects the geopolitical risk associated with this 524 
specific supply route for this metal. The same metal, consumed by Canada but 525 
supplied instead by the United States (“US”), is given a CF value 10 times higher. 526 
This indicates that a disruption in the “US” supply would have more severe con-527 
sequences for Canada, given its greater dependence on aluminium imports from 528 
the United States.  529 
Here, the operator "startswith" and the “excludes” list allow for pattern-based 530 
matching of activity names, offering flexibility in identifying relevant supplying 531 
nodes across databases. The current implementation of GeoPolRisk in edges in-532 
cludes about 43,000 such definitions. 533 

 534 
This example illustrates how exchange-resolved LCIA supports indicators that 535 
depend not only on the substance exchanged, but also on which node supplies 536 
and receives it, and where nodes are located—something not possible in tradi-537 
tional node-based approaches. 538 

2.5.3 Use Case 3: Scenario-based Prospective LCIA with Parameterized CFs 539 
for Global Warming Potential 540 

The third use case illustrates how exchange-resolved LCIA can incorporate pa-541 
rameterized and scenario-sensitive CFs, enabling prospective impact assessment. 542 



This is particularly relevant when assessing impacts under varying future condi-543 
tions, such as changing atmospheric greenhouse gas concentrations. 544 
 545 
In this example, we consider concentration-dependent Global Warming Poten-546 
tial (GWP) CFs for methane (CH₄) and nitrous oxide (N₂O), following the phys-547 
ical formulation of Absolute Global Warming Potential (AGWP) as described in 548 
the IPCC AR6 Working Group I report and the future gas concentration values 549 
according to four Representative Concentration Pathways (RCP) developed by 550 
the IPCC, presented in Table 2 and sourced from the Annex III document 551 
(Intergovernmental Panel on Climate Change (IPCC) 2023).  552 
Table 2: Gas concentration values for CH4 (C_CH4) and N2O (C_NO2). Concentration val-553 
ues for 2019 are used for 2020. RCP = Representative Concentration Pathways. 554 

 C_CH₄ (ppb) 

RCP 1.9 2.6 4.5 8.5 

2020 1866 

2050 1,428 1,519 2,020 2,446 

2080 1,150 1,197 1,779 2,652 

2100 1,036 1,056 1,683 2,415 

 C_N₂O (ppb) 

RCP 1.9 2.6 4.5 8.5 

2020 332 

2050 344 344 356 358 

2080 350 349 373 380 

2100 354 354 377 392 

 555 
The CF is defined as a symbolic expression. Here is the case for CH₄: 556 
{ 557 
  "supplier": { 558 
    "name": "Methane, fossil", 559 
    "operator": "contains", 560 
    "matrix": "biosphere" 561 
  }, 562 
  "consumer": { 563 
    "matrix": "technosphere" 564 
}, 565 
  "value": "GWP('CH4', H, C_CH4)" 566 
} 567 

 568 
This expression calls the external function GWP(), which takes the gas name, its 569 
background concentration (C_CH4 for methane), and time horizon H as inputs. 570 
The function, detailed in the notebook included in the electronic SI material, 571 



calculates the concentration-dependent GWP for the specified gas as the ratio of 572 
the gas’s Absolute Global Warming potential (AGWP) to that of CO₂. 573 
 574 
The resulting GWP CF values are dynamically inserted into the characterization 575 
matrix for each value pair provided for H and C. Parameters are externally sup-576 
plied from climate scenarios (see Table 2), enabling consistent alignment be-577 
tween inventory modeling and evolving atmospheric conditions. 578 
 579 
This approach supports prospective LCIA by allowing CFs to reflect the changing 580 
climate system. Rather than relying on fixed values (e.g., GWP100 = 28 for CH₄), 581 
users can explore how future CH₄ emissions may have stronger or weaker im-582 
pacts based on projected concentrations. 583 
By supporting symbolic CFs and parameterized evaluation, the exchange-based 584 
LCIA framework enables a close integration between LCA and integrated cli-585 
mate scenario modeling—an essential step toward robust, policy-relevant impact 586 
assessments. 587 

2.5.4 Use Case 4: Scenario-based Prospective LCIA with Parameterized CFs 588 
for Fossil Fuels Scarcity 589 

This use case illustrates how exchange-resolved LCIA can support prospective 590 
modeling of fossil resource scarcity, again using scenario-sensitive, parameter-591 
ized CFs. Specifically, we implement a formulation of Surplus Cost Potential 592 
(SCP)—a measure of the additional cost incurred due to the depletion of fossil 593 
energy carriers (coal, oil, and natural gas)—whose value varies dynamically over 594 
time and across integrated assessment model (IAM) scenarios. 595 

 596 
In the original ReCiPe 2016 implementation (Vieira et al. 2016), surplus produc-597 
tion costs were derived from global average surplus extraction costs using static 598 
marginal cost increase (MCI) values per fossil fuel type (e.g., USD/GJ²). These 599 
MCIs were then combined with a fixed marginal extraction rate to calculate con-600 
stant CFs (in USD/GJ), which were subsequently converted to USD/kg or 601 
USD/Nm³ via energy content assumptions. While this provides a consistent 602 
global midpoint indicator, it does not account for changing resource economics 603 
or energy demand trajectories under climate policy scenarios. 604 

 605 
Our approach extends this formulation by parameterizing the CFs as symbolic 606 
expressions evaluated per year and scenario. The core expression is: 607 
 608 



𝐶𝐹* =
𝑀𝐶𝐼* ∙ 𝑃*
5 ∙ (1 + 𝑑*)

 609 

where: 610 
 611 

• 𝑀𝐶𝐼𝑡: the marginal cost increase of extraction for the given fossil fuel at 612 
time 𝑡 (USD/GJ²), obtained from the derivative of the IAM-simulated extraction 613 
cost curve; 614 
• 𝑃𝑡: the annual extraction volume (EJ/year), approximated from cumulative 615 

extraction data; 616 
• 𝑑𝑡: the scenario-specific discount rate, reflecting time preference for future 617 

costs; 618 
• The factor 5 annualizes the data in the scenario output, which is given with 619 

a time step of 5 years. 620 
 621 

The CFs are evaluated in units of USD/GJ, then converted to USD/kg (for coal 622 
and oil) or USD/m³ (for natural gas) using representative energy contents. In 623 
edges, it is implemented the following way: 624 

 625 
{ 626 
  "supplier": { 627 
    "name": "Oil, crude", 628 
    "categories": [ 629 
      "natural resource", 630 
      "in ground" 631 
    ], 632 
    "matrix": "biosphere" 633 
  }, 634 
  "consumer": { 635 
    "matrix": "technosphere" 636 
  }, 637 
  "value": "(MCI_OIL * P_OIL / 5) / (1 + d)" 638 
} 639 
 640 

Unlike the static approach of Vieira et al., our method retrieves scenario-specific 641 
time series for MCI, 𝑃	(for	each	fuel), and 𝑑 directly from IAM scenario outputs, 642 
allowing the CFs to evolve dynamically over time and across socio-economic 643 
pathways. The scenarios used in this study are based on the REMIND model v.3.5 644 
(Luderer et al. 2020) and span a range of socio-economic pathways (SSP1–3) 645 
combined with climate policy assumptions, including near-term policy imple-646 
mentation (NPi, i.e., National Policies implemented), long-term carbon budgets 647 
(PkBudg650, i.e., 650 GtC of global carbon budget between 2022 to 2100), and a 648 
roll-back on previously committed investment in renewables (rollback). These 649 
scenarios represent contrasting futures regarding fossil fuel use, extraction dy-650 
namics, and mitigation ambition, providing a rich basis for evaluating how fossil 651 
resource scarcity impacts evolve. 652 



3 Results 653 

Results are presented for each of the use case presented above. Each features 654 
specific adaptations to meet the needs of the applied characterization models. 655 

3.1 Use case 1: AWARE 656 

Fig. 2 illustrates the LCA results for producing one kilogram of hydrogen via 657 
water electrolysis in France, using offshore wind power. The analysis resulted 658 
in ~8’800 exchanges associated with 512 unique CF values. From panel a), 50% 659 
(0.014 m3) of the net freshwater use originates from the electrolysis itself in 660 
France, with the remaining 50% being consumed by other European countries 661 
(~10%), India (6% from the production of iron pellet and steel), South Africa 662 
(4%, from the mining of platinum used in the electrolyzer) and other countries 663 
(30%), for a total of 0.029 m3. However, panel b) shows that the lowest water 664 
deprivation CF applies to French water consumers, while the highest applies 665 
to South African activities. Panel c) indicates that despite consuming only 4% 666 
of the freshwater in the system, the provision of water necessary for the ex-667 
traction of platinum in South Africa is the most impactful process in the system 668 
once water scarcity is factored in, following the water needed for the electrol-669 
ysis in France. It results in a total score of 0.62 m3 world-eq. per kg of hydrogen 670 
with a 50% confidence interval of 0.45—0.71. Using the global default CF of 671 
39.5 m3 world-eq./m3 would yield a total score of 1.17, overestimating the im-672 
pact by 89%. The reader should note that 1) the CF applied to exchanges where 673 
the consuming process has the location RoW is exchange-specific: it averages 674 
25 but ranges from 20 to 30; 2) only the uncertainty linked to using spatially 675 
aggregated CFs is considered; 3) using French grid electricity to power the elec-676 
trolyzer would increase the share of water consumption occurring in France, 677 
primarily due to evaporation in hydro and nuclear power plants. However, this 678 
would obscure the significance of supply chain contributions, such as the water 679 
used for mining platinum and iridium. 680 



 681 
Fig. 2 – Water scarcity assessment for producing one kilogram of hydrogen from offshore 682 
wind power through water electrolysis in France, using AWARE 2.0. Values in panels c) 683 



and d) are estimated using a Monte Carlo analysis over 10,000 iterations. Note that only the 684 
uncertainty associated with the spatial resolution of CFs is considered, not that stemming 685 
from inventories. a) Net freshwater use per consumer location (five largest), measured in 686 
cubic meters. Net use indicates the difference between water uptake and release. b) Mean 687 
and 25-75th percentiles CF values per consumer location, represented in cubic meters of 688 
deprived freshwater per cubic meter of net freshwater use. Note that composite regions 689 
(e.g., RoW) do not carry uncertainty. c) Characterized contribution of the four most 690 
relevant processes, in reference to one kg of hydrogen produced, in cubic meters of 691 
deprived freshwater. d) Comparison of the total score using a global CF value of 39.5 and 692 
region-specific CF values. 693 

3.2 Use case 2: GeoPolRisk 694 

Fig. 3 presents the inventory results for assessing geopolitical supply risk associ-695 
ated with producing one kilogram of electrolytic hydrogen in France using off-696 
shore wind power.  697 
Panel a) shows the resources most consumed in terms of mass, relative to the 698 
functional unit. Coal is the largest input by weight, followed by pig iron, petro-699 
leum, and natural gas. These results reflect the upstream material requirements 700 
embedded in the construction and operation of offshore wind infrastructure, 701 
electricity transmission, and hydrogen production systems.  702 
Panel b) highlights the resources with the highest average CFs for geopolitical 703 
supply risk, calculated as the total impact divided by the total amount required 704 
for each resource. Platinum and iridium, primarily sourced from South Africa 705 
and Russia, rank highest, reflecting their geopolitical sensitivity due to concen-706 
trated global supply.  707 
Panel c) illustrates how edges enables the application of CFs specific to supplier-708 
consumer location pairs for a given resource, exemplified here with crude petro-709 
leum.  710 
Finally, panel d) combines the amount of each resource used and its associated 711 
CF, broken down by supplier-consumer location pairs. This reveals the main 712 
contributors to the total geopolitical supply risk, with bauxite, hard coal, ferro-713 
nickel, and pig iron emerging as the most critical, due to their volume and mod-714 
erate to high CFs. Iridium also appears among the top contributors despite its 715 
low absolute use–only about 1 microgram per kilogram of hydrogen. This high-716 
lights the importance of materials with high CFs, which capture supply concen-717 
tration and governance risks, even when such materials are used in very small 718 
quantities.  719 



 720 
Fig. 3 – Geopolitical supply risk associated with resource use for producing one kilogram of 721 
electrolytic hydrogen in France, based on GeoPolRisk 1.0. Y-axes of top, second, and fourth 722 
panels use logarithmic scales. a) Mass of each resource used (in kilograms). b) Weighted 723 
average CF applied per resource, in kg copper-eq./kg. c) Weighted average CF for 724 
petroleum, for different pairs of supplier-consumer locations, in kg copper-eq./kg. d) Ten 725 
most critical abiotic resource traded, by supplier location, in kg copper-eq/kg hydrogen. 726 
Each color represents a geographical origin. Note that the average CF values displayed in b) 727 
and c) are weighted by the amounts of the exchanges involved in the system. Hence, they 728 
are specific to this case. 729 



3.3 Use case 3: Global Warming Potential 730 

Fig. 4 presents the evolution of the CFs for GWP and corresponding scores to 731 
produce one kg of electrolytic hydrogen in France using offshore wind power, 732 
under four RCP scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) for the period 733 
2025–2100. Note that this example does not consider any changes in the hydro-734 
gen production system (e.g., the efficiency of the electrolyzer, the electricity 735 
mix, etc.), but only changes in the GHG atmospheric concentrations. Panel a) 736 
illustrates the concentration-dependent GWP factors (expressed in kg CO2-737 
equivalents per kg emission) for the two major greenhouse gases: methane (CH4) 738 
and nitrous oxide (N2O). Results demonstrate that the GWP factors for CH4 and 739 
N2O vary across scenarios due to changes in the gases’ background concentra-740 
tions, which affect their relative radiative efficiencies and lifetimes compared to 741 
CO2. Carbon dioxide retains a constant GWP factor of 1, as it is the reference 742 
substance. 743 
 744 
Specifically, in low-emission pathways such as RCP2.6, the reduced atmospheric 745 
burden leads to higher radiative efficiencies per molecule, thereby increasing the 746 
GWP CFs values relative to those in high-emission pathways. 747 
 748 
The bottom panel of Fig. 4 shows the total GWP-based LCIA score per kilogram 749 
of electrolytic hydrogen produced over time. Logically, under the RCP2.6 sce-750 
nario, the overall climate change impact score increases with time, while in the 751 
higher-emission scenarios (RCP6.0 and RCP8.5), the score decreases. This coun-752 
terintuitive trend results from the stronger climate forcing exerted by marginal 753 
emissions of CH4 and N2O under cleaner atmospheric conditions, as captured by 754 
the concentration-dependent GWP CFs formulation. In this case, the variation 755 
of scores across scenarios remains modest, as the system emits low amounts of 756 
CH4 and N2O relative to CO2, unlike other systems (e.g., agricultural activities).  757 

 758 



 759 
Fig. 4 – Evolution of concentration-dependent Global Warming Potential (GWP) factors 760 
and scores under four RCP scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5) between 2025 and 761 
2100. a) GWP CFs for CH4, and N2O, in kg of CO2-eq. per kg of emission. b) Total GWP 762 
score per kg of hydrogen across the four RCP scenarios. Lower atmospheric concentrations 763 
in mitigation pathways lead to higher radiative efficiencies and increased impact scores. 764 

3.4 Use case 4: Fossil Fuels Scarcity 765 

Results shown in Fig. 5 indicate a clear relationship between scenario assump-766 
tions and the CFs for fossil fuel scarcity. In stringent mitigation scenarios like 767 
SSP1-PkBudg650, fossil fuel extraction volumes (P) decline rapidly due to 768 
strong climate policies and low-carbon transitions. This, in turn, limits the rate 769 
at which cumulative resources are depleted, leading to more moderate in-770 
creases in marginal extraction costs (MCI). Additionally, such scenarios often 771 
feature higher or more stable discount rates (d), further dampening the result-772 
ing CFs. These factors yield CFs that decrease significantly over time, reflecting 773 



a lower scarcity pressure under strong mitigation. Conversely, in scenarios 774 
with delayed or weak climate action—such as SSP3-rollBack—extraction vol-775 
umes remain high or even grow, driving up cumulative depletion and leading 776 
to steeper marginal cost increases (higher MCI). Coupled with moderate dis-777 
counting, this raises CFs over time, capturing the increased scarcity and cost 778 
burden of fossil resource use. These dynamics are directly encoded in the pa-779 
rameterized CF formulation. The influence of scenario trajectories on CF pa-780 
rameters is reflected in the LCIA impact scores: pathways with rapid fossil 781 
phase-out show a steep decline in impacts. In contrast, fossil-reliant pathways 782 
maintain high and persistent scores. This demonstrates the strength of using 783 
scenario-based, dynamic CFs in prospective LCA to reflect fossil fuel use's 784 
evolving cost and scarcity implications under different socio-economic and cli-785 
mate policy futures. 786 



 787 
Fig. 5 – Surplus Cost of Fossil Fuel Extraction across three scenarios from REMIND v.3.5. a) 788 
Annual extraction rate, in exajoules (EJ), for hard coal, natural gas, and crude oil across 789 
multiple scenarios. b) Surplus cost potentials (SCP) per unit of resource (USD/kg for oil and 790 
coal, USD/Nm³ for gas) across multiple scenarios. c) Resulting LCIA scores per kilogram of 791 
electrolytic hydrogen across multiple scenarios. In a) and b), each line corresponds to a 792 
scenario, and each colour corresponds to a fuel. In c), each line corresponds to a scenario. 793 



4 Discussion 794 

This study introduced an exchange-resolved approach to LCIA, shifting the 795 
characterization from node-level elementary flows to exchanges between ac-796 
tivities. Through four use cases, we demonstrated the flexibility and applica-797 
bility of this method for regionalized, technosphere-aware, and prospective 798 
environmental assessments. 799 
 800 
The results confirm that exchange-based LCIA can account for key spatial, re-801 
lational, and scenario-dependent aspects of environmental impacts, offering a 802 
lower-overhead alternative to GIS-based modeling—albeit with less spatial 803 
granularity. By treating exchanges as the unit of impact characterization, the 804 
framework enables consistent modeling across various impact categories that 805 
depend on contextual parameters, including geographic location, supplier-con-806 
sumer relationships, and evolving background conditions such as atmospheric 807 
GHG concentrations. 808 
 809 
The regionalized water scarcity impact assessment (AWARE) illustrated how 810 
geographic disaggregation can be achieved without proliferating elementary 811 
flows or requiring manual flow duplication. Furthermore, we demonstrated 812 
that exchanges could be distinguished based on the consumer’s location and 813 
CPC category. The technosphere-based supply risk assessment (GeoPolRisk) 814 
further showed that impacts can depend on the supply chains’ structure, which 815 
1) increases flexibility for applying the LCIA method and 2) introduces a rela-816 
tional dimension that traditional LCIA does not capture. Finally, the prospec-817 
tive GWP and fossil fuels examples demonstrated that concentration- and sce-818 
nario-dependent characterization factors can be dynamically evaluated, 819 
aligning LCA outputs more closely with integrated scenario modeling frame-820 
works such as RCPs or SSPs. 821 
 822 
However, this approach also presents limitations. First, as already noted by C. 823 
L. Mutel & Hellweg (2009), implementing regionalized indicators at the na-824 
tional or sub-national level cannot possibly capture site-specific impacts. En-825 
vironmental conditions, such as water scarcity, ecosystem sensitivity, air qual-826 
ity, and population density, vary widely within a country. This is the reason 827 
why indicators like AWARE define CFs at the watershed level. However, one 828 
may try to overcome this issue by explicitly modelling the uncertainty intro-829 
duced by using aggregated CFs and letting it propagate to the score level, as we 830 
did by integrating variability across watersheds (although it does not include 831 
uncertainty at the watershed level itself). Yet, suppose site-specific impacts are 832 



expected to be of primary concern. In that case, using geo-referenced invento-833 
ries coupled with tools to model fate, exposure, and effect based on real-world 834 
environmental data (e.g., local hydrology models for water impacts, air disper-835 
sion models for air pollution) is preferable. Second, despite efficient implemen-836 
tation and advanced matching algorithms, the edges library requires a few sec-837 
onds to a few minutes to calculate a score, compared to a fraction of a second 838 
for brightway2-calc, as it needs to verify the eligibility of every exchange in-839 
volved in the inventory matrix (which can amount to several hundreds of 840 
thousands). Third, while the method supports regionalization and parameteri-841 
zation, it relies on the availability and quality of relevant metadata (e.g., loca-842 
tions, classifications) in inventories and characterization factor definitions. 843 
Limited trade data, gaps in inventory geographies, or inconsistencies in 844 
metadata are frequent in common LCA databases. They can lead to reduced 845 
model fidelity. There is however a clear trend in spatializing inventory data-846 
bases, as demonstrated by (Peng and Pfister 2024) and, more recently, by the 847 
development of regioinvent (Agez 2025). Coupling their use with edges could 848 
provide more accurate assessments. Finally, while symbolic CFs allow flexible 849 
prospective modeling, the quality of the results ultimately depends on the ro-850 
bustness of the underlying parameterizations (e.g., GWP models, concentra-851 
tion scenarios). 852 
 853 
Future research could expand exchange-resolved LCIA in several directions. 854 
First, while edges already implements AWARE, IMPACT World+, and Geo-855 
PolRisk, a broader application to other regionalized or relational impact assess-856 
ment methods could further demonstrate its generalizability. Second, using 857 
complex external models to evaluate CFs, as shown (to a limited extent) with 858 
the GWP example, is promising. One could envision calling an external API to 859 
retrieve current atmospheric conditions to calculate the marginal contribution 860 
to air pollution for different substances. Third, future work could explore the 861 
coupling of exchange-resolved LCIA with forward-looking inventory models, 862 
in which both the life cycle foreground system and background environmental 863 
conditions co-evolve. It offers a good framework to operationalize existing pro-864 
spective LCIA methods, such as those proposed for water scarcity (Núñez et al. 865 
2015; Baustert et al. 2022), ozone depletion (van den Oever et al. 2024), impacts 866 
on biodiversity from land use (de Baan et al. 2013), and impacts on freshwater 867 
ecosystems from climate change and water consumption (Hanafiah et al. 2011; 868 
Cosme and Niero 2017). This would open the door to assessments where 869 
changes in supply chains, technology mixes, or infrastructure are dynamically 870 
matched with corresponding shifts in characterization factors, improving the 871 
consistency and relevance of prospective LCA studies. Finally, this work high-872 
lights the potential of more dynamic LCIA frameworks, and we encourage LCA 873 



software developers (e.g., SimaPro, OpenLCA, and Activity Browser) to con-874 
sider supporting such approaches in the future to better capture the spatial, 875 
temporal, and parametric complexity of impact assessment. 876 
 877 
In summary, exchange-based LCIA represents a pragmatic and scalable ad-878 
vancement for context-sensitive environmental assessment. It occupies an es-879 
sential methodological space between conventional node-based LCIA and fully 880 
spatially explicit, GIS-integrated models. It provides a robust yet accessible so-881 
lution for regionalized, relational, and prospective life cycle assessments. 882 

Data Availability 883 

The distributable form of the Python library used to produce the results 884 
presented in this article is freely available from the Python Package Index 885 
(PyPI). Its source code is available in the following repository: 886 
https://github.com/Laboratory-for-Energy-Systems-Analysis/edges. Docu-887 
mentation is available at this address: https://edges.readthedocs.io/en/latest/. 888 
Scripts to reproduce the use cases presented in this article are provided as Elec-889 
tronic Supplementary Material documents. 890 
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