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Abstract

The Mu3e project is searching for the charged lepton flavour violating muon decay
µ+ → e+e−e+. According to the standard model, this decay is suppressed to an
unobservable level and detecting it would be a clear sign of new physics. In the
absence of a detection, a more precise experimental limit of the branching ratio will
impose tighter constraints on beyond standard model theories.

Mu3e phase I is pursuing a challenging branching ratio sensitivity goal of 2 · 10−15.
In order to reach this sensitivity, 108 muon decays per second will be observed by
a barrel-shaped detector consisting of 2844 monolithic active pixel sensors and 8896
scintillator readout channels.

This thesis has contributed to the data acquisition (DAQ) system of the detector.
The DAQ consists of multiple layers and is expected to face a data rate of 100 Gbit/s.
It will process this data using a triggerless fast network of FPGAs and GPUs for
online track reconstruction. This work has focussed on the lower layers of this system
and discusses the development of FPGA hardware structures for readout, control and
synchronisation of the Mu3e detector.

The functionality of the developed system has been demonstrated in two test runs
and insights from these tests have been used to implement DAQ design improvements.
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Zusammenfassung

Das Mu3e-Projekt zielt darauf ab, das experimentelle Limit für das Verzweigungs-
verhältnis des Leptonen-Flavour-verletzenden Zerfalls µ+ → e+e−e+ zu verbessern.
Nach dem Standardmodell wird dieser Zerfall auf ein nicht nachweisbares Niveau
unterdrückt, und sein Nachweis wäre ein eindeutiges Zeichen für neue Physik. Ohne
einen Nachweis würden genauere Messungen des Verzweigungsverhältnisses Theorien
jenseits des Standardmodells strengere Einschränkungen auferlegen.

Phase I des Mu3e-Projekts verfolgt ein Sensitivitätsziel für das Verzweigungsverhält-
nis von 2 · 10−15. Um diese Sensitivität zu erreichen, werden pro Sekunde 108 Myon-
Zerfälle von einem zylinderförmigen Detektor beobachtet, der aus 2844 monolithischen
aktiven Pixeldetektoren und 8896 Szintillator-Auslesekanälen besteht.

Diese Arbeit hat zur Entwicklung des Datenerfassungssystems des Detektors beige-
tragen. Dieses besteht aus mehreren Lagen und wird voraussichtlich mit einer Daten-
rate von 100 Gbit/s konfrontiert. Die Daten werden mittels eines triggerlosen, schnel-
len Netzwerks von FPGAs und GPUs verarbeitet. Diese Arbeit konzentrierte sich
auf die unteren Lagen dieses Systems und behandelt die Entwicklung von FPGA-
Hardwarestrukturen zur Auslese, Steuerung und Synchronisation des Mu3e-Detektors.

Die Funktionalität des entwickelten Systems wurde in zwei Testläufen demonstriert,
und die Erkenntnisse aus diesen Tests wurden genutzt um Designverbesserungen
umzusetzen.
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1
Introduction

The Standard Model of particle physics (SM) has predicted and explained many
observations made by physicists over the last decades. Its success in doing so has
pushed much of fundamental physics research towards the hunt for instances where
the SM falls short in explaining a measurement. Phenomena such as dark matter,
gravity and matter-antimatter asymmetry demonstrate the incompleteness of the SM
and drive physics research to improve our understanding and description of nature.

Figure 1.: Particles in the Standard Model. [1] adapted by [2].

The fundamental particles in the Standard Model are categorised into bosons and
fermions. The fermions are further divided into quarks and leptons and come in three
generations. The interactions between them are described with three fundamental
forces, which are caused by the exchange of force carrier particles – the gauge bosons.
The strong force bonds quarks together by gluon exchange and forms hadrons such as
the proton or neutron. The photon mediates the electromagnetic force, which attracts
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Chapter 1. Introduction

or repels charged particles from each other. The third fundamental force is carried
by the W- and Z-boson and is called the weak force. The charged leptons (electron,
muon and tau) interact via the electromagnetic and weak force, while their neutral
counterparts (electron-, muon- and tau-neutrino) can only interact via the weak force.
The last particle is the Higgs-boson, which was predicted by the SM and discovered
in 2012 by the ATLAS [3] and CMS [4] collaborations.

1.1. Charged Lepton Flavour Violation

The three lepton generations come with the lepton flavour quatum numbers Le, Lµ

and Lτ . In the Standard Model with massless neutrinos, these numbers are conserved
and the production of an electron, muon or tau always requires the creation of the
antiparticle or the corresponding neutrino of the correct flavour.

Hints for an occasion where the SM disagrees with a measurement were observed by
the g-2 experiment [5] in the anomalous magnetic moment of the muon. In addition to
the g-2 tension, the observation of neutrino oscillations has recently further motivated
the search for new physics in the lepton sector.

Neutrino oscillations have proven that neutrinos are not massless and that lepton
flavour is not a conserved quantity. However, a violation of lepton flavour for charged
leptons still remains to be observed. An obvious candidate to study charged lepton
flavour violation (CLFV) is the muon since it is unstable and has a lifetime which is
long enough to perform measurements. Almost 100 % of muons decay to an electron
and a neutrino-antineutrino pair with a lifetime of 2.2 · 10−6 s. A summary of the
decay channels is shown in table 1.

Decay Branching ratio CLFV Experiment

µ+ → e+νe ν̄µ ≈ 100%

µ+ → e+νe ν̄µ γ (6.0 ± 0.5) · 10−8 [6]

µ+ → e+νe ν̄µ e−e+ (3.4 ± 0.4) · 10−5 [6]

µ → eγ < 3.1 · 10−13, 90% CL [7] MEG II

µ → eee < 1.0 · 10−12, 90% CL [8] SINDRUM

µN → eN < 7.0 · 10−13, 90% CL [9] SINDRUM II

Table 1.: Measured branching ratios or limits of muon decay channels.

The experiments MEG and SINDRUM have provided upper limits for the three
lepton flavour-violating decays in table 1. The observation of neutrino oscillations
in the Super-Kamiokande and other experiments [10] has, in principle, allowed these
decays by extending the SM with neutrino mixing since it leads to the possibility of
charged lepton flavour violations via processes as shown in figure 2. However, the
branching ratios for these types of processes are estimated at < 10−50 [11], which
makes them experimentally unobservable in the Standard Model.

2



1.1. Charged Lepton Flavour Violation

Figure 2.: SM diagram of µ → 3e via neutrino mixing.

There are, however, beyond standard model (BSM) theories that predict an en-
hancement of charged lepton flavour violating decay channels, which makes an exper-
imental search for them valuable in order to set exclusion limits or to launch further
research in this field in case of an actual detection.

MEG

MEGII

Mu3e phase II
Mu3e phase I

COMET/Mu2e

Figure 3.: History of charged lepton flavour violation searches. Adapted from [12].

Figure 3 summarises searches and planned searches for lepton flavour violating muon
decays and the upper limits obtained by or predicted for these experiments. The most
recent addition is the first data from the MEGII experiment, which improves the limit
for µ → eγ to < 3.1 · 10−13 at a 90% confidence level and is expected to reach a
sensitivity of < 6.0 · 10−14 once the full statistics has been analysed [7].

It is important to note that the motivation for the experimental efforts in these
three decay channels cannot be summarised into a single general search for charged
lepton flavour violation. New physics models have not been able to predict absolute

3



Chapter 1. Introduction

rates for individual decay channels. However, several models can estimate a relative
rate [13]. Examples can be found in [13, p. 38]. Values such as

BR(µ → eee)

BR(µ → eγ)
(1)

receive model-dependent predictions. Therefore, improvements in all CLFV channels
are necessary to fully utilise the results of each individual experiment. Should one of
the channels shown in figure 3 observe a non-zero branching ratio, it will be possible to
make model-dependent predictions for the others. A detection of µ → eγ, for example,
is only able to rule out some of these theories if the currently reached sensitivity on
µ → eee or µN → eN allows it. Limiting the searches to only one channel is,
for some models, equivalent to orders of magnitude in required sensitivity increase
before a detection would be observed. It is technically less challenging and probably
also cheaper to improve the measurements for all three channels than to improve the
sensitivity of one of them by another three orders of magnitude. It is, therefore,
unreasonable to focus on just one decay channel.

1.2. The Mu3e Experiment

Figure 4.: BSM diagram of a Mu3e decay
at tree level.

Figure 5.: BSM diagram of a Mu3e decay
in a loop containing SUSY par-
ticles.

The Mu3e experiment intends to either detect the µ+ → e+e−e+ decay or to improve
the upper limit for the branching ratio. Currently, the best limit for this decay was
measured by the SINDRUM collaboration in 1988 at a value of < 1 · 10−12. Mu3e
is pursuing a sensitivity goal of 2 · 10−15 in the first phase of the experiment and is
planning for a second phase with an improvement towards 10−16.

Due to the unobservable small size of the branching ratios of decays with a neu-
trino mixing and the non-existence of other standard model contributions, the decay

4



1.2. The Mu3e Experiment

channel µ+ → e+e−e+ represents a very clean environment to search for physics pro-
cesses beyond the SM. Hence, the precision of any experiment searching for it will
only be limited by the detection efficiency for this decay, the false-positive rate from
background processes and the amount of muon decays observed.

The high number of required muons will be produced by the high-intensity proton
accelerator (HIPA) at the Paul Scherrer Institute (PSI). The protons are directed to
a target where they produce positive pions. These pions decay at rest on the surface
of the target and produce muons via

π+ → µ+νµ (2)

Due to momentum and energy conservation, these muons have a kinetic energy of
29.79 MeV:

Eµ = mπc
2 − pνc =

√
(mµc

2)2 + (pµc)
2, pν = pµ (3)

→ pµ =
(m2

π −m2
µ)c

2mπ
= 29.79

MeV

c
(4)

A part of this energy is lost due to interactions in the target, which causes the energy
distribution of the muons that leave the target to peak at around 28 MeV [14]. They
are then collected by a secondary beamline and guided to the Mu3e experiment, where
they are stopped in a target and decay at rest. At the target, a muon decay rate of
108 muons/s in phase I and 2 · 109 muons/s in phase II is expected.

Target

Inner pixel layers

Outer pixel layers

Recurl pixel layers

Scintillator tiles

μ Beam

Figure 6.: Schematic of the Mu3e detector.

The target is surrounded by a barrel-shaped detector with multiple layers and is
located in a homogenous 1 T magnetic field oriented along the beam axis. Charged
decay products enter a helical trajectory and are, in an optimal case, detected by four
layers of pixel sensors when they leave the instrumented area and by two additional
pixel layers upon reentry. In addition to the pixel sensors, scintillating fibres and
scintillating tiles are placed in the regions shown in figure 6 to provide a more precise
time measurement. The three segments in this figure will in the following be called
the upstream recurl station, the central station and the downstream recurl station.
Solid angle coverage of the target is limited by the beam cross-section and the space

5



Chapter 1. Introduction

needed for other infrastructure.
Since no observable SM process contributes to µ+ → e+e−e+, the background con-

sists exclusively of false-positive detections. These can result from internal conversion
decays µ+ → e+ e−e+νe ν̄µ with particularly low neutrino energy or from accidental

overlaps of two µ+ → e+νe ν̄µ decays with an electron from Bhabha scattering.
The internal conversion background can be suppressed by a track reconstruction,

which is precise enough to identify the missing momentum carried away by the neu-
trinos. This requires a pixel detector with a high granularity and a good knowledge
of the magnetic field along the particle trajectories. Additionally, it puts the detec-
tor on a material budget since multiple scattering will influence the accuracy of the
momentum measurement. This is a critical aspect since the muons decay at rest and
their decay products will be limited to a low momentum range.

The accidental overlaps can be suppressed by a precise vertex reconstruction. In
contrast to the internal conversion background, the observed trajectories do not orig-
inate from the same decay in this case. Resolving the difference of these decays either
in location or time will allow a background suppression. However, the probability
of accidental overlaps scales with the beam rate. They will therefore become more
problematic in phase II, where an increase in muon rate is planned.

In summary, Mu3e needs a thin detector with a good momentum and time resolution
and the ability to process high detection rates. µ+ → e+e−e+ candidate events
will need to be selected based on their origin in the same vertex and the appropiate
kinematics where the three detected decay products add up to a muon decaying at rest.∑

i

p⃗i = 0 ,
∑
i

Ei = mµ (5)

Details on the detector will follow in the next chapter. The collaboration has per-
formed geant4 simulations using a realistic model of this detector, which produces the
reconstruction results shown in figure 7 and leads to the expected phase I sensitivity
of 2 · 10−15.

Figure 7.: Reconstructed invariant mass for simulated signal and background events
in Mu3e phase I. Taken from [15].
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2
The Mu3e Detector

This chapter will briefly summarise the design of the Mu3e detector and introduce
some of the components involved in the Mu3e experiment. Especially the MuPix and
MuTrig chips discussed in sections 2.2.1 and 2.3.1 will be relevant for the next chapters
since they are the entry point into the Mu3e data acquisition and the following work
in this thesis.

2.1. Beam, Target and Magnet

Figure 8.: CAD model of the Mu3e beamline at PSI [15]

The protons from HIPA are directed to a carbon target (TgE in figure 8), where
they produce positive pions. These pions decay at rest on the surface of the target and
produce muons, which are collected by a set of focusing magnets and guided through
a secondary beamline to the Mu3e magnet. At the end of this arrangement, a rate
of 108 muons/s is stopped on a hollow double-cone mylar target with a diameter of
3.8 cm and a length of 10 cm. The target is mounted in a detector cage placed in
the centre of a 31-ton superconducting solenoid, which provides a homogeneous 1 T
magnetic field in a 1 m diameter bore with a length of 2.7 m [15].
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Chapter 2. The Mu3e Detector

Similar to the target, a part of the beampipe and detector components are mounted
on a moveable cage, which can be inserted or extracted from the Mu3e Magnet.

2.2. Tracking Detector

Figure 9.: CAD model of a outer pixel module. Taken from [15].

The six tracking layers are built from MuPix pixel sensors developed within the Mu3e
collaboration. To minimise the used material, they are glued and bonded on a poly-
imide foil, which includes aluminium traces for data readout, control lines and power1.
One of these foils with an array of MuPix sensors glued onto them is called a Mupix
ladder. Multiple ladders are used to build a layer of the tracking detector. The sides
of the ladders overlap with the neighbouring ladders to achieve full coverage without
gaps. This is shown in figure 9. The ladders in the outer tracking layers in all three
detector stations will consist of 17-18 Mupix sensors. Ladders in the inner two layers
of the central station are shorter and contain only six sensors.

The sensors are cooled by a 50 g/s [16] helium flow between and around the tracking
layers. Using air or other gases for cooling would introduce too much material into the
trajectory of the decay products and would further limit the momentum resolution
due to scattering effects.

Power, readout and control lines are provided from the ends of each ladder. One
half of the chips are serviced from the left and the other half from the right end. This
is necessary since the space on the foils does not allow the routing of all connections
to one side. However, it also comes with the consequence that a large fraction of the
sensor connections must be made at the interconnects between the central station and
the two recurl stations. This area becomes quite challenging in terms of space since
the available volume also needs to be shared with the helium distribution for the inner
tracking layers and following components of the timing detectors.

1
These will also be called High-Density-Interconnect (HDI) flexprints in the following parts of the
thesis
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2.2. Tracking Detector

2.2.1. The Mupix Sensor

A pixel sensor consists of junctions of p-doped and n-doped semiconductor material.
Conduction electrons from the n-doped material will combine with holes in the p-
doped material and vice versa. The region between the n-doped and p-doped material
is then free of charge carriers and an electric field from the p-doped to the n-doped
material forms.

Any particles interacting in this depletion zone will form electron-hole pairs and
lead to a measurable current through the p-n-junction, which the readout electronics
of the pixel detector can measure. A further increase in the size of the depletion zone
can be gained if a high reverse voltage is applied to the p-n junction. This increases
the sensitivity due to the larger active area and also the speed and time resolution
because of a faster charge collection.

For the Mu3e detector these aspects had to be implemented on a tight material
budget. Therefore, the sensor needs to be thin. Thin pixel sensors existed previously
and achieved a low material budget by including the readout electronics into the
active detection volume. The Mu3e collaboration has developed a new sensor which
combines this with the fast charge collection of sensors with a reverse bias voltage.
The resulting High-Voltage Monolithic Active Pixel Sensor (HV-MAPS) is the MuPix
[17], which is used to build the Mu3e tracking detector.

Figure 10.: Sketch of the electronics in a MuPix sensor. Adapted from [17].
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Chapter 2. The Mu3e Detector

A MuPix sensor has a size of 2x2 cm and consists of 256x250 individual pixels. It
can be thinned down to a thickness of 50 µm and allows the application of a reverse
bias voltage to fully deplete the sensor. It includes an amplification stage and line
driver inside of each pixel, which is used to drive signals towards a periphery (see
figure 10). During ladder construction, the chip’s periphery is oriented in a way that
overlaps with the active area of a sensor on the neighbouring ladder.

In the periphery, the signal is compared against an adjustable threshold voltage.
Pulses which exceed the threshold are recognised as particle detections and further
processed in the digital section of the sensor.

A second adjustable threshold is used to gather information about the shape of
the pulse. Once the pulse drops below this second threshold, another signal is sent
towards the digital sensor parts and can be used to calculate a time-over-threshold
(ToT) value, which is a measure for the pulse amplitude and the deposited energy.

The baseline for both of these thresholds can be set globally for all 256x250 pixels
on the sensor. Pixel-individual adjustments are then possible using a 3-bit value for
both thresholds. These values are called tune-DACs2 and allow a calibration of the
threshold voltage for each pixel. This is relevant to have a handle on impurities in
the semiconductor and other imperfections in the production process, which might
change the response of single pixels relative to the rest of the chip.

In addition to the six bits for threshold tuning, another bit is added, which allows
the pixel to be turned off. Therefore, each of the 256x250 pixels in a MuPix has a 7-bit
value for calibration. The complete Mu3e tracking detector will consist of 2844 MuPix
sensors. The pixel threshold tune calibrations will, therefore, contain about 1.3 Gb
of data in addition to settings for the sensor-global threshold and other configuration
parameters.

The MuPix development took multiple sensor versions. The current version (MuPix
11) fulfils the requirements for Mu3e in the form of a time resolution of < 20 ns and an
efficiency above 99 % [18]. It is currently used to build the tracking detector. Further
sensor design details can be found in [19], [20] and [17].

2.3. Timing Detectors

The scintillating tile and scintillating fibre detectors are present in the Mu3e design
to further increase the time resolution, which can be used to suppress the background
from accidental overlaps discussed in section 1.2.

Both of these sub-detectors consist of a scintillator material, which gets excited into
a higher energy level by particle interactions. During the de-excitation, light with
visible wavelengths is emitted. The emitted light is then internally reflected and can
be detected by silicon photomultipliers attached to the material.

2
DAC: Digital to Analog Converter
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2.3. Timing Detectors

Figure 11.: CAD image of a scintillating
fibre module with two ribbons.
Taken from [15].

Figure 12.: Schematic cross section of
a scintillating tile module.
Taken from [15].

The tile detector consists of 5824 small scintillator blocks, which are mounted below
the tracking layers in the upstream and downstream recurl stations. Each station
contains seven of the tile detector modules shown in figure 12. A module consists of
a long PCB equipped with several submodules which contain a 4x4 tile matrix. They
form a full barrel layer between the beampipe and the Mupix sensors. Each 5̃x5 mm
tile is wrapped into a reflective foil to prevent light from entering into neighbouring
tiles.

The scintillating fibre detector is located between the second and third tracking
layer in the central detector station. Six of the modules shown in figure 11 form a
cylindrical shape around the target. The modules contain two ribbons with three
layers of scintillating fibres.

The tile detector is not constrained by a material budget. Once a particle has
crossed all six tracking layers and hits the tile detector in the recurl station, the data
for the momentum reconstruction has already been recorded and the material budget
becomes irrelevant. However, the fibre detector is affected by the material budget
constraints. The fibres have to be read out from both ends, which adds to the issue
of limited space availability at the station junctions.

Both timing detectors are coupled to silicon photomultipliers, which are read out
by MuTrig ASICs. Similar to the MuPix, the MuTrig was also developed by the
collaboration for the Mu3e experiment.

2.3.1. Timing Detector Readout and the MuTrig ASIC

The MuTrig is a silicon photomultiplier readout chip capable of acquiring data from
32 channels with an overall event rate of up to 38 MHz. Individual events can be
resolved with 50 ps timing bins [15]. For the tile detector, an average time resolution
of 46.8 ± 7.6 ps was measured. The fibre detector reaches around 250 ps.

These improvements over the pixel time resolution are used to suppress accidental
backgrounds. In the case of the scintillating fibre detector, they also enable particle

11



Chapter 2. The Mu3e Detector

identification for decay products with low z-momentum. The pixel tracker is not
able to identify particles without momentum along the beam axis since it cannot
distinguish between clockwise and counter-clockwise trajectories. When combined
with the scintillating fibre detector, identification as a positron or electron is possible
via flight time.

2.4. Overview and Infrastructure

Figure 13.: CAD model of the Mu3e detector. Image taken from [21].

The dimensions of the instrumented area are shown in figure 13. Each station has a
length of about 35 cm and a width of 18 cm. The remaining space along the magnet
bore diameter is filled with helium but otherwise empty3 to allow decay products to
recurl into the upstream or downstream station.

At both ends of the instrumented area the diameter of the structure is increased to
provide space for infrastructure. Before that point, all cooling, power and cabling for
the central station and the centre half of both recurl station pixel layers needs to be
guided through the gap between the beampipe and the tile detector. This is shown in
figure 14. To increase space efficiency, the power is provided through a copper layer
glued to the beam pipe.

Large parts of this thesis have contributed to the development of components which
are directly attached at the upstream and downstream ends of the detector and are
responsible for readout and configuration of the MuPix and MuTrig sensors. The
space constraints shown here and the previously discussed constraints on a MuPix
ladder have driven the development of a configuration method in [20], which requires
a minimal amount of connections. The control and readout components have to

3
With the exception of a mounting cage.
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2.4. Overview and Infrastructure

Figure 14.: Sketch of a quarter detector cross-section along the beam axis. Taken from
[22].

provide the other end of this method and the infrastructure to process and move data
from particle detections from the detector to the outside parts of the readout system.

The expected data rate for the first phase of the experiment was estimated at 100
Gbit/s [23], which requires the use of fast data processing devices. The next chapter
will introduce the principles of these devices and the methods used to develop the
readout and control system.
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3
Digital Electronics

A significant part of this thesis contributes to the design and implementation of the
data acquisition and control systems of the Mu3e experiment. In the following chap-
ters, detailed discussions will be provided regarding the challenges, design decisions
and functionality of these systems. In this chapter, the foundations on which they are
built will be introduced.

3.1. General Concepts

All electronic circuits or data signals can be classified as either analogue, digital or a
mixture thereof. In an analogue data signal, the information is carried by a voltage,
current or any other physical quantity that can be measured by a receiver. Effects that
influence this quantity can negatively affect the accuracy of the information transfer or
the functionality of a circuit, for example external fields coupling into a voltage signal.

Digital signals on the other hand use a defined set of discrete levels of the carrying
quantity. These levels are defined by the used signal standard in the form of ranges
of a quantity, which devices built according to this standard have to identify as the
signal level they belong to. Since the information is encoded into the used level rather
than the exact measured value, digital signals are less prone to disturbances because
only effects that change the signal enough to be identified as a different level actually
have an effect.

Most digital circuits and signals use a signal standard with a binary data repre-
sentation with the logic levels 0/false and 1/true. If the higher carrying quantity
corresponds to the true level then the signal is called ”active high”; otherwise, it is
called ”active low”. There are some examples of digital signal standards where the
data is not encoded in a two-state system, and we will encounter such an example in
section 5.13.1.

Processing binary data in an electronic circuit requires a set of components such
as flip-flops, logic gates and lookup tables. All of these can be constructed from
transistors within different kinds of technologies and devices, which will be discussed
later in this chapter. In the following it will be assumed that these basic components
are known to the reader. Detailed introductions can be found in [24].
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Chapter 3. Digital Electronics

3.1.1. Clocked circuits

A clocked digital circuit consists of a set of registers and logic gates, and any data
processing or data movement is done in discrete time steps1. To implement these time
steps, a clock signal is distributed to all registers, which ensures that the output is
synchronised to the clock edge if the input to the register is also synchronised to the
clock edge (which is the case if the input is also driven by another register supplied with
the same reference clock). A processing step in such a circuit is then the propagation
of the output of a set of registers through an arbitrary complicated network of logic
gates to the input of another set of registers (Figure 15). The output of the destination
register is again the source of a logic path and can connect to further registers or also
to the input of the original source register. A clocked digital circuit (for example a
CPU) is then the collection of registers and their interconnects through logic gates
combined with a few signal lines which leave or enter the circuit and connect it to the
outside world.

This kind of system has very desirable properties. All changes take place right after
a clock pulse, and the system transits into a new stable state based on the state of the
system right before the clock pulse. This principle allows to construct logic sequences
and is the foundation that CPUs, other digital ASICs, in general digital electronics
and also FPGAs are built upon.

D

>

Q

clk

D

>

Q
Logic
Gates

Source Destination

Figure 15.: Schematic depiction of the path that data (blue) has to travel from one
register to the next one within a cycle of a clock (red)

In order to ensure the intended functionality of a circuit, all contained propagation
paths of a signal from a source register to a destination register need to adhere to
certain timing requirements at the input of the destination register with respect to
the exact arrival time of the clock edge. These requirements and the consequences
of violations thereof are discussed in section 3.3.1. The achievement of meeting these
requirements for all paths in a circuit is commonly referred to as timing closure.

A collection of registers interconnected in this way and driven from the same clock
forms a clock domain of a digital circuit. Should a circuit only be driven from a single
clock, then it consists of just a single clock domain. If multiple clocks are involved,
each one of them drives a separate clock domain. Transitions of signals between

1
Which are for almost all cases identical to a clock cycle.
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3.2. Hardware Description Languages (HDLs)

clock domains should generally be kept at a minimum since they introduce additional
problems. These problems and methods to reduce them will be discussed in sections
3.3.1.4 and 3.7.4. However, transitions between clock domains are a fundamentally
unsolvable problem, and these methods only reduce failure probability. Any circuit
with more than one driving clock therefore intrinsically has a probability to fail.

An important quantity for a digital circuit is the clock frequency at which it can be
operated. In the example of a CPU, this frequency directly corresponds to the number
of instructions that this CPU can execute per second and is, therefore, responsible for
the speed at which the computer can run calculations. For other kinds of circuits, the
clock frequency has a similar meaning, and we will encounter many examples of this
during this thesis. The limiting factor for the clock frequency of a given circuit is the
longest travel time of a signal between a source and a destination register. This travel
time is influenced by a variety of factors.

One of these factors is the amount of logic gates a signal has to travel through. This
part can be influenced by the circuit designer and needs to be taken into account when
the circuit is supposed to run at a particular frequency, which means that the design
of a digital circuit for a higher frequency can be different from the implementation of
the same functionality for a lower frequency. These design differences will be discussed
with examples in section 3.7.6.

Another essential factor for the maximal clock frequency is the chosen technology to
implement the circuit design. As discussed, logic gates and registers can be constructed
from transistors. For this reason, a higher transistor density is beneficial for the
maximal clock frequency since the travel time of a signal depends on the distance it
has to travel.

Environmental conditions, for example temperatures, can also influence the maxi-
mal frequency of a design and restrict the operation of a device to specific temperature
ranges if the intention is to reach a particular frequency. In particle physics, environ-
mental conditions can also include increased radiation levels, which can lead to events
where a bit in a digital design is flipped by the deposited energy of a particle in-
teraction with the electronics (”single-event upset”). Such errors can be reduced by
redundancy in the design.

3.2. Hardware Description Languages (HDLs)

Designing a digital circuit is either done by manually drawing connections and placing
components or by using a hardware description language (HDL). Hardware descrip-
tion languages such as Verilog or VHDL use text files to describe connections and
components and were originally developed to document the behaviour of digital cir-
cuits. Now, they are used to develop digital circuits. Different tools are available
which perform logic simplification of HDL code and then map the resulting logic onto
specific component libraries. Depending on the technology that the design should be
implemented in, the components used to do so will be different since components that
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are available in one technology might not be available in another one2. This process
is called synthesis and results in a technology-dependent netlist that describes the
components and interconnects of a digital circuit.

After the synthesis, the tools will perform placement and routing to assign the com-
ponents of the netlist to actual locations in a design while adhering to the requirements
mentioned before, which will be discussed in 3.3.1. In addition to the possibility to
synthesise HDL into hardware, they are also useful to track design changes in version
control systems since the fact that they are text-based allows the use of tools like git.

1 process(i_clk)

2 begin

3 if rising_edge(i_clk) then

4 d1 <= i_d;

5 end if;

6 end process;

7 o_q <= i_d and not d1;

edge_det:e_edge_detector

i_clk

i_d[0..0]

o_q[0..0]d1[0]

D

CLK

SCLR1'h0
Q

o_q

Figure 16.: Example of an HDL language describing an edge detector

3.2.1. Functional Simulation of VHDL

Apart from the steps mentioned above, which are effectively the way to design an
actual device, VHDL can also be used for the simulation and verification of a digital
circuit. A simulation will sequentially execute the statements in a design on a CPU
and emulate the non-sequential nature of a digital circuit by using a number of zero-
time time steps (δ−cycles) for each actual clock period in order to resolve signal
dependencies within that clock cycle. Since simulations are not actually implementing
a circuit but simulating it as a sequence of commands on a CPU, they can take very
long to execute for larger designs.

During such a simulation, a design usually must be exposed to external inputs to
verify the circuit’s output. For most reasonably complicated circuits, these external
inputs (or ”test-vectors”) will only cover a small fraction of all possible scenarios that
the circuit might be exposed to - especially since the output of the circuit might
not only depend on a single input but also on all other inputs since the start of
the simulation as well as the starting conditions. It can, therefore, be difficult to
conclude from a simulation that the design will function properly under real conditions
since the amount of test cases in the simulation was limited. For sequential circuits
treated as a ”black-box” it was shown in [25] that verification of a certain behaviour
is fundamentally not possible if only the inputs and outputs are observed.

2
see sections about ASICs (3.5) and FPGAs (3.6).

18



3.3. Timing

Furthermore, functional simulations will always only cover the part of the design
which is actually simulated. In reality, the proper operation of a circuit and many of
the error conditions depend on factors outside of the reach of functional simulations,
such as signal integrity, clock jitter, signal inversions or asynchronous clock domains,
where logic will typically not have a realistic transition into other domains during the
simulation.

Instead of simulating a design and checking the output against the test cases, it is
also possible in some cases to formally prove that a design will behave according to
a predefined set of conditions. Some methods prove via induction that some prop-
erties are valid for all following time steps given a set of assumptions, some perform
equivalence checking against reference circuits and there are also other methods [26]
which pose interesting questions in computer science. Commercial tools for formal
verification are also available [27]. We will not encounter those during this thesis due
to the lack of practicability for a project of the size of the Mu3e DAQ.

3.3. Timing

The propagation of signals through interconnects, logic elements and registers is not
an instantaneous process. In order to ensure the proper operation of a circuit, it is
therefore necessary to account for and arrange the expected delays accordingly. Design
tools usually handle this for large and complicated circuits since it needs to be done
for all contained components. However, the designer of the circuit has to make sure
that all register-to-register paths are short enough in terms of the amount of logic
levels and travelled distance to allow the tools to achieve the delay necessary for the
desired clock frequency.

3.3.1. Timing requirements

Timing requirements are given relative to the arrival time of the edge of the clock
which is used to sample the signal (latch edge) at each destination register of a logic
path. The signal that is supposed to be latched into the register with this clock edge
generally has to be stable for some time before and some time after the arrival of the
edge. These time frames are called setup-time tsu and hold-time thold and depend on
the specific device and operating conditions.

3.3.1.1. Setup-Time

The required setup-time tsu and a register-internal delay tDQ (time from the input
D to the output Q of a register) effectively put an upper limit on the time available
for a signal to propagate from the destination to the source register since the overall
available time is given by the clock period T:

tprop < T − tDQ − tsu. (6)
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Which means that logic inserted between the source and destination register is limited
to the amount of logic levels that the signal can travel through within the time tprop.
Therefore, fast circuits with a low clock period T have to restrict themselves to simpler
logic steps for each clock cycle. In contrast, slower circuits implemented in the same
technology can perform more complicated calculations within a single cycle.

This already introduces a very important concept: Assume a complicated calcula-
tion that can be computed within one cycle of frequency f1 on a particular device.
The same calculation might not be able to run with a frequency f2 > f1 on the same
device due to the restriction above. However, if the calculation can be separated
(”pipelined”) into two steps, where each step is executed in its own clock cycle, op-
eration at f2 might be possible. The pipelined circuit will use more resources since
an intermediate result needs to be stored between the two processing steps and the
latency of one calculation will increase to 2 · 1

f2
, but the number of calculations per

unit of time will increase from f1 to f2 if the circuit can be designed in a way that both
steps can be used at the same time for two different instances of the same function. In
summary, latency and resources were traded against speed. Tradeoffs of this kind are
one of the main tools of the circuit designer to stay within the timing requirements of
the device, but they can also be used to affect other properties, as will be discussed
in section 3.7.6.

Logic placed physically further apart from each other needs longer signal lines be-
tween the different components, which will increase the necessary propagation time
tprop for signals between them and, therefore, reduce the maximal speed of the circuit.
Since the transistor density on a device is always limited, only a specific number of
logic components and registers can be present in a given area. If the output of a
register connects to several destinations, then the number of destinations (also called
Fan-out) will influence the propagation time tprop because not all of them can be
placed close to the source register. In addition, the capacitance of the output wire of
the source register will be larger, which requires more charge and therefore more time
to change the logic state.

The same concept applies to the input of a register or logic component. A large
number of signal sources (Fan-in) of a destination register cannot all be placed close
to this specific destination. Registers with high Fan-in and/or high Fan-out can,
therefore, be a limiting factor for the operating frequency of a circuit and have to
be taken into account during the design. This becomes especially problematic when
high Fan-in/out registers are supposed to connect to/from registers that also have a
high Fan-in/out. When a timing-critical signal path connects registers A and B, it is
not enough to look at this specific path; logic before A and after B and the general
availability of space in this logic area must also be considered.

Additional constraints to the placement of logic can also arise from the connection to
external components from a device. A data connection from some external component
will always arrive at a particular physical location on a device, which will constrain
the connection logic to this particular region for high frequency circuits.
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3.3.1.2. Hold-time

As mentioned above, the hold-time thold of a register is the time that a signal is required
to be stable after the arrival of a clock edge. In contrast to the setup-time, this does
require a minimal travel time of any data between two registers since the data is not
allowed to change at the destination register for a time thold after the clock edge. This
is different from the concept of maximal propagation-time tprop from section 3.3.1.1
in the sense that for logic which connects multiple sources to the same destination,
the minimal source to destination path is relevant, while eq. (6) sets limits on the
maximal source to destination path. In between these two boundaries – after the
hold time and before the setup time of a register – the data applied to the input can
be contaminated with random state changes because the different sources will have
different path lengths to the destination and can, therefore, change the output of the
combinatorial logic to the destination multiple times before stabilizing on the final
result (Figure 17). The sum of the minimal propagation time tcont, which will cause

clock

data

contaminated data

stable data
required

tholdtsetup

Figure 17.: The input data to a register is not necessarily changing state in a single
transition. A stable signal is only needed for the timing requirements
around the clock edge.

the input data to a register to be contaminated, and the register internal delay tDQ

therefore needs to exceed the hold time thold.

tcont > thold − tDQ. (7)

Until this point, the assumption was made that source and destination registers
receive the same clock signal at exactly the same time. This is of course not true,
since the clock signal will also experience delays. The difference between the arrival
time of a clock at two different locations is called clock skew and can also introduce
setup and hold-time violations, since the hold- and setup-time requirements on the
data are always relative to the arrival of the clock at the register.

In order to minimize this effect, clocks in some devices are, for example, distributed
in tree-like clock distribution networks as shown in figure 18 to ensure a similar arrival
time for a clock at all registers.

Even if this kind of clock structure is implemented, clock skew can still be present
due to imperfections in the distribution network or in some other scenarios, for example
in cases where there is a phase shift between the source and destination clock or where
the source and destination are not within the same clock distribution network.

21



Chapter 3. Digital Electronics

Figure 18.: Example for a clock distribution network to minimize clock skew

3.3.1.3. Resets, Recovery- and Removal-time

The assumption for many digital circuits is that they will start operation from a
specific predefined state. Starting a circuit from a state where all contained registers
have a random value can cause the circuit to produce unintended results since the
starting condition might be a state that is not reachable with the intended logic
structure. In such a situation, other invalid states might be reached from this state,
and the correct function of the circuit might be compromised.

In order to avoid this, reset signals are used to set registers into a defined starting
condition. This is especially relevant during the power-up of a device because this
process can lead to undefined register states but is also used to restart processes or
functionalities from a defined point in a logic sequence. Since many components and
logic circuits require a reset signal, they will often also have separate connections for
them, independent of the regular logic inputs and similar to the clock distribution
discussed above.

Nevertheless, reset signals are still logic inputs and, as such, still have timing re-
quirements relative to the clock3, similar to the setup- and hold-time discussed in the
last section. The difference is that for a reset signal, applying the reset cannot cause
relevant timing violations since the circuit will not perform any actions afterwards
because it is held in the reset state for the following clock cycles. The relevant part is
the release of the reset, where the circuit is started again. The timing requirements
discussed before still apply, but only in one direction – release of the reset signal.

The recovery-time is a different name for the setup-time requirement of the release
of the reset signal relative to the first active clock cycle after the release. The reset
signal needs to be stable for this time before the arrival of the first clock edge which
is supposed to be outside of the reset state.

Removal-time is the same concept as hold-time, applied to the removal of the reset
only. The reset signal needs to be stable for this time after the first clock edge outside
of the reset state.

3
There are some common misconceptions around the concept of asynchronous reset signals. They
will be discussed in section 3.7.5. This statement also holds for asynchronous resets depending on
the component manufacturer’s definition of asynchronous.
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3.3.1.4. Metastability

The last sections discussed the timing requirements that data arriving at registers
needs to fulfill relative to the clock arriving at these registers. Now, the consequences of
violating those requirements will be discussed. Violations should normally be avoided
by designing the circuit around the requirements, but as we will see in section 3.7.4,
there are some situations where avoiding them is fundamentally not possible.
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Figure 19.: The input in line 2 violates the setup time tSU relative to the clock edge
in line 1. Possible results are a metastable state that resolves to Logic 1
outside of the time window tCO (line 3) or a metastable state that resolves
to Logic 0 (line 4). In a very unlikely case, the output can also stay in a
metastable state for a longer time period (line 5). Adapted from [28].

In regular operation, the output voltage of a register after a clock-to-output delay
time tCO after the clock edge is on a defined logic level of 0 or 1. If one of the timing
requirements of the register is violated (line 2 in figure 19), the time tCO after which
it needs to have flipped its output to the new value cannot be guaranteed anymore.
The output voltage can be somewhere between the two logic levels in a metastable
state after the time tCO. This metastable state usually quickly resolves into one of the
defined logic levels. For small violations of the setup-time, the output is more likely to
resolve into the logic level that was intended with this transition (line 3). For larger
violations, the output will most likely resolve to the previous logic level (line 4). The
exact timing of the input signal determines the result and the output of the register
is not predictable in such a case.

In this situation, the time needed to resolve to a defined state is also not pre-
dictable and it can, in theory, stay in a metastable state indefinitely. In practice,
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small fluctuations in the supply voltage will prevent that from happening. However,
this unpredictability of the output timing can cause further timing violations since
the output data of the register will itself connect to other registers, which again have
timing requirements regarding the arrival time of that data. An input timing viola-
tion at a register can, therefore, propagate to the following registers, even if the path
between them would fulfill the nominal requirements for the propagation time.

Timing violations have therefore to some degree the ability to propagate through
a system and cause failures in the following logic which can be larger than a single
undefined output of a register. A single undefined output of a register can – depending
on the logic – of course also be a larger problem in itself, without considering this
propagation.

The treatment of situations where these metastable states cannot be avoided is
usually a question of managing failure probability [28]. More about these cases will
follow in section 3.7.4.

3.4. Recurring Structures

This section will discuss some circuit structures that will occur in many different
designs since they implement commonly needed functionalities such as data storage
or clock frequency changes. Some of these structures will differ from the concept of
clocked source and destination registers with logic gates in between them that was
shown in figure 15 of section 3.1.1. The designer of a circuit can write down some
of these structures in an HDL, but due to their widespread use, they are typically
provided as finished parts to be included in a design. If the implementation of one
of these structures is already intended for a specific device or technology, the timing
considerations described in the last section within this structure have already been
taken care of by those who designed it. In terms of timing, a user typically only needs
to care about connections to and from these entities.

3.4.1. Memory Structures

Probably the most commonly used structure like this is memory in many different vari-
ants. One has to distinguish between volatile and non-volatile memory. Volatile mem-
ory only keeps the information contained in it while the device is powered, whereas
non-volatile memory will also store the information without electrical power. Specifics
about non-volatile memory will not become relevant during this thesis and will, there-
fore, not be discussed here.

Volatile memory loses the data stored in it once the power to the device is cut. It
is again divided into the two categories of static and dynamic memory, each again
with several subcategories. Dynamic memory (DRAM) stores the information in the
charge of capacitors, which requires constant updating cycles in order to counteract the
capacitor discharge and to preserve the information. Static memory (SRAM) stores
information in inverter-pairs and does therefore not require these updating cycles, but
comes with a speed and space disadvantage when compared with dynamic memory.
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3.4.1.1. RAM

A Random access memory (RAM) is a type of memory where contents can be accessed
in any order. Independent of the implementation as static or dynamic memory, the
interfacing to the simpler types of this kind of memory will usually be similar and
consist of a data-input and -output, an address, a clock and a read- and write-request
signal. The read-request signal might be dropped in some cases. There are also
memories which have a second set of these signals acting independently of the first
one. Those are called dual port RAM.

Figure 20 shows an example transaction with a RAM. The exact timing properties
of a memory can differ between different implementations. For example, the latency
between the application of the rdreq signal and the arrival of data on the data out
port in figure 20 might take more clock cycles in other RAM implementations.

clk

wrreq

addr 0 1 2 3 0 1 0 3 2 0

data_in 0 5 8 10 7 6

rdreq

data_out 5 8 7 10 6

Figure 20.: Wave diagram of write and read transactions on a standard RAM interface.
The wrreq signal writes the content of data in into the memory location
specified by addr. The memory content can then be accessed using rdreq
and addr.

For some memory implementations, the latency might not even be a constant
number of clock cycles and therefore require an additional output signal such as

”
data ready“ or

”
data valid“ in its interface to signal the arrival of the requested

data on the data out port. There can be an impact on the available bandwidth in
these cases since the read side of the memory interface has to wait for the arrival of
the data.

This leads to modifications to the standard interface shown in figure 20 in order to
maintain a high read bandwidth. These modifications can then, for example, introduce
the concept of burst transactions, where data is not read or written word by word but
in larger blocks of data. The implications of this will become relevant to system
performance in section 4.4.4 of this thesis and will be discussed in more detail there.

Another concept that can arise from dealing with higher latency memory is caching,
where a faster and smaller memory is connected as a kind of buffer for frequently
accessed addresses between the actual memory and the entity that wants to interface
with it. Sometimes this is even done in multiple cache levels with increasing memory
latency. This is another example of a situation where tradeoffs between different
system properties can be made, an idea that was already introduced earlier.

The size (number of bits) of the address signal together with the size of the data
ports determines the maximal size of the memory. Since many systems operate with
instructions or data-words with sizes in powers of 2, the memories within them will
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usually also have these sizes as width of their data-in and -ouput ports (64-bit memory,
32-bit memory, etc.). As we will see later in this thesis, finished memory components
might for this reason be only available in certain sizes because others are not eco-
nomical. This means that a design that in theory only requires a certain amount of
memory space can in some cases need more physical resources than that because it
cannot fully utilize them.

3.4.1.2. FIFOs

A First In-First Out (FIFO) memory is a type of memory where the order in which
data can be read is the same order in which the data was written. The access to a
random piece of the data is not possible without reading all of the data. Conceptually a
FIFO can be built from a RAM by steering the address ports of the RAM accordingly.
The interface of a FIFO does therefore not contain address ports (see figure 21).
Additionally, signals can be added to give information about the filling level of the
FIFO. Since data is always read in the same order in which it was written, the FIFO
can become full. In a RAM data would be overwritten and it therefore does not have
a filling level unless the rest of the logic defines one.

wrclk

wrreq

data_in 0 1 2 3 4 5 6 7 8 9 A

wrfull

rclk

rdreq

rdempty

data_out 0 1 2 3 4

Figure 21.: Wave diagram of write and read transactions on a standard FIFO interface.
Compared to figure 20, the addr port is missing and the data is accessed
in the same order as it was written with the wrreq signal.

FIFOs where the read and the write side are clocked by different clocks are called
dual clock FIFOs. They are a useful tool for clock domain transitions, which will be
discussed in section 3.7.4. The same can be done with dual port RAM if the two ports
are driven by different domains.

3.4.1.3. Shift-Registers

A shift-register is a chain of registers where the contained data bits can be pushed to
the next register in the chain with a clock and enable signal (see figure 22). They can
be used as a type of memory to store data, but we will encounter variants of it during
this thesis that implement also other functionalities.

One of these variants is a linear feedback shift-register (LFSR), which can be used
to generate pseudo-random outputs. In an LFSR the input bit of the first register
in the chain is produced by tapping into the outputs of specific registers in the chain
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Figure 22.: Schematic of a shift register. When the ena signal is set to ’1’, the contents
of each register will propagate to the next one on a rising edge of clk.

and combining them with XOR or XNOR feedback gates, the result of which is then
connected to the input of the first register.

For a shift register of length N it is possible to produce an LFSR that will cycle
through 2N − 1 different states by choosing the correct number and location of these
so-called taps of the feedback. The number and location of taps for different N can be
found in [29]. It is not possible to reach all 2N possible states, since the state where
all registers of the chain hold a value of 1 will also produce 1 in the XNOR feedback
and therefore not reach any other state from there. The same situation applies to the
all-zero state of a shift register with an XOR feedback.

In addition to generating a pseudo-random sequence of outputs, LFSRs can be used
to implement very fast counters. As discussed earlier in section 3.3.1.1, the maximal
speed at which a circuit can operate is related to the Fan-in and Fan-out of the
registers in a circuit. For the implementation of an N-bit long binary counter, the
most significant bit will have a Fan-in of at least N , since the state of all lower bits
determines what happens to the highest bit if the counter increases by 1. This can be
the limiting factor for the clock frequency at which the counter can operate.

An alternative is to use an LSFR instead of a counter, which can usually operate
at higher frequencies since registers only have to connect to their neighbours in the
register chain and therefore have a lower Fan-in and Fan-out. This method comes with
the two drawbacks that the counter is now encoded in pseudo-random values that will
likely need to be converted back into a different representation at some point and
that the repetition length of the counter decreases to 2N − 1, while a binary counter
would repeat after 2N cycles. This difference can create complications as we will see
in section 4.8.

Other, less common shift register variants and their application will be discussed
when they appear in the system design4.

3.4.2. PLLs

Phase locked loops (PLLs) are used to derive a clock with a potentially different
frequency from a reference clock. In contrast to most other topics in this chapter,
they are usually analog components.

The phase and frequency of the reference clock clkref of a phase locked loop (PLL) is
compared to a clock generated by a voltage controlled oscillator (VCO) in the phase-

4
Sections 4.8, 4.6 and 4.6.3
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PFD
clkref VCO

Frequency
Divider

Filter
Output

Figure 23.: Simplified schematic of a phase locked loop.

frequency detector (PFD). This component generates an output that determines if
the VCO frequency should run faster or slower, which is then converted in a filter or
charge pump to an input voltage to the VCO. The output of the VCO is the output
clock of the PLL.

The frequency of the PLL can be adjusted by inserting a clock divider between the
VCO output and the PFD. Also non-integer relations of the frequency of the refer-
ence clock clkref to the output frequency are possible if the setting of the frequency
divider is dynamically changed between two or more values. This is then called a

”
fractional“ PLL (fPLL).

The frequency divider divides, for example, a specific fraction of clock cycles to
frequency x, the others to frequency y and the mean of the resulting input voltage to
the VCO will cause it to run with a frequency z, which has a non-integer relation to
the frequency of clkref [30].

3.5. ASICs

Implementing complicated digital circuits is often not done with discrete electronic
components, since other methods can offer better performance due to higher tran-
sistor density5, lower production cost per piece and a lower space and power usage.
One of these methods are application specific integrated circuits (ASICs). ASICs are
produced from silicon wafers. A photolithographic process is used in multiple layers
to create electronic components and interconnects in a semiconductor material.

ASICs can have digital and analog components. The digital parts of an ASIC can
be described with an HDL and can then be mapped to the component libraries of the
production process by software tools. Analog parts of an ASIC are not described by
HDLs and have to be drawn. The created structure sizes determine the achievable
transistor density and, therefore, the maximal operation frequency. The custom ASICs
used for Mu3e are based on a 180 nm process. Modern processors, for example, are
produced with structure sizes of below 10 nm.

5
see Section 3.1.1.
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The initial costs for an ASIC can be quite high and will increase significantly with
lower structure sizes. In order to avoid a part of the initial costs, wafers can be shared
between different projects, which was also the case during the development phase of
the MuTrig and MuPix ASICs in Mu3e.

Once an ASIC is produced, its functionality is fixed and can only be altered in
ways that were foreseen as configurable settings during the development process. Any
changes or bug fixes require the production of a new ASIC with all the delays and
costs that come with it.

3.6. FPGAs

A field programmable gate array (FPGA) is conceptually the same thing as an ASIC,
with the difference that an FPGA has enough configuration options to change its
behaviour in order to implement basically arbitrary HDL code. It is, therefore, not
application-specific like an ASIC but can be reprogrammed in the field. This comes at
the cost of lower performance since the components on an FPGA are not tailored to a
specific application. Also, the option of reconfiguring itself requires storage elements
and logic for the configuration, which require space on the device. This space is
then not available for logic elements, which decreases the usable logic density and,
consequently, the performance of an FPGA compared to an ASIC of the same structure
size.

The advantages of an FPGA over an ASIC are the lower costs for a small number of
units, the possibility of updating the design, and the faster development cycle. Bug-
fixes or changes to a logic circuit on an FPGA can be implemented in a matter of hours
compared to many months for an ASIC. Verification and simulations are essential for
both ways of implementation. However, on an FPGA, it is feasible to experiment a
bit with a design without running extensive tests and simulations beforehand.

3.6.1. FPGA Architecture

This section’s discussion of FPGA architecture will primarily follow the architecture
of intel FPGAs, since most FPGAs used during this thesis are produced by intel. The
ArriaV FPGA will be used as an example. In general, it consists of Logic Array Blocks
(LABs), Memory Blocks and Digital Signal Processing (DSP) blocks.

Conceptually, LABs are general-purpose blocks containing registers and config-
urable lookup tables. Most of the area of the FGPA consists of them and most of
the HDL code written by the designer will be implemented using this type of block.
Memory blocks are used to implement any kind of mass data storage, as discussed in
section 3.4.1. DSP blocks are specialised on the efficient implementation of arithmetic
functions.

Figure 24 shows the schematic distribution of blocks on an ArriaV FPGA. Other
FPGAs will consist of similar building blocks but will differ in the exact structure,
size, number and arrangement of them. They might also include different types (for
example a full processor block) that are not available on this specific FPGA.
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The exact structure of the blocks in an FPGA is relevant, since the tools have
to map HDL code written by the designer onto the blocks available on the target
FPGA, and the number and type of blocks needed to do so determines the space
that a design requires on the FPGA. HDL source code can, therefore, be optimised
to fit a specific FPGA’s resources efficiently. For the designs in Mu3e, this will be an
especially important topic for memory blocks.

Figure 24.: Building blocks of an ArriaV FPGA. DSP, Memory and Logic Array blocks
are freely configurable by the designer. Other parts of the FPGA, such
as transceivers or PLLs, have a specific predefined function and offer only
limited configurability.
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Logic Array Block (LAB)

A LAB of an ArriaV FPGA consists
of ten adaptive logic modules (ALMs),
which contain a configurable lookup ta-
ble (LUT), two adders, and four registers
each. The registers drive the output of the
cell. The output can then travel through
one or more lookup tables of other ALM
blocks before the signal is registered again.

Depending on the configuration by the
user, only a part of the elements in fig-
ure 25 might be used. In a long combina-
torial path, for example, it might be neces-
sary to combine the lookup tables (LUTs)
of multiple ALMs – bypassing their reg-
isters – to achieve the desired logic for a
register of another ALM.

Figure 25.: Schematic of an ALM [31]

Although the LUT in figure 25 has eight inputs, it can only implement a full 6-input
LUT6 and is implemented as a fracturable ALM, which means it can be split into two
smaller, independent LUTs in various ways7. According to Intel, this is more efficient
in terms of space on the FPGA compared to single register ALMs [32].

Memory and MLAB Blocks

Memory structures are very frequently needed in digital designs. For that reason,
FPGAs include dedicated memory blocks that are designed to implement memory
structures efficiently. It is possible to implement the same functionality in LABs, but
specific hardware for memory allows for much higher speed and area efficiency since
the additional logic to implement arbitrary configurable functions is not needed. The
memory on the ArriaV example device comes in M10K blocks, where each block can
contain a maximum of 10240 bits of information8.

It is important to note that this capacity depends on the combination of width
and depth of the memory structure (size of data in and addr in section 3.4.1.1). The
maximum value of 10240 bits per block can only be reached in specific width/depth
combinations. Uncommon width/depth combinations will lead to a significantly lower
capacity per block.

Another important factor is that M10K blocks cannot be shared between inde-
pendent structures. Implementing two random access memories in M10K blocks will

6
A configuration as 7-input LUT is also possible, but does only support a subset of all logic combi-
nations.

7
Two 4-input LUTs, two 5-input LUTs with two shared inputs, other combinations with shared
inputs [32]. A more detailed example of a LUT implementation can be found in appendix A.1.

8
Details can be found in [31], p.21. The amount of read/write ports also plays a role.
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always use at least two blocks, even if the capacity of one block would be sufficient to
implement both memories. Implementing a very small memory in M10K will also use
a full M10K, making it unavailable for other design parts. In order to efficiently use
the memory resources of an FPGA, the design needs to be written in a way to ensure
high memory utilisation.

In general, small memory structures and uncommon width/depth combinations
will lead to lower memory block utilisation and should be avoided. Since

”
avoiding

small memory structures“ is not always feasible, Intel has implemented a special type
of block to implement small memories. These MLAB (Memory LAB) blocks are
technically normal LAB blocks (see section above) with the added functionality to be
convertible into small 640-bit memory blocks. The interesting thing about that is that
a LAB block only contains 20 registers (2 per ALM, 10 ALMs per LAB), but can save
640 bits of information in MLAB configuration. The exact technical details of these
blocks are not public, but it is presumably realised by repurposing the LUT mask
SRAM cells that would usually be used to hold the configuration of the ten 6-input
LUTs in a LAB block. A full 6-input LUT requires 26 = 64 configuration bits in the
LUT mask, adding up to 640 bits for a complete LAB, which matches the maximal
capacity of an MLAB block.

Not every LAB can be used as MLAB, but MLABs still make up a significant
fraction of the total memory capacity of the FPGA. For the ArriaV used in this
thesis, about 10% of the memory capacity is generated by MLABs.

MLABs should not be used to construct larger memories since they are spread across
the FPGA and combining large amounts of them will, therefore, have disadvantages
in terms of possible operation frequency. However, for smaller memories they can
contribute to high memory utilisation by saving M10K blocks.

DSP Blocks

DSP Blocks implement common digital signal processing functions, such as multipli-
cations. Standard LABs could also be configured to serve the same function, but
dedicated hardware allows for more efficient implementations. The designs that will
be discussed in this thesis do not contain a lot of arithmetic functions. DSP blocks
are, therefore, not very relevant during this project and form unused space on the
FPGAs in Mu3e. However, FPGAs are not designed for a specific project but for a
wide range of applications, where some of them profit from faster DSP functions.

IP-cores and Hard-IPs

Intellectual Property-cores (IP-cores) are entities within an FPGA design provided by
the device manufacturer or licensed by a third party, sometimes with a few configura-
tion options for the user. They can either be embedded into the FPGA fabric during
the production process (hard-IPs) and provide a higher performance due to their pre-
defined, hardcoded function (similar to DSP or memory blocks) or be constructed of
the existing resources of the FPGA during the design synthesis (soft-IPs).

32



3.6. FPGAs

A typical example is a CPU on an FPGA. While it is possible to write a CPU in
an HDL and afterwards compile software for this CPU and load both onto an FPGA,
having a CPU in an FPGA design is such a widely used concept that the manufacturer
of the FPGA provides a finished solution for it. In the case of the Mu3e project, most
of the FGPAs will use the Intel NIOSII processor, built from LAB and memory blocks
available on the FPGA. FPGAs can also include hard-IP processors, which are capable
of achieving much higher operation frequencies than the NIOSII used in Mu3e.

Hard-IPs can provide fast input-output (IO) capabilities that would be technically
difficult to achieve in the fully configurable environment of LAB cells. PCIe and fast
ethernet connections fall into this category.

Another task of hard-IPs is to provide access to analogue capabilities that might
be embedded in the FPGA. Examples of such a case are PLLs (section 3.4.2) or
analog-to-digital converters.

Clocking and Insertion-Delay

The difficulty with clock distribution within an FPGA’s architecture is similar to the
discussion of clock skew in section 3.3.1.2. The clock signal needs to arrive at all
destinations with minimal differences in the arrival time. Clock networks similar to
figure 18 in the earlier section are used to accomplish that task. The problem here
is that the amount of clock routing resources is limited and fixed once the FPGA is
produced.

In order to counteract this issue, the example device that we are looking at (ArriaV)
uses a hierarchical structure with global, regional and periphery clock networks. The
global clock network distributes clocks that must reach all parts of the FPGA. More
clock routing resources are available for clocks that only need to get to a specific area
of the FPGA. These regional clock networks are arranged in quadrants in the four
corners of the FPGA. Additional periphery clock networks drive clocks across the
FPGA in horizontal or vertical direction and are intended to drive signals in or out
of the FPGA [33].

These clock networks ensure the low skew distribution of signals and are not exclu-
sively used by clocks. Other high fan-out signals like resets or clock enable signals can
also make use of them, which effectively creates a way to circumvent the placement
issues that would normally come with a high fan-out9.

However, doing so creates another potential problem, which is illustrated in fig-
ure 26. One register (clk2 Source) creates the signal clk2 via a clock divider. A
second register right next to it drives data to a destination, which, for the sake of sim-
plicity of this example, is also physically located next to the other two registers and is
clocked by the signal clk2. The path of the data between the source and destination
register is short. If clk2 is to be routed through a global clock network then the path
of clk2 to the destination register can be quite large, since it first needs to be routed
to the insertion point and then go through the whole network before arriving at its

9
discussed in section 3.3.1.1
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Figure 26.: Schematic illustration of insertion delay. The datapath between the source
and destination register can be significantly shorter than the path of the
clock to the destination register since the clock might be routed through
a clock network.

original location again. This so-called insertion delay of the signal clk2 into the clock
network can cause a hold-time violation on the destination register, and the tools will
need to add wire to the path of the data in order to match the insertion delay of the
clock.

Therefore, clocks and resets on FPGAs are different from other signals on the FGPA
and should not be mixed with them. Clocks should not be used as signals and signals
should not be used as clocks. Mixing them connects two areas of propagation delay
with each other that are not supposed to be connected. While the use of statements
such as rising edge on random non-clock signals is legal in VHDL, it is not to be
recommended for FPGA designs since significant addition of wire can be necessary
to match the delay of a clock network. The situation for ASICs or FPGAs with a
fundamentally different architecture can be different.

Inference

A piece of HDL code that is intended to be implemented on an FPGA needs to be
mapped to the available hardware blocks of the target FPGA discussed previously,
not just in terms of physical location but also in terms of the type of block used. A
FIFO memory, for example, can be implemented via an IP-configurator tool, where the
designer can specifically ask for an implementation using M10K or MLAB blocks. The
same FIFO memory can be created by writing down an HDL description of a FIFO
memory, which the compilation tool identifies as a memory structure and implements
using memory blocks depending on the compilation settings for memory inference.
The second option is preferred for portability between manufacturers since it does not
rely on their specific IP-generation tools.
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In the HDL code, directives can be provided to the compilation tool to force or
avoid implementation with a specific type of block. Not every structure identified by
the tool to be implementable within memory blocks actually benefits from doing so.
It can be helpful to implement these structures in LABs, for example in cases where
memory resources in an FPGA design are almost depleted.

3.7. Advanced Timing Topics

When a firmware design has to be compiled for a specific target FPGA, the task of
the compilation tool is to map the HDL code onto the existing device resources and to
achieve timing closure by fulfilling all timing requirements for all connections within
the design. These requirements have been discussed previously and this section will
extend on topics related to fulfilling them.

First of all, the requirements of setup, hold, recovery, and removal time depend not
only on the previously mentioned placement and the resulting connection distance
between resources but also on external factors, such as temperature, supply voltage
and device manufacturing variations.

Manufacturing variations might be again categorised into different speed grades. An
FPGA will undergo a series of tests after production and will be rated for a certain
speed depending on the test results. This speed rating is part of the part number and
affects the price at which the FPGA is sold. The compilation tool is then instructed
to achieve timing closure for a particular speed grade of that device. However, this
rating still contains a range of different device behaviours, and timing analysis will
usually consider the worst possible (slowest) FPGA that would still have been rated
into this category as well as the fastest FPGA in the category. This leads to a slow
and fast timing model that has to be considered.

In addition, all FGPAs, regardless of their speed rating, will slightly change their
timing behaviour at different operation temperatures. The temperature can be con-
trolled by the user, but will necessarily move within some range depending on the cool-
ing system used for the FPGA, resulting in the need for a low- and high-temperature
timing model.

These two circumstances lead to four combinations of conditions, which will be used
as the timing models by the compilation tool in a multi-corner timing analysis. All
four corner cases need to meet the requirements for setup, hold, recovery, and removal
time in order to ensure that the design will function properly with the used speed
grade of the FPGA at the expected operation temperature range.

3.7.1. Slack

The available overhead time before a timing requirement (for example the setup time)
is violated is called the slack. Figure 27 illustrates this with an example of a setup
slack. The other timing requirements have their own slack values for each connection.
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Figure 27.: Example diagram of a setup slack. From the launch edge of the clock the
clock needs the time clock delay 1 to travel through the clock network
to the source register, then the data from that register needs the time
data delay to arrive at the destination register, where the data is required
when the clock arrives there (clock delay 2). The difference between the
data required and data arrival time is the setup slack (ignoring things like
clock uncertainties for simplification).

When slack values are positive, the timing requirement is met. Negative slack
values represent timing violations. During the compilation, a form of maximisation of
all slack values takes place, and the results are analysed afterwards using the timing
models for the four corner cases discussed earlier. The result is a distribution of slack
values for each corner for each requirement of setup, hold, recovery, and removal time
for each clock domain in the design. An example for a setup slack distribution in the
slow high-temperature (85 °C) corner is shown in figure 28.
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Figure 28.: Example of a setup slack histogram with only positive slacks.
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All of these histograms need to contain only positive values in order to ensure
that the design will function properly. Although the histogram contains relevant
information about the general criticality of the timing situation in the design, the
really relevant part is the lowest entry. A single negative entry represents a timing
violation and can lead to unintended behaviour of the design. Since this needs to be
avoided in general, it is not relevant how much unintended behaviour is expected and,
therefore, also not how many negative slacks exist. However, if negative slacks exist,
it is still useful to look at the amount in order to find the proper solutions. A design
with hundreds of negative slacks is likely not fixable by changing only the single path
with the minimal slack.

It is important to note that the slack values discussed here are always a direct result
of Fan-in, Fan-out and the resulting placement of registers, which was discussed in
section 3.3.1.1. Changing logic paths in order to ensure positive slacks is, therefore,
a question of reducing Fan-in and -out of the registers within it, relocating into areas
with lower resource usage and pipelining the logic into multiple cycles10.

These changes do not necessarily need to focus on the most critical path (the lowest
entry in figure 28) to achieve something. In general, the paths towards the left end
of the histogram tend to be the more difficult ones in terms of timing. If the critical
path is conceptually difficult to pipeline, it is possible that changes to other paths on
the left end of the slack histogram will free up enough resources to close timing of the
critical path, even if the logic of the critical path itself was unchanged. Similarly, if
the critical path is a connection between the source register A and destination register
B, it can be useful to investigate the logic paths which have A as a destination or
B as source. Changing those can loosen constraints on A & B’s position, which can
again open a possibility to close timing for the critical path between A and B without
changing the logic inside it.

Another reason for failed timing closure can be the lack of appropriate resources.
A memory instantiated automatically by inference from HDL that usually uses an
M10K block for the implementation could fall back to LAB cells when no more M10K
blocks are available. The same applies to routing resources: The compilation will
automatically promote some signals into the clock distribution networks, which will
be fully filled at some point. It can therefore be beneficial to specify which parts of
the design are implemented with which resource type. Changes of these specifications
can change the paths which receive the lowest slack values. Even if the resource
specification does not solve the timing violation, it can be used to move the problem
into a part of the design where other solutions might exist.

In section 3.6.1 it was mentioned that clocks and signal routing resources should not
be mixed. There is a case where there might be a point for doing so. If a particular
signal is responsible for timing issues that are otherwise difficult to solve, promoting
that signal to clock routing resources will radically change the timing behaviour of the
signal. It is not given that the situation will improve, but the problem will change,
which can be part of a solution process.

10
already discussed in section 3.3.1.1.
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3.7.2. Duplication and Merging

Depending on the logic, a Fan-out reduction can be achived by duplication of registers.
While pipelining is mainly aimed at reducing Fan-in by inserting additional clock
cycles, duplication aims at reducing the Fan-out by connecting a part of the original
Fan-out to an identical copy of the register instead. Additional resources are required
in this case to produce the copy and the logic path leading to the copy. Multiple
copies are possible to further lower the Fan-out of the register.

This method is in some cases automatically applied by the compilation tool, but can
also be made explicit within the HDL source. Explicit duplication can have advantages
since the distribution of the Fan-out accross the copies of the register can be specified
in a way that represents the design structure. For a register C that connects towards
two otherwise independent entities A and B, the register can be copied in a way where
this independence is preserved by connecting one copy C1 of the register to entity A
and the other copy C2 to entity B. Other ways of splitting the Fan-out of the register
during the copy will in some form further tie the physical location of A and B together
since they are both driven from the same source register. We will encounter a slightly
more complicated example of this idea during the design discussion in section 4.4.4,
where this idea is conceptually combined with multiple pipelining steps between C1

and A in order to completly disentangle any dependence on the location of B.

The reverse process – merging of registers – is also sometimes automatically per-
formed by the compilation tool when logic duplication is detected in the HDL source.
However, in the version of the tool used during this thesis these merges seemed to
target lower resource usage without much consideration of timing implications of the
merge. An attribute can be assigned to signals to prohibit this behaviour, which is
necessary, especially during intentional explicit duplication.

3.7.3. Optimisation Process and Seed Variation

It is also important to keep in mind that the slack distribution shown in figure 28 above
is a result of a large optimisation process during the compilation, which maximises
the minimal slack. This can mean that the path with the minimal slack at the time
when the optimisation efforts stop is not actually the reason for failed timing closure.
The reason might be in other paths with low slack values. Also, this optimisation
is unlikely to find the best possible value for the minimal slack. There are settings
within the compilation tools which configure how much effort is supposed to go into
optimisation. These settings can influence the result but will also increase compilation
time. A firmware compilation which takes O(hours) is not unusual.

Since the optimisation is unlikely to find the global maximum, the result will depend
on the starting seed of this process, which can be configured in the compilation tools.
The influence of the starting seed on the compilation result can be quite significant.
Figure 29 shows distributions of the minimal setup slack for different FPGA designs
that we will encounter during this thesis. The figure was created by always taking the
lowest entry (minimal setup slack) of the previously shown histogram in figure 28 and
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recreating that histogram 200 times with different starting seeds for each compilation
of the designs A, B, C and D.

These are real designs, but meant only as an example of the influence of seed
variation at this point, which is why they are labelled with A, B, C and D here11.
Clock domains were not considered and only the domain with the lowest minimal
setup slack was entered into the histogram. Slacks are calculated for the slow 85◦C
timing corner. Clock frequencies reach up to 156.25 MHz for A and B, 250 MHz for
C and 50 MHz for D.
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Figure 29.: Minimal setup slack variation for different example designs

Version Mean minimal σsetup Timing Closure Max.
setup slack [ns] [ns] probability frequency [MHz]

A −0.44 ±0.27 1 % 156.25

B −0.06 ±0.21 48 % 156.25

C −3.68 ±0.25 0 % 250

D −0.41 ±0.26 5 % 50

Table 2.: Minimal setup slack variation for different example designs

The resulting minimal setup slack distributions show standard deviations between
0.21 and 0.27 ns. Example C contained a mistake in the design for the version that
was used for these measurements and, therefore, shows very significant negative slack

11
A refers to the scifi FEB, B the mupix FEB, C the SWB in the DDR4 version, C the Max10
firmware. Details about the content and function will follow in later chapters. All on firmware
compiled with quartus 18.1 on standard settings.
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values. The other three examples also have negative minimal slack values on average,
but the distributions are also reaching into positive values. This means that for a
compilation of these designs, there is a certain chance that they will achieve timing
closure, depending on the fraction of seeds that result in positive slack values. The
highest observed difference between the worst and best setup slack is at 1.9 ns, for ex-
ample A, which is almost 30 % of the lowest clock period of that design. Consequently,
the timing situation within a design can only be judged adequately by looking at the
compilation results of more than one seed value since single seed results can deviate
significantly from the average expected outcome.

Ensuring that every compilation of an FPGA design will meet all timing require-
ments regardless of the used seed is not always desirable. As long as there are seeds
where timing is closed, the task is to find one of those seeds, which is a question of
compute time. Shifting the minimal setup slack distribution to the right will lead to
lower compute time in order to find a working seed, but will also come with a design
effort to make this shift and usually also with a higher resource usage on the FGPA.
A tradeoff between these two issues needs to be made. For the examples listed above,
A and C were considered to require action in order to increase timing closure proba-
bility. Example D is a smaller, therefore fast compiling FPGA design where finding
a working seed did not require a lot of compute time. For Example B, the timing
closure probability was considered sufficient.

The values and distributions from above were all considering the setup slacks for
the slow 85◦C corner. For each compilation there is a result for all four corners and for
all four slack values. The setup slack in the slow 85◦C corner is just the value which
was the most likely to violate any requirements during the firmware development of
this thesis.

The right side of figure 30 shows a comparison between the slow and fast corner
for the minimal setup slack at 85◦C. Examples A, B and D looked quite similar in
the slow corner, which was already shown in the histogram of figure 29. However, A
and D never fail timing in the fast corner, while B seems to be able to fail the fast
and slow corners independently. This is somewhat unexpected for setup slacks since
it shows that a design can meet the setup timing requirements on a particularly slow
chip but, at the same time and with the same seed and temperature, fail to achieve
this on a faster FPGA. This is possible since the setup slack depends not just on the
travel time of a signal from one register to another but also on the arrival time of the
clock at these two registers. The example also shows that the way in which timing
requirements are not met depends on the design: The designs A and B, for example,
are implemented on identical hardware, but with differing HDL source codes.

The left side of Figure 30 compares the two temperature cases in the slow corner.
In general, a correlation between the minimal setup slack result at 85◦C with the
result at 0◦C can be observed, with a higher slack at 85◦C usually also leading to a
higher slack at 0◦C. However, design D seems to perform significantly better at lower
temperatures compared to the other examples.
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Figure 30.: Comparison of the minimal setup slack between different timing cor-
ners under seed variation for the example designs A (yellow), B (blue),
C (green) and D (orange).

Higher performance at lower temperatures is an expected behaviour for silicon chips.
The transistors that make up an FPGA are able to switch faster at lower temperatures
since lower temperatures increase the carrier mobility in the material and consequently
increase the drain currents. Therefore, the question is not why design D performs
better at lower temperatures, but why the other examples do not seem to benefit as
much from this effect.

Figure 31 contains a closer look into figure 30 for example B. For most of the seeds
the minimal setup slack is higher for lower temperatures and the design is expected
to perform better at low temperatures on average. However, a small minority of seeds
leads to results where the maximal frequency at which the compiled design could be
operated is actually higher at a temperature of 85◦C. This is surprising since it means
that less cooling of the FPGA can make it faster.

Intel states that these results are possible in section 5.3 within the design opti-
misation chapter of [34]: ”In addition, designs targeting newer device families (with
smaller process geometry) do not always present the slowest circuit performance at
the highest operating temperature. The temperature at which the circuit is slowest
depends on the selected device, the design, and the compilation results”.

It is important to mention here that design examples A, B and C use FPGAs built
with a 28 nm process [31], while example D uses an FPGA with a 55 nm process
geometry [35]. The reason for the influence of process scale on the direction of the
temperature dependence is a change in the supply voltage VGS to threshold voltage
Vth ratio for the transistors of newer (smaller) process geometries [36]. The drain
currents depend on the difference VGS − Vth (”gate drive”), which increases with a
rising temperature due to a negative temperature coefficient of Vth [24]. This effect
becomes dominant over the change in carrier mobility at smaller process scales and
leads to a reversed temperature dependence for newer devices [36]. This is likely
the reason why the minimal setup slack for the 28 nm examples is less affected by
temperature change compared to example D at 55 nm.
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Figure 31.: Minimal setup slack results for two different temperature corners.

Hold Time

Similar comparisons can be made for the results of minimal hold times, looking now
exclusively at the results of example B using the same dataset from above.

In contrast to the setup slack discussed previously, the hold time tends to be more
critical for the two fast corners. This is expected since the earlier arrival of signals
at their destination register will decrease the available hold time slack. For the same
reason, hold time slacks on average benefit from higher temperatures (see figure 32).

Interestingly, the minimal hold time distributions for high temperatures seem to
split into two separate peaks, indicating that the optimisation process ends up in
separate groups of local maxima, which are somehow clearly distinguishable from
each other. Figure 33 shows the correlation of the two temperature cases. With a few
exceptions, the hold slacks are lower for the 0◦C corner. The separation of the 85◦C
slack peaks becomes larger for lower hold slacks in a 0◦C corner. This could be an
artefact of the optimisation process or a hint that some minimal hold slack paths are
differently affected by temperature than others.

If the distribution would significantly reach into negative values, it could be useful
for the design process to analyse the logic paths which usually make up the left and
right peaks. However, this was not considered here since the hold slacks are positive,
and no correlations between these minimal hold slack peaks and the setup slack could
be found in this specific dataset.
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Figure 32.: Minimal hold time distributions for all four timing corners using example
design B.
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Figure 33.: Minimal hold slack results for two different temperature corners.

To summarise the topic of seed variation, it is a useful tool to achieve timing closure
by repeating compilations where the resulting slacks are only slightly negative. It is
also useful for investigating timing problems since it gives statistical information about
the expected outcome of a compilation rather than the result from a single sample.
As seen before, the spread of possible outcomes can be quite significant. It is possible
to utilise seed variation in a way that frees up other resources since not every seed
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is required to achieve timing closure. This comes, however, at the cost of computing
time, and a tradeoff between these resources needs to be made.

In some cases, structures might arise in the slack distributions, which could contain
usable information about the timing issues in the design. The four timing analysis
corners exist for a reason, a design can fail them independently, and it is not sufficient
to check only the corner which is suspected to show the most critical slack values.
Furthermore, it cannot be assumed that the best performance is present at the lowest
operation temperature since the optimal value will depend on the design and the seed
used for the compilation.

3.7.4. Clock Domain Transitions

FPGA designs will often contain more than one clock. The reason can be that in-
terfaces to other components run at different speeds and must be driven by different
clocks. Also, parts of the design itself might be written for lower frequencies and could
be unable to operate at higher ones, which might be required to achieve bandwidth
targets in other parts of the design.

Transitions of signals between different clocks are called clock domain transitions or
clock domain crossings (CDCs). For two unrelated clocks, it is impossible to enforce
timing constraints between their two domains. Even if the frequencies of the clocks
are nominally the same, the two oscillators driving them will have slight frequency
variations and the resulting clocks will never be identical and the position of their
edges relative to each other will not be constant. Therefore, the timing requirements
for paths between them cannot be ensured and will be violated for at least one path.
This is a fundamental issue that cannot be avoided, and CDC methods can only
minimise the risk.

The risks here are data corruption and metastability issues. A single-bit signal
between two clock domains transitioning from 0 to 1 will, at some point, also transition
from 0 to 1 in the destination clock domain. The exact cycle where that happens is
not predictable and the sampling register might enter a metastable state. To mitigate
the risk of that metastable state propagating and causing further issues, additional
registers can be placed as a shift register before the signal is used in the destination
clock domain. This is called a synchronisation chain and reduces the chances of
metastable outputs, since all registers in the chain would have to enter a metastable
state in order to violate timing at the end of the chain. This is unlikely and the
chances depend on the number of registers. The tools will detect these structures and
calculate a value called Mean Time Between Failures (MTBF) for the design based on
the failure probabilities of these synchronisers. The exact cycle where the transition
happens in the destination clock domain remains unpredictable.

Since the cycle of the transition remains unpredictable, multiple-bit signals are at
risk of data corruption. A 32-bit word D1 transitioning to the word D2 could be
sampled in the destination domain as the sequence D1, D3, D2, where each bit of D3
consists of a random choice between the according bits in D1 and D2. This is possible
since each of the 32 bits will have a separate path in the FPGA, which will all differ in
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their exact delay to the destination. The relative phase of the clock there is unknown,
so a bit might be sampled before or after the transition at random.

There are options to avoid data corruption. A constant multiple-bit word can be
safely sampled by other clock domains. Therefore, a 32-bit register can be set to the
value that should be transmitted, then waiting for an appropriate time can ensure
that change has arrived at all destinations12 and then a single-bit signal can be sent
into the new domain using the method above to indicate that the register can now be
sampled. Another single-bit signal would have to be sent back to indicate that the
register was now sampled and the next data word can be applied. This handshake
operation limits the bandwidth but avoids data corruption.

If the bandwidth should not be limited, a dual clock FIFO or RAM can be used.
Data is written by one clock domain and read by the other one. For the internal
control signals, handshakes are used, but full bandwidth is available for the user. The
memory or FIFO can be small depending on the application but will need resources.
Since memory comes in blocks, this is one situation where the MLAB cells from
section 3.6.1 are useful since they allow a smaller memory partitioning.

Two unrelated clocks with nominally identical frequency will slightly differ in their
actual frequency. If data has to be transmitted every cycle between two 100 MHz
clocks then one direction will cause overflows in the synchronisation logic, since one
of the clocks will run slightly faster and the other one cannot process the additional
data. A form of backpressure needs to be in place in order to avoid data loss. The
same is the case if the destination domain runs on a slower clock than the source.

CDCs between related Clocks

Until now, the discussion was about transitions between unrelated clocks. If the clocks
are related, the question is if the phase relationship between the two domains is known
at compile-time. If not, the CDC has to be treated similarly to unrelated clocks. If it
is known, then timing can, in theory, be enforced, but the requirements can become
stricter compared to transitions within the same domain. An examle is shown in
figure 34: For transitions from clock1 to clock3, timing requirements are similar to
transitions within clock3 since the distance from a rising edge of clock1 to the next
rising edge of clock3 is always identical to a cycle of clock3. However, CDCs between
related clocks can become arbitrarily complicated. Sending data from clock2 to clock3
has three possible relationships (a, b and c) towards the next rising edge. All of these
possibilities need to fulfil timing requirements. At the point where this becomes too
complicated, it is easier to treat the clocks as unrelated and deploy the CDC-methods
from above.

Considering that CDCs always come with further complications, additional clock
domains should only be introduced when necessary. Organising the design in func-
tional blocks and a clear separation of the clock domains is needed in order to minimise
the connection points and, thus, the amount of CDCs needed between them. This is

12
This implies an assumption of how long that will take.
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Figure 34.: Example of related clocks.

especially important since simulations cannot properly model unrelated clocks. There-
fore, CDCs are an area where the result of simulations of a design can differ from the
behaviour in actual hardware. For this reason, clock domains should be considered
during the planning of the design of the firmware structure in order to make the
necessary transitions in places where they cause the least amount of issues.

Ignoring CDCs

In some situations, CDCs can be ignored for specific signals. For example, before the
Mu3e detector takes data, some settings have to be applied in the firmware, which
are then constant during data taking. Such signals can assumed to be constant and
can be ignored for CDCs and timing analysis. It is also possible to encode signals
in a way to make ignoring CDCs viable. This is done via gray encoding, which is a
different way to represent binary numbers, where adjacent numbers always only differ
by a single bit. With this encoding data corruption from an ignored CDC will only
result in an off-by-one error (assuming that the skew between all bits is less than the
clock period). This is acceptable for many applications, such as counters, temperature
measurements and others.

Since the tools usually assume all clocks to be related, they need to be explicitly
instructed to ignore timing constraints for paths leading to a synchronisation chain
or paths which are supposed to be ignored. Such paths are called false paths and,
generally, all paths between unrelated clock domains should be flagged as such13.
However, false path assignments can also be used within the same clock domain. Doing
so is technically not accurate but can be used to remove timing issues, for example on
a signal that is practically constant and has a very large fanout. Situations can exist
where ignoring the timing of that signal is a safe approach.

During this thesis, we will encounter a CDC situation in section 4.4.2 where the
unpredictability of the clock cycle where the signal is sampled in the destination do-
main is unacceptable. All methods shown here inherently include this unpredictability.
Avoiding it is challenging but possible in specific situations. This will be discussed in
section 4.4.2 for the specific design challenge in the Mu3e readout system.

13
If they are not flagged as such, the tools will try to achieve timing closure on them and often fail to
do so. It can be useful to intentionally off-tune clock frequencies in the timing constraints slightly
(e.g., from 50 MHz to 49.99 MHz), which will ensure the tools to fail on these specific paths, which
in turn allows to generate a list of paths between domains which are not set as false.
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3.7.5. Resets

With the application of a reset signal, a digital system is moved into a defined state.
This is used either as initialisation after the power-up of the device, in order to recover
from a state of error or to restart some procedure. The usual purpose of the reset here
is not to bring something to a defined state, but to start something from a defined
state. Therefore, the release of the reset is the actually relevant part. The timing
requirements (recovery and removal time) were discussed in section 3.3.1.3.

One can, of course, also construct some cases where not the removal, but the ap-
plication of a reset is essential as well. We will not encounter such cases so they will
not be further discussed here.

Logic cells in the FPGA, IPs and most VHDL entities will provide a reset input
port. Reset inputs can be either synchronous or asynchronous inputs. Sometimes,
both will be provided. The reason resets are discussed in this section in detail is
because there are common misconceptions about the meaning of asynchronous resets,
when resets are necessary and when not and their relationship to default values.

Synchronous resets behave similarly to all other signals in a design. Even though the
LAB cells of the FPGAs used in this thesis provide separate inputs for synchronous
resets, they are not used as such just because the HDL source code states it. Resets
will be implemented by the tools in whatever way that efficiently implements the
behaviour stated by the HDL source code. This might be done via dedicated reset
pins or the normal data input path. Previously in this chapter, a schematic of an
ALM cell was shown (figure 25). A more detailed view reveals that the synchronous
reset port is just connected with the data input before the register using logic of the
form reg = (data in & !SCLR). The synchronous reset (SCLR) is, therefore, just part
of the datapath. A detailed schematic can be found in appendix A.2.

Asynchronous resets force the tools to use the asynchronous input of the logic cell.
Asynchronous means that the reset is able to change the output of the register without
the presence of a clock edge. It does not mean that there are no timing requirements
relative to clock edges should they be present. That is a very important difference
since the consequence is that truly asynchronous resets are only valid if no clocks
are present. With the presence of clocks, asynchronous resets have to follow the
requirements for recovery and removal time.

This also applies to IP blocks. If an IP presents an ”async reset” port to the user,
it means that setup and hold time requirements do not apply to this port. This does
not include recovery and removal time, which still apply in this case and – if the rules
are followed strictly – forbid the use of a true asynchronous reset.

In order to avoid this problem, asynchronous resets can be synchronised into the
clock domain of their target, which effectively turns them into synchronised resets and
allows the tools to time them correctly. This can be done individually for each clock
domain.

Only a few cases will actually produce reset signals that are not synchronous with
any clock. This includes a human pushing a button or turning on the FPGA. How to
cleanly turn on an FPGA is a difficult question since many things which are granted
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during normal operation might not be in this case. Clocks could be unstable, power
distribution across the FPGA might not be stable or clocks might be completely
missing and registers could be in random states. How designs in Mu3e manoeuvre out
of this situation will be discussed in 4.11.1.

Not using Resets

Resets are not necessary for every signal in a design. If a signal is not reset then it
might be in an unknown state. If the logic does not require the signal to be in a known
state from the beginning, then this is not an issue.

However, leaving out unnecessary resets does not immediately save resources. Not
resetting signals within the typical if(reset =’1’)..elsif(rising edge(clk)) statement
will lead to usage of the reset as clock enable input of the resulting registers since the
signal needs to be kept constant during reset.

There are cases where using a reset is a mistake. Sometimes, using a reset can alter
the design significantly in unintended ways. For example a piece of HDL code that
describes memory where – without a reset – that memory is going to be efficiently
implemented in M10K blocks of the FGPA via inference. If a reset is used to explicitly
set the memory content, an implementation using M10K blocks is not possible anymore
since they do not provide a way to set their entire content to a specific value with
one operation14. In this case the synthesis will implement something fundamentally
different based on normal logic cells and waste resources.

3.7.6. Trading between Resources

Various elements of an FPGA or properties of a design can be considered a resource.
This includes the actual hardware resources of the FGPA, such as logic cells, memory
blocks, routing lines and hard-IPs but also attributes of the design like clock frequency,
bandwidth, latency, available slack or compile-time.

Trading between these resources is an essential part of FGPA firmware design.
If the bandwidth of some process has to be increased that can either be done by
increasing the frequency and spending available slack on the problem or, for example,
by spending more logic resources in order to parallelise the process. If additional slack
is not available in the design, a higher compile time might be accepted to find seeds
with better minimal slack values. Another option would be to pipeline the process
into multiple steps and increasing the latency to allow for a higher frequency and,
therefore, bandwidth. It might also be possible to use different hardware resources
(Memory or DSP blocks) to improve the process. These resources could already be in
use, and other parts of the design might need to be changed in order to make them
available.

14
A default value in the HDL source code can be used to achived the same behaviour on power-up
without a reset. Default values for logic cells and memory blocks are synthesisable in modern tools
[37]. This is only applicable to power-up conditions.
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Achieving timing closure is just a result of available slack. Similar to increasing
bandwidth, available slack can be increased by spending other resources on it. The
example that was made before was pipelining a kind of calculation into multiple op-
erations processed in separate clock cycles. But the idea of pipelining applies also to
topics regarding design structure.

The following example is actually implemented within Mu3e. The shown setup
slack comparisons are the results of seed variations on modified versions of Mu3e
firmware. Specific details and reasons for the chosen implementation will follow in a
later chapter15.

Consider an example where a set of 4jmax entities, which are scattered randomly all
over the design, is supposed to be accessed by a single controller entity. The amount
of connections needed to do so is too large for the desired frequency and the minimal
setup slack histogram shows a very low probability for timing closure (blue histogram
in figure 36).

Assume we have a tree-like structure with multiple levels j ∈ {0; 1; 2; ... jmax}.
Each level of the tree consists of 4j individual nodes N(i, j), starting from a root
node N(0, 0) and ending at the entities N(0...4j − 1, jmax) that are supposed to be
accessed. Every node N(i, j) connects to 4 nodes on the next level within the tree
N(4i...4i+ 3, j + 1). A node is now registering the control information from the upper
level in four registers and connects these four registers to the four following nodes,
which creates the structure in figure 35 and still provides a connection between the
controller entity at the root of the tree and the 4jmax entities at the end.

N(i,j)

N(4i,j+1)

N(4i+1,j+1)

N(4i+2,j+1)

N(4i+3,j+1)

Figure 35.: Tree structure with each node connecting to four nodes on the lower level
of the tree.

15
In section 4.4.4, the section will refer to this example again.
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This introduces a latency of jmax clock cycles for the control information to reach
the destination but limits the fanout to four within the tree since only four copies of
the signal have to be created at each node. Accepting a higher access latency and
logic usage has been traded for better timing performance. The results can be seen
in figure 36. The mean minimal setup slack has improved by 0.24 ns and the timing
closure probability has increased from 1 % to 48 %16. An alternative, slightly different
implementation of the idea can be found in appendix A.3.
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Figure 36.: Minimal setup slack histograms for the version without added latency
(blue) and the reference measurement (yellow)

The extent of the improvement depends on the other parts of the design. For the
blue histogram, the majority of the minimal setup slacks came from paths related to
the the controller entity. After the introduction of the latency the controller entity
is not the most timing-critical part of the design anymore, and the minimal slack
histogram is driven by other design parts.

This was one example of a resource trade in order to achieve timing closure. The
same effect could have been accomplished by sacrificing bandwidth or generally low-
ering the clock frequency. Alternatives will be discussed when the actual issue is
explained in the appropriate part of the thesis.

Apart from closing timing, another thing which was realised here is structurally
decoupling the entities from each other. As a result of the tree-structure the end of

16
The design which includes this improvement is a version of Mu3e firmware and was already used
as example B during the discussion of seed variation. It was modified in order to generate the
dataset without the latency tradeoff.
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the tree should now be able to spread more easily across the design. However, this is
more difficult to quantify than slack improvements.

3.8. Data transmission

Fast data transmission is essential to modern data acquisition systems in particle
physics. The aim for increasingly precise measurements comes with an increase in the
required statistics, leading to new challenges for data acquisition systems to process
the acquired data.

Processing data does not just include analysing it. Moving data out of the detector
to the places where it can be analysed comes with its own challenges, such as the
required bandwidth, spatial constraints or the operating conditions on the inside of
particle detectors.

Moving data is not an exclusive problem of particle physics, and many of the tech-
niques, encodings, and protocols that we will encounter are standardised. This section
will discuss the parts of these topics that are used within the Mu3e data acquisition
system.

3.8.1. Challenges for Data transmission

The quality of a digital signal can be degraded by different factors. The signal rise
time, which is essential for high-speed signals, can be limited by capacitive loads on a
cable if the source is not able to recharge the cable fast enough. They can also cause
signal reflections, which can be described by the equation [38].

R(ω) =
ZL(ω) − Z0(ω)

ZL(ω) + Z0(ω)
(8)

Where R(ω) is the fraction of the signal that is reflected back towards the source,
Z0(ω) is the characteristic impedance of the transmission line and ZL(ω) is the load
impedance.

In order to avoid degradation of the signal integrity, the characteristic impedance
of the transmission cable needs to match the load impedance at the termination of
the line. This is a question of cable geometry and material or, in the case of Printed
Circuit Board (PCB) traces, trace width and distance to the ground plane [38].

Unintended capacitive or magnetic coupling between transmission lines can lead
to an effect called crosstalk, where a signal from a transmission line is picked up by
a neighbouring connection. Similar to reflections, this can negatively impact signal
quality and cause transmission errors.

When sending digital signals over large distances, signal attenuation due to the
resistivity of the conductor has to be taken into account. A frequency-dependent
attenuation is introduced by the skin effect, which is explained in figure 37.
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Figure 37.: Skin effect created by eddy currents in a conduction wire.
Figure was adapted from [39].

A magnetic field is created by the signal going through the conduction wire.

∇×B = µ0J + µ0ϵ0
∂E

∂t
(9)

As the signal transmission proceeds, the magnetic field will alternate and cause eddy-
currents in the material.

∇×E = −∂B

∂t
(10)

These induced currents will add up to an increase in the overall current close to the
surface and a decrease closer to the core of the conductor. The effective cross-section,
which is used to transmit current through the conductor, is decreased and the result
of this is an apparent increase in resistivity [39]. The eddy currents depend on the
frequency at which the signal changes. The increase in resistivity consequently also
depends on the frequency with the resulting effect of a frequency-dependent attenu-
ation. For this reason, the distance over which signals can be transmitted through a
conductor depends on their frequency and will decrease for faster signals.

3.8.2. Signal Standards

Data can be transmitted with a serial or parallel connection. Serial data transmission
is using a single transmission line and sends the bits of each data-word consecutively.
The word has to be serialised at the transmitter and deserialised at the receiver. When
a sequence of words is sent, a form of protocol has to be in place in order to identify
the word boundaries for deserialisation at the receiver.

Parallel data transmission uses multiple lines instead and can send multiple bits of
the same data-word at the same time. The disadvantage of parallel connections is
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the need for more physical wires and possible delay variations between them. Within
an FPGA these variations can be precisely calculated and do not cause a problem.
However, for inter-device communication, delay variations will create issues once they
reach a magnitude similar to a clock period of the connection. Within the Mu3e data
acquisition, serial connections are used for most high-speed signals.

Electrical data connections in the Mu3e DAQ will use the Low Voltage Differential
Signaling (LVDS) signal standard. LVDS is a differential signalling standard where
the transmitter sinks or drives a specified amount of current from both lines. The
current is then converted into a voltage via a resistor between the differential pair at
the receiver end of the line.

Signal distortions that appear on both differential lines identically cancel each other
since the voltage drop over the resistor at the receiver remains unchanged. For this rea-
son, LVDS signalling has the advantage of suppressing common-mode interference and
ground noise [24]. It is also, to some extend, robust against differences in ground po-
tentials between source and destination, which represent a problem for non-differential
voltage-based signal standards.

3.8.3. Protocols and Encodings

Standardised data protocols specify the rules for the exchange of data between trans-
mitter and receiver. Often, multiple of these protocols and encodings will be stacked
upon each other in layers that serve different purposes. A very prominent example is
internet communication: If an HTTP transaction is supposed to take place, the data
is transmitted via a TCP connection. TCP forms a connection for the exchange and
adds control information in packet headers, which contain information about source
and destination ports and ways to acknowledge and request retransmission of data.
The TCP data is then again enclosed in an IPv4 packet, specifying source and desti-
nation IP address and general routing information, followed by another enclosure that
contains information about the MAC-addresses. Finally, the entire packet is encoded
in a way that allows for the detection of transmission errors before being serialised
and physically sent over a connection that follows some signal standard.

The Mu3e readout system defines Mu3e-specific protocols. Those will be discussed
within the sections where they are used. Standardised protocols and encodings used
in the Mu3e DAQ will be discussed here.

Gray Code

The reasons for using Gray-encoding were already discussed in the clock domain tran-
sition section 3.7.4. The objective is to provide a different representation of binary
numbers such that adjacent numbers only differ by a single bit in their gray-encoded
binary representation. As discussed in section 3.7.4, this is useful for clock domain
crossings with parallel data.

53



Chapter 3. Digital Electronics
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Figure 38.: Wave diagram showing the lowest four bits of a gray encoded counter.

8b/10b Encoding

8b10b encoding uses 10-bit words to represent 8-bit words. The additional two bits
are used to accomplish a few beneficial properties for the serial transmission of the
encoded data. Since the number of available codes is four times higher than the
number of possible data words, a DC balance can be enforced by alternating disparity
(difference between 0’s and 1’s). Multiple codes can exist to represent the same 8-
bit word and they are chosen in a way to ensure DC balance, which is required to
be limited to ±2 bits at all times. This is desirable since, on average, no current is
transmitted over an 8b10b encoded connection [40].

In addition to this, all codes containing six or more sequential 1s or 0s are forbidden.
The resulting frequent logic transitions allow to recover the transmitter clock from the
serial data stream. This enables the transmission of data without a separate line for
the clock since the receiver can recover it from the data.

With these requirements, it is also possible to detect transmission errors since some
codes are invalid and some combinations would violate disparity requirements. All
single bit-flip errors can be detected, which can be used to gain information about
link quality. Out of the 210 possibilities, 12 codes remain after the restrictions above
are implemented. They exist in a positive and negative disparity and are shown in
table 3.

Name Hex-Value 10b code with positive disparity

K.28.0 1C 1100001011
K.28.1 3C 1100000110
K.28.2 5C 1100001010
K.28.3 7C 1100001100
K.28.4 9C 1100001101
K.28.5 BC 1100000101
K.28.6 DC 1100001001
K.28.7 FC 1100000111
K.23.7 F7 0001010111
K.27.7 FB 0010010111
K.29.7 FD 0100010111
K.30.7 FE 1000010111

Table 3.: The 12 8b10b comma symbols [40].
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These 12 remaining codes are called comma symbols or comma words and can be
used for flow and link control commands. Within Mu3e, for example, they will be
used to indicate the start and end of packets or runs.

The sequence 1100000, which is present in the symbols K.28.1 and K.28.5, is a
unique sequence of bits that cannot otherwise appear at any point in the serial data.
Therefore, this sequence becomes an important tool since it is the only possibility
for the receiver to unambiguously recover the word boundaries, which is necessary
to decode the 8b10b datastream back into the correct sequence of 8-bit words. As
a consequence, K.28.1 or K.28.5 have to actually appear in the datastream at some
point in order to allow the receiver to perform this alignment of word boundaries.

Cyclic Redundancy Check (CRC)

Another method for error detection are CRC codes. They are a fixed-length binary
number which is calculated for a data packet and appended to it. The receiver can
then use the same method on the received data, calculate the CRC code again and
verify the data by comparing it to the CRC received from the transmitter. If they do
not match, it indicates that an error has occurred during transmission. The calculation
of CRC codes can be implemented in an FGPA and will be used in the Mu3e readout
system error detection. While CRCs are highly effective in detecting errors, they do
not provide error correction. The theory behind CRC and error-correcting codes can
be found in [41].

SPI and I2C

Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C) are two serial
communication protocols intended for short-distance communication, often to com-
municate at a low speed with periphery components on the same PCB.

SPI consists of an SPI-master, which is the entity controlling the interface, and one
or more SPI-slaves, which are the entities controlled by the master. Four data lines are
needed to make a full SPI connection: MOSI (Master Out Slave In), MISO (Master
In Slave Out), SCLK (clock) and CS (Chip Select).

An SPI-slave can be implemented as a simple shift register, with MOSI connected
to the input of the first register and MISO connected to the last register in the chain.
The clock is per default inactive and only sends clock edges for every bit in MOSI
that has to be transmitted. The chip select signal is needed to identify the device
and acts either as an enable signal in the shift register or as a load signal that copies
the content of the shift register into the register that actually controls the device. A
chip select line is, therefore, needed for each slave connected to a master. MOSI can
be shared and is only needed once, and MISO can be left out if data reading is not
required.

I2C serves a similar purpose but is address-based. It only requires the two lines SDL
(serial data line) and SCL (serial clock line). An I2C device is targeted by transmitting
a start bit, the address of the device, followed by a sequence of data and a stop bit
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over the SDL line. Similar to SPI, the clock is per default inactive and only activates
during data transmission. The I2C data line can be driven by the master and the
slave, so the same line that is used to send data to a device is also used for replies and
acknowledge signals. The clock line is always driven by the master [24].

SPI is simpler to implement in hardware, especially on the slave side, since it only
requires a shift register, but I2C is more flexible and requires fewer physical lines to
the target. Mu3e will use both protocols within the readout system.

3.8.4. Avalon and AXI

Some protocols are specifically designed for on-chip signal transmission. On an FPGA
those can be used to interconnect different design components or hard-IPs. A few of
the intel-IPs that will be used during this thesis on FPGAs use the proprietary Avalon
interface [42]. For Xilinx FPGAs the equivalent is called AXI, which is developed by
ARM [43].

Avalon interfaces come in multiple variants which serve various use cases. The only
one relevant for this work is the Avalon memory mapped interface (Avalon-MM),
which provides address-based read/write transactions between the connected compo-
nents. AXI and the other Avalon variants will not be discussed here. The section
will only introduce the specific configuration of Avalon-MM that appears to a limited
extent in the Mu3e data acquisition. The majority of the address based read/write
connections in Mu3e are not based on Avalon and the following introduction is im-
portant to understand the decision against Avalon-MM in a later chapter.

The signals shown in figure 39 are needed for a minimal avalon-MM interface for a
read and write transfer between host (master) and agent (slave).

clock

address read address write address

write

wdata D2

read

rdata D1

waitrequest

Figure 39.: Example wave diagram of an Avalon read and write transfer.

To issue a read, the host applies the read address and read signals. The agent
has two options to respond: Either it has to immediately raise the waitrequest flag or
provide the data D1 for that address at the rdata line. The waitrequest can be used to
stall the host until the agent is able to provide the required data. The host is required
to hold the read address and read signal until the waitrequest signal is released, at
which point rdata is sampled and the next action can occur.

A write transaction has a similar structure. The host applies the address, write
signal and write data, and has to hold those until the waitrequest signal from the
agent is de-asserted.
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With the signals provided here, a transaction speed of one read/write per clock
cycle is only possible if no waitrequest signal is raised during the process. In order
to provide an option for pipelined reads and writes, additional optional signals and
settings can be used. The waitrequestAllowance setting allows the host to proceed
with transactions for a specified amount of cycles, even if the waitrequest was asserted
by the agent. When this is used, the agent needs to be able to manage this situation.
In combination with this setting, a signal called readdatavalid can be used to provide
a way for the agent to send data back to the host without de-asserting the waitrequest
signal.

System integrator tools are available, which connect multiple hosts and agents
within the same interface and automatically assign address offsets for the agent ad-
dresses. An example for such a system with multiple hosts and agents is shown in
figure 40.
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UART

M M

SSSSS

M M

Figure 40.: Example for an Avalon-MM Interface connected to multiple hosts (M) and
agents (S). Graphic was adapted from [42].

In these systems, a method of host-agent arbitration becomes necessary, and the
hosts that lose the arbitration process will be stalled via the waitrequest signal until
a transmission for them is possible. Host/agent arbitration is, in these cases, imple-
mented by the system integrator tool and not exposed to the user. Therefore, latencies
can be unpredictable: When the custom logic host in the top left corner of figure 40
wants to read from one of the agents, then the latency of the response depends on the
state of that particular agent and the read/write processes of the other hosts in the
system.
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3.8.5. Transceivers

Transceivers are components used for receiving and transmitting serial data at high
rates (above 1 Gbit/s). On intel FPGAs, transceivers are implemented as hard-IP
cores. These cores are hard-wired to specific pins of the FPGA, meaning that the
serial input and output signals cannot be routed freely through the FPGA’s user logic.
In principle, every IO-pin of an FPGA can be used to transmit a serial data stream
by connecting an according logic in the firmware of the FPGA, but only hard-wired
transceivers are able to achieve bandwidths in the order of 10 Gbit/s.

The hard-wired IPs location also constrains the point at which the parallel data has
to be provided to the IP. For the FPGAs used in this thesis, this is usually one of the
sides of the chip.

Intel transceivers are divided into two main blocks: The Physical Medium Attach-
ment (PMA) and the Physical Coding Sublayer (PCS). The following explanations of
these blocks are based on reference [44].

PMA Block

Figure 41.: Diagram of a PMA block of an ArriaV transceiver [44]

The physical medium attachment (PMA) block of the transceiver connects directly
to the physical output or input pin of the FPGA. Incoming data is fed into the channel
PLL, which is located in the transceiver PMA. This PLL recovers a synchronised clock
from the data stream at the serial bit frequency if enough transitions are present. This
can be ensured by the previously discussed 8b10b encoding scheme or similar methods.

The recovered clock is then utilised by the deserialiser to convert the serial data into
a parallel data signal, which is then forwarded to the physical coding sublayer (PCS)
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block. Initially, the PMA aligns the parallel data word randomly17. The recovered
clock is also sent to the transmitter PMA, where it is divided to match the frequency
of the parallel data. This clock also drives the serialiser in the transmitter PMA in
certain configurations.

PCS Block

Figure 42.: Diagram of a PCS block of an ArriaV transceiver. Adapted from [44]. The
left side is connected to the PMA block of the previous section.

The PCS block contains digital processing logic for the received data before it is
given to the user in the FPGA fabric. Initially, data from the PMA block is word-
aligned using control characters as specified in table 3, followed by 8b/10b decoding.
For some applications where a very wide interface is wanted, the rate match FIFO
and byte ordering blocks are needed and convert the output of the word aligner into
a wider parallel signal.

In cases where the user clock is different from the recovered data clock, a phase
compensation FIFO is necessary to feed data into the FPGA fabric. However, if the
user clock frequency is slightly lower than that of the transmitting device, there is a
risk of data loss due to the limited size of the FIFOs.

The transmitter PCS is much simpler compared to the receiver. Data from the
FPGA fabric is written to a phase compensation FIFO, which is read with the divided

17
At least for standard configurations of the transceiver. More about this will follow later.
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clock from the channel PLL in the PMA. The bytes are serialised in cases with very
wide interfaces and then 8b10b encoded and sent to the PMA block.

3.8.6. PCIe and DMA

Peripheral component interconnect express (PCI express) is a high-speed interface
standard used for connections to different peripherals on the motherboard of a PC
(graphic cards for example). Some FPGA boards can act as such a peripheral of the
PC motherboard.

PCIe is, in contrast to its older version PCI, not a bus. Each component is connected
to the PCIe network with a set of differential wires. Each pair of wires (receive and
transmit) is called a PCIe lane. The size of a PCIe interface can vary and consists
of a maximum of 16 (x16) lanes18. PCIe slots with more lanes are able to provide
a higher bandwidth to the component. The FPGA boards used in Mu3e implement
PCIe version 3.0, where each lane provides 8 Gbit/s serial data rate [45], adding up to
a theoretical limit of 128 Gbit/s. Actual data transfer cannot reach this speed since
it includes protocol overheads.

During the boot process of the PC, a negotiation of the capabilities of the connected
PCIe devices will take place, including a potential speed reduction of faster compo-
nents to older PCIe versions to ensure compatibility. Another parameter which might
be negotiated is the maximal payload for PCIe packets (packet format is shown in
table 4). Since PCIe is a network which can contain multiple bridges, the maximal
payload will fall back to the lowest supported payload in the connection chain.

012345678910111213141516171819202122232425262728293031

R
0

Fmt
0x2

Type
0x00

R
0

TC
0

R
0

TD
0

EP
0

Attr
0

R
0

Length
0x001

}
DW 0

Requester ID
0x0000

Tag (unused)
0x00

Last BE
0x0

1st BE
0xf

}
DW 1

Address
0x3f6bfc10

R
0

}
DW 2

Data DW 0
0x12345678

}
DW 3

Table 4.: Fields of an example PCIe write request. Table from [46] adapted by [47].

The FPGA designs in this thesis hardcode the PCIe version to 3 and payload to
256 bytes and will, therefore, only work if all components of the slot in the mother-
board also support them. This is especially important for the payload since standard
consumer motherboards will often only have one slot with the full capabilities, which
is usually intended for a graphics card. A Mu3e PCIe card inserted into a slot with
lower capabilities will not automatically negotiate a lower maximal payload.

Each PCIe device hosts a set of base address registers (BARs), which can be accessed
by location (slot) of the PCIe device. During PCIe device enumeration, when the
machine is started, the BARs will be used to gain information about the size and

18
The standard allows up to 32 lanes but this is usually not implemented.
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number of resources that the PCIe device provides. In the case of the FPGAs in
Mu3e, four BARs are implemented and correspond to four memories.

After that, the OS will assign a range of addresses to each resource and inform
the PCIe device of this decision by writing the starting address of this range into
the corresponding base address register [46] [48].

”
Base address“ is in this case just

a different name for the starting address of a PCIe device’s memory resource. The
addresses following the base address correspond to the content of the memory up to
the size previously requested in the enumeration process.

Physically available memory within a computer system is scattered across com-
ponents like multiple different RAMs or a Disk/SSD. The host computer’s memory
management system will map these available resources into a continuous virtual mem-
ory, which will be used by programs ([23], Figure 43).

Adress 2

Adress 3

Adress 4

Adress 5

Adress 6

Adress 7

Adress 8

Adress 9

Adress 10

Virtual Memory Physical Memory

Adress 1Adress 1

Adress 2

Adress 3

Adress 4

Adress 9

Adress 6

Adress 7

Adress 8

Adress 5

RAM

Figure 43.: Address mapping between virtual memory (used by programs) and phys-
ical memory. Figure from [23]

The same applies to the memory of PCIe devices. The memory corresponding to the
base address registers of a PCIe device can, therefore, be accessed by software. The
four BARs on the FPGAs in Mu3e are used for read/write registers and read/write
memory. This is just an organisational decision and defines the direction of data flow.
Read memory and read registers are only read from the PC’s side and written from the
FPGA. Write memory and write registers are only read from the FPGA and written
by the software on the PC. From the PCIe point of view, there is no difference between
these four resources.
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DMA

In the section above, it was explained how software running on the CPU of the PC
can write into memory that is physically located on an FPGA connected via PCIe.
The FPGA’s memory was assigned a starting address and size, which can be accessed
by the CPU by sending PCIe read/write commands.

Direct Memory Access (DMA) is, in principle, the same process in reverse. PCIe
is a network that connects CPU, RAM, GPU, and other components and provides
the CPU with a way to access the RAM. The FPGA is now also a component in
the PCIe network and, as such, can access the RAM. The issue is that under normal
circumstances, the CPU is the only component accessing the RAM, and the memory
management systems of the OS do not expect other actors.

This point has to be solved by the DMA-driver. Locations within the CPU’s memory
have to be reserved, and they need to be communicated to the FPGA’s PCIe firmware.
An issue that arises here is that the FPGA does not have the resources to store
infinitely many of these locations. If the free areas within the CPU’s memory are too
scattered, it might be difficult to find large enough free continuous address spaces. A
reboot of the computer can be required in these cases.

If the memory for the DMA can be reserved, the FPGA can send PCIe packets
and write to these memory addresses. The CPU will need to copy this data into
other locations to make space for new data transfers. Some organisational questions
arise here about how exactly this can be used to process and analyse a continuous
datastream generated by a particle detector, but these questions will be answered in
a later chapter.

A PCIe driver on the PC, a DMA engine and PCIe control block on the FPGA
were implemented by [23] and other members of the Mu3e collaboration for the use
in the Mu3e experiment.

3.8.7. Fibre optic data transmission

The high data rates produced by modern particle physics experiments require data
transmission methods with accordingly high bandwidth. For short distances, LVDS
connections or systems like PCIe are sufficient. Long distances require alternative
methods such as fibre optics.

In fibre optic data transmission lines, light pulses are used to transmit the data.
The transmitter receives an electrical signal and converts it into light pulses, which are
coupled into an optical fibre. On the other end of the fibre, a receiver diode converts
the light pulses back into an electric signal.

This has advantages over long distances compared to copper connections. Fibre
optic cables are unaffected by electromagnetic interference and can achieve higher
switching frequencies since there is no longer a copper cable to be recharged. It
also helps with the decoupling of ground potentials. Because there is no electrical
connection, differing ground potentials between the transmitter and receiver do not
matter.
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However, fibre optic systems come at a higher cost than electrical transceivers and
the hardware required at both ends of the fibre will require more physical space and
power than their copper-based counterparts. There are also limitations for the trans-
mission distance of data through optical fibres. The obvious factor influencing this is
attenuation. Light will be lost by imperfect connections at every point where fibre is
connected to another one, by cable impurities and potentially dust on their connec-
tors. When the signal is attenuated too much, the receiver will not be able to identify
it anymore.

The less obvious factor influencing the maximal transmission distance is signal prop-
agation in multimode fibres: Within an optical fibre, light can travel along different
modes or pathways to the receiver. Each of these modes has its own signal propagation
time, which it needs to reach the receiver. For a multimode fibre, the transmitter will
inject the signal into multiple modes at once and the receiver will sum up the signal
from all modes at the other end. The signal edges of the received signal will be dis-
persed since this sum contains components with mismatched propagation times. This
effect is called multimode dispersion [39] and will make the signal unusable when the
dispersion reaches a magnitude of the distance between individual bits in the signal.

The range of an optical connection is, therefore, limited by the frequency of the
signal and the amount of modal dispersion, which results in a bandwidth per inverse
distance measured in [MHz · km]. Different optical cable standards have different
dispersion properties and are shown in table 5 [49]. As examle, an OM3 cable is able
to transmit a 10 Gbit/s signal over a distance of roughly 2000 MHz·km

10000 MHz = 200 m.

Cable Type Bandwidth [MHz·km]

OM1 200
OM2 500
OM3 2000
OM4 4700

Table 5.: Bandwidth for different OM standards for optical fibres. Data from [49].

There are ideas for using the individual transmission modes of a multimode fibre
independently to establish multiple connections at the same time. However, multi-
plexing different modes is a technical challenge and there is some crosstalk between
the modes during propagation in the cable [50]. This is not available as consumer
electronics.

Single-mode fibres are used for larger distances. They are manufactured in a way
that creates only a single transmission mode and are for this reason less affected by
modal dispersion. The disadvantages are a higher price for the cables and transceiver
modules and lower tolerances for the alignment of fibres at connection points [49].
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4
Mu3e Data Acquisition System (DAQ)

The sensors discussed in chapter 2 produce the data required to identify and re-
construct muon decay events. Due to the very high muon decay rate, the amount of
collected data will be in the order of 100 Gbit per second, which makes permanent
storage of that data impractical. Therefore, a pre-selection needs to take place during
data taking. The pre-selection will necessarily have to select data from individual
muon decays with kinematics that fall into the signal region. The decay can only be
reconstructed if information on all decay products is available in the reconstruction
software. Even on a powerful machine or GPU, the reconstruction software used for
the simulations in the introduction chapter will not be able to process this amount of
data in real time.

Parallelisation across multiple machines is therefore needed to perform this task,
and the natural way of parallelising a lot of muon reconstructions is to distribute
them across multiple machines in a way that each machine has to reconstruct only a
part of all muon decays. For the data acquisition system, this means that for each
individual moun decay, there needs to be a way to ensure that all data corresponding
to this particular decay is delivered to the same machine in real time.

This statement has a lot of implications for the DAQ. First of all, it implies that the
datastream in the DAQ needs to be sorted in time at some point since time information
is the only way to separate moun decays from each other before reconstruction takes
place. As described in 2.2.1 and 2.3.1, the output of both used ASICs is inherently not
time sorted, which makes the creation of a time-sorted datastream that can be easily
distributed across multiple reconstruction sites one of the tasks of the DAQ system.

Creating time slices of the data in order to give them to the different reconstruction
sites also makes it necessary that the detectors involved in producing the data operate
on the same time basis. To ensure that, all sensors need to be supplied with the same
clock signal and a reference point in the form of a reset to synchronise.

The system to supply this clock & reset is also necessary for the reconstruction itself
since precise time information can be used to resolve pile-up of multiple muon decays
and to identify the charge of low z-momentum decay particles by time of flight (ToF)
methods. The detector with the best time resolution reaches a resolution of 70 ps.
Therefore, the synchronisation across the whole detector and the overall precision of
the clock and reset system has to be smaller than 70 ps in order to preserve the timing
precision when combining individual detections of multiple detector components for
the reconstruction.

In addition to the supply of a timing reference and the readout and preprocessing of
the detector data, the DAQ system also has to provide many other kinds of services,
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such as configuration and tuning for MuTrig and MuPix ASICs at a sufficient speed,
live monitoring of different properties of the system, the capability to inject data for
test purposes, start/stop procedures for data runs, emergency procedures to protect
the system from events like overheating and various other things.

This chapter will discuss in detail the tasks and challenges for the data acquisition
system and the design decisions taken to implement solutions for them. Some of these
aspects were already partially addressed by the author in the master thesis preceding
this work [51]. Sections related to those aspects have been expanded and updated
with developments made during this thesis.

4.1. Overview

The Mu3e data acquisition system is structured into four layers. The detector ASICs
discussed in the previous chapter represent the lowest layer in this system. The next
layer is made up of 114 custom-designed “frontend boards” (FEBs) located within the
service wheels on the sides of the Mu3e detector. These boards, still within the magnet
and helium atmosphere, manage all communication to and from the detector ASICs,
and receive data from them via up to 36 1.25 Gbit/s LVDS links per FEB. Of the
114 FEBs, 88 are allocated to the pixel detector, 14 to the tiles, and 12 to the fibre
detector.

Switching Board

Central - Pixel

Switching Board
Upstream-Recurl

Switching Board
Downstream-Recurl

Switching Board

Central - Fibre

Layer 0

Layer 2

Layer 1

2844

MuPix - 
Sensors

3072

Fibres

6272

Tiles

88 FEB's 14 FEB's 12 FEB's
Magnet

PC 1Layer 3 PC 2 PC 12...
Figure 44.: Overview of the layers of the Mu3e data acquisition.

Each frontend board connects to one of four switching boards outside of the magnet
through optical fibres operating at a data rate of 6.25 Gbit/s. One switching board
receives all the data from the upstream, and the other one receives all the data from
the downstream recurl station. The data from the central station is divided into pixel
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and fibre data with a dedicated switching board for each detector type in this station.

The last layer consists of a daisy chain of PCs hosting one receiver board and one
graphics card each. The first PC in the chain links to all switching boards via 16
optical fibres, each with a bandwidth of 10 Gbit/s. All following PCs in the chain
have a connection with the same bandwidth towards the next one.

The overall data rate from all subdetectors is expected to be at around 100 Gbit/s
in phase I [23] and 1 Tbit/s in phase II of the Mu3e experiment. The system does not
contain a hardware trigger signal. Therefore, all the data needs to be streamed to the
highest layer.

4.1.1. Layer 1 – Frontend Boards

Connection to 

Detector Modules

ArriaV

 FPGA

optical 

rx/tx

clk distr.

Max10

FPGA

Figure 45.: Picture of the frontend board (FEB).

Layer 1 of the data acquisition is built from 114 frontend boards (FEBs). They were
developed in the Mu3e collaboration in order to combine all the required functionalities
with the tight available space at their intended position. Their main component is
an ArriaV FPGA, version 5AGXBA7D4F31C5, with 91680 ALMs, roughly 14 Mb of
M10K and 1.5 Mb of MLAB memory.

It communicates with the system’s upper levels via optical transceivers running at
6.25 Gbit/s. The downwards connection to the detector modules is done electrically
and consists of various control signals and up to 36 1.25 Gbit/s LVDS pairs to receive
data.
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The task of the ArriaV is to process, sort, and repackage the data from the detector
modules and provide the necessary control interfaces to operate them. The detailed
issues will be discussed in this chapter.

Apart from the upwards and downwards datapath, the FEB is also responsible
for clock and reset distribution to the detector and contains dedicated hardware to
implement this.

Since the ArriaV does not contain non-volatile memory, its configuration will be
lost when the power is turned off. This is the main reason for the smaller 2nd FPGA
(MAX10) on the FEB, which configures the ArriaV from flash memory.

The FEBs slide into the 60 slots of the circular backplane PCBs within the service
support wheel shown in figure 46. Cooling is provided by water flowing through the
aluminium parts of the wheel. These are then connected via copper heat pipes to
cooling blocks mounted on the FEBs. The backside of the circular PCB uses a similar
sliding and cooling mechanism to connect detector adapter boards (DABs), which
connect to the cables of the actual detector modules.

The backplane PCB provides power to the FEB and a connection between FEB and
DAB. The square aluminium plates on the left and right sides are the patch panels
for the optical data cables. From there, the cables are routed out of the magnet and
over a distance of O(50 m) to the server racks where the rest of the DAQ system is
located.

Figure 46.: Picture of the service support wheel [52]. An identical wheel is located on
the other side of the detector.
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The firmware used for the Max10 FPGA can be identical for all FEBs in Mu3e.
This is not possible for the firmware of the ArriaV since different versions are needed
depending on the sub-detector type to which the particular FEB is connecting.

In order to sufficiently integrate all three subdetectors into the same system, it
is crucial that they use common infrastructure, protocols and methods as much as
reasonably possible in the Mu3e DAQ. For this reason, the ArriaV firmware will be
divided into two blocks: A common part of the firmware, which will be used by all
three sub-detector types and a sub-detector specific part. The common part will
implement things related to the board and communication infrastructure and manage
the connection to the higher layers of the DAQ system.

ArriaV Firmware

FEB-COMMON

sub-detector-
specific

or

or

      Sci-Fi

       Sci-Tile

MuPix

Figure 47.: Division of the FEB firmware into a common and a detector-specific part.

The sub-detector specific part implements the circuits necessary for the operation
and readout of the Mupix or MuTrig ASIC. The Sci-Fi and Sci-Tile blocks will be
similar since they both connect to MuTrig chips. The reasons for them not being
identical will be discussed later.

This separation ensures that starting from the FEB-common block, the control and
readout of data is similar for all three detectors in Mu3e. It also simplifies development
since the FEB-common firmware only needs to be implemented once and can be reused
for the three FEB flavours1.

4.1.2. Layer 2 – Switching Boards

The four switching boards (SWB) are hosted in four switching servers outside of
the beam area. They connect to the other end of the optical fibres from the FEBs
according to the assignment in figure 44. Therefore, there will be an upstream and
downstream SWB, a central pixel, and a central scifi SWB.

The board was originally developed by the LHCb collaboration under the name
PCIe40 [53] and is used by Mu3e due to its optical input and output capabilities. It
contains eight Avago Minipods [54], giving it the possibility to connect to 8x12 optical
fibres, each of which could be operated at 10 Gbit/s.

1
There are actually a lot more than three flavours of FEB firmware, but they do not provide a
meaningful contribution to this section. Other firmware versions will be introduced later if they
become relevant.
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Similar to the FEB, the main component is again an FPGA, this time an intel
Arria10. It receives the data from all the connected frontend boards and repackages it
into a data stream that can be sent onwards to the third layer of the DAQ. It is also
the place where the control datapath for detector operation is connected to software
via a PCIe interface. Therefore, the third layer of the DAQ is no longer in contact
with detector operation details.

Figure 48.: Picture of the PCIe40 board developed by the LHCb collaboration.

4.1.3. Layer 3 – Farm PCs

Figure 49.: Picture of the DE5a-Net development board, which is used as an optical
receiver inside of each farm PC in the Mu3e DAQ.

When the data arrives at the last layer of the data acquisition, it is received by
a chain of commercially available DE5a-Net development boards hosted in separate
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servers.

Every board in the chain sends time slices of data via a direct memory access (DMA,
section 3.8.6) to a GPU where a tracking algorithm is used to make a selection decision
on that time frame based on the expected kinematics for a µ → 3e decay. Selected
time frames are sent to long-term data storage and will be used for offline analysis.
Other frames are discarded.

Each board also forwards all data to the next server in the chain and flags the
processed time slices. The procedure above is performed by each server in the chain
until all time slices are flagged as processed. It was shown that 12 PCs equipped with
a Nvidia GTX1080Ti graphics card are able to achieve this for the expected data rates
in the first phase of the experiment [23]. With newer graphic cards available at the
start of the experiment, this number can likely be reduced [55].

The complete layer three of the DAQ will also be referred to as farm PCs, filter
farm or GPU farm in the following parts of this thesis.

4.1.4. Structure of this chapter

The discussion of challenges and their solutions in the DAQ system has to follow a
path through the system, explaining issues as they appear along that path.

However, the choice of that path is not obvious, and the Mu3e DAQ was not written
in that way. It started with bits and pieces, which have developed over time into a
first functional system, which was then further optimised and changed. This thesis
does not aim to discuss the history of this process but to present the solutions that
came out of it and are implemented today.

In order to do so, a path has been chosen that aims to minimise places where
references to later sections are needed to understand the discussion. This path does
not directly follow the flow of data from the detectors to the analysis since this would
create too many of these forward references.

We will start with an introduction to the software framework, continue with the
connection between layers one and two and discuss how the software can communicate
with frontend boards (FEBs). This will be followed by a discussion of the common
parts of the FEB, which will include the reset and clock distribution, slowcontrol and
general architectural aspects.

After this has been introduced, the discussion will continue with data flowing to-
wards the pixel detector and everything that is necessary to enable the MuPix chips
to take data. This section will range from layers two to zero and use many of the
previously discussed aspects.

Once this has been achieved, we will turn around and follow the data path from the
MuPix to the common part of FEB firmware and highlight the differences to the scifi
and tile detector before continuing through layers 2 and 3 until the analysis.

A few parts of the system are necessary to operate it, but not strictly necessary to
understand the previous discussion. Those aspects will be addressed separately at the
end.
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4.2. MIDAS

MIDAS (Maximum Integrated Data Acquisition System) is the software framework
used to build the Mu3e DAQ. It has been continuously developed at PSI and TRIUMF
since 1993 [56].

Controlling an experiment with MIDAS conceptually consists of three parts. The
MIDAS frontends are independent software programs that control the detector’s hard-
ware components or functionalities2. In Mu3e, for example, there is a MIDAS frontend
for the power supplies, the magnet control, one for each switching board and many
others.

These MIDAS frontends can operate on any device in the network. There is no
requirement for them to run on physically the same machine. For example, the MIDAS
frontends for the switching boards will, like the boards themselves, be operated by
the server in which the board is located.

All MIDAS frontends can read and write to a common online database (ODB)
located on a machine in the network. The ODB can contain any kind of information
and is structured like a folder system. ODB variables are accessed by name. There is
also the possibility of setting up watch functions on specific variables or parts of the
ODB. Any change to one of these ODB entries will then trigger a user-defined function
in the according frontend. This gives the individual frontends a way of communicating
via the ODB.

Online Database Webserver

User 1

User 2

MIDAS 
Frontend A

MIDAS 
Frontend B

... ...

(odb)

read/write 
to odb

Webpageodb
watch

Figure 50.: Controlling an experiment with MIDAS.

The third component is a web server, usually hosted on the same machine as the
online database. The web server provides users with access to the ODB via web
pages. The web pages can be written specifically for the experiment and can be used
to implement any desired user interface with JavaScript and HTML.

The user can interact with the webpage and change ODB values via the web server.
Changing ODB values can trigger watch functions in the MIDAS frontends, which can
perform actions within the detector.

MIDAS also provides additional functionalities which are often needed by physics
experiments. Run starts and stops are predefined separate procedures that can trigger

2
MIDAS frontends have nothing to do with the frontend board. FEBs will be controlled by MIDAS
frontends, but usage of the term frontend for both is just a coincidence.
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a sequence of events within the connected frontends.

All values in the ODB can be connected to a history system, which automatically
creates a time series of this value and can, for example, be used to display the tem-
perature of a detector changing over time. Alarms can be created on ODB values and
trigger frontend functions. For example, a temperature rising above a certain value
can be set as an alarm and cause some action.

4.2.1. Detector data

Large volume data readout within the MIDAS system is separated from the previously
described control and monitoring functionalities. Detector data is read out by the
MIDAS frontends but not written into the ODB. Instead, it is written into the MIDAS
event buffer, where it can be accessed by data loggers or other software. Data loggers
write the received data to disk.

The data format in the resulting file and within the event buffer is called a MIDAS
bank. A bank consists of a header and data. The header contains information such as
the serial number of the event, the bank name, Unix time at creation and bank size.
Precise formatting information can be found in [56].

Multiple bank names can be defined, referring to independent streams of data.
Offline analysis can loop over the file created by the data logger and search for the
bank names relevant to the intended analysis.

4.3. Frontend Board Communication

The connection between the frontend boards (FEBs) and switching boards (SWBs)
is the only high-speed communication interface to the inside of the Mu3e magnet. It
is implemented using pairs of OM3 optical fibres operated in both directions on a
serial bit-frequency of 6.25 Gibt/s. This allows for complete electrical decoupling of
the detectors from DAQ components outside of the magnet since all communication
is based on optical fibres3. Except for power, there are no electrical connections to
the detectors, which is beneficial for grounding schemes since it avoids ground loops.

4.3.1. FEB Communication Protocol

The standard integer size on the machines connected outside of the magnet is 32-
bit. In order to simplify the software implementation there, large parts of the FEB
firmware are also based on 32-bit protocols, including the parallel interface width of
the optical connection to the SWB. From the FEB firmware point of view there is no
particular reason for a 32-bit architecture.

Every byte in each 32-bit word transmitted between SWB and FEB is 8b/10b
encoded before transmission, which increases the actual parallel word width to 40

3
There are also alternative communication channels with very limited bandwidth. They will be
discussed later.
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bits, effectively resulting in a 6.25 Gb/s
40 b = 156.25 Hz transmission frequency for 32-bit

words per connection.
Most transmissions between SWB and FEB will be organised in packets. The

packet structure is similar for both directions and is shown in table 6. It consists of
a preamble, the payload and a trailer. For the lowest bytes of preamble and trailer
8b10b comma words (table 3 in section 3.8.3) are used. They are necessary to identify
the start and end of a packet unambiguously.

012345678910111213141516171819202122232425262728293031

TYPE SC FPGA ID K28.5

}
Preamble

Word 0

Word 1

Word 2

...


Payload

Trailer Payload K28.4

}
Trailer

Table 6.: Structure of a data packet between SWB and FEB.

The payload is unable to produce a similar bit sequence since K28.5 and K28.4
are unique in their encoded 10-bit representation. Their 8-bit representation can be
identical to the contents of the payload, but the 8b10b encoding/decoding logic will
have additional input/output bits to identify comma symbols. The idea of this is
shown in figure 51.

The serial data is received from the optical fibre, aligned and deserialised into 40-bit
words which are then 8b10b decoded. The result is a 32-bit word and a 4-bit datak
indicator, which is used to show which of the 4 bytes in the 32-bit word was an 8b10b
comma symbol in the 40-bit representation. The datak indicator is also used for byte
alignment in order to ensure the position of the comma symbol in bits 7-0 of table 6.

Serial Data

40-bit Words
32-bit Words

4-bit datak
..011010100.. Deserialisation 

& Alignment
8b10b 

Decoding

Figure 51.: Concept of 8b10b decoding and deserialisation.

The transmitting side uses the same concept in reverse without the need for align-
ment. The logic controlling the transmission and protocol handling is provided with
the 32-bit data word and 4-bit datak indicator for the receiver and transmitter.

In addition to the comma word K28.5, the preamble contains fields named FGPA ID,
SC and TYPE. The FPGA ID is the 16-bit identifier of the FEB where this packet
is headed to or coming from. At the time of writing this thesis, this is used as a

74



4.3. Frontend Board Communication

cross-check for correct cabling and does not have significant routing purposes since
the protocol is only used for point-to-point connections between SWBs and FEBs.

Should the architecture of the Mu3e DAQ change in the future, the FPGA ID can
be used for routing purposes without breaking compatibility with existing firmware.
When inserted into the service support wheel, the FEB is informed about the ID via
position identifier bits on the backplane PCB. For test systems, the ID is configured
from the software4.

The TYPE field specifies the type of the packet and substructure to expect in the
payload. The specified types are listed in table 7. Each subdetector has a type for
hit data and debug data. The hit data type is only sent from the FEB to the SWB
and contains information such as timestamp and location of particle detections. The
BERT and debug types are only used during development.

All control and monitoring information between the SWB and the FEB is exchanged
via the SlowControl type. The name slow control has historical reasons and does
not imply anything about the packet’s transmission speed. Slowcontrol packets are
transmitted with the same frequency as the other types.

When no packets are currently in tranmsission, the link is required to continuously
send K28.5. This also allows for gaps within the tranmsission of a packet: If the
firmware is unable to send an N-Word packet within N clock cycles, it can fill the
resulting gaps with K28.5 without breaking the protocol.

6-bit ID TYPE comment

111010 MuPix Hit information from pixel detector
111000 Scifi Hit information from scintillating fibres
110100 Tile Hit information from scintillating tiles
000111 SlowControl All control and monitoring data
000000 idle -

111011 MuPix debug general-purpose MuPix debug data
111001 Scifi debug general-purpose Scifi debug data
110101 Tile debug general-purpose Tile debug data
000010 BERT Bit error rate test

Table 7.: TYPE identifiers in the SWB-FEB protocol.

The payload of slowcontrol and hit data packets follows a specified lower level proto-
col. The details for data packets will follow later since they are irrelevant for two-way
communication between SWB and FEB.

Communication with a FEB is based on addresses on which read/write actions can
be performed. Every setting and status information on the FEB is assigned an address
under which it can be accessed. A setting on the FEB is, for example, a register
controlling the FPGA-ID in DAQ test-systems (as mentioned above). Slowcontrol

4
How things on the FEB are configured from the software is the purpose of this section and will
follow soon.
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packets can then be used to read or change the register using its address. Such
registers will be referred to as slowcontrol registers or sc-registers during this thesis.

Slowcontrol registers can behave differently when read/write actions target their
address. For example, a register connected to a temperature sensor will not react
at all to a write transaction. A sc-register connected to the read port of a FIFO
will also not react to write transactions, but in addition consecutive reads from the
same address will give different results until the FIFO is empty. Should the sc-register
be connected to the write port of the FIFO instead, it will not be possible to read
useful information from it. We will encounter many of these cases where sc-registers
do not behave like content behind a memory address. The software parts need to
be written accordingly since reading multiple times from the same memory location
would otherwise be removed by the software compiler during optimisation.

The substructure of a slowcontrol packet from the SWB towards the FEB is shown in
table 8. It would be inefficient to issue a separate slowcontrol packet for each register
access. As we will see in the following chapters, it is quite common that multiple
consecutive register addresses have to be read or written from software together. For
this reason, the slowcontrol packet specifies the start address of a transaction in the
second word of the packet, followed by either the length of the requested data or the
length of the data followed by the data to be written. The FEB firmware is then
required to read the data from registers start address until start address+ length or
to write data to registers start address until start address+length. The identification
as a read or write packet is done via bit 0 of the SC field in the preamble. Write packets
where length does not match the amount of data words are invalid.

012345678910111213141516171819202122232425262728293031

000111 SC FPGA ID K28.5

}
preamble

- M̄ S̄ T̄ R̄ start address

- length

}
read

- length

data

data

 write

- K28.4

}
Trailer

Table 8.: Structure of a slow control packet heading towards a FEB.

The upper bit of the SC field sets the address to non-incrementing. This means
that the packet will result in a total of length read/write actions on the same address.
This is, for example, useful to read/write data from or to a FIFO. The four possible
combinations for SC are shown below:
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• SC = 00: incrementing read

• SC = 10: non-incrementing read

• SC = 01: incrementing write

• SC = 11: non-incrementing read

The frontend boards have to reply to each received slowcontrol packet. The format
is shown in table 9. A read command must be answered with a packet containing the
identical start address and length, followed by the read data. A write command needs
to be acknowledged by start address and length.

012345678910111213141516171819202122232425262728293031

000111 SC FPGA ID K28.5

}
preamble

- start address

- 1 length

}
write ack

- 1 length

data

data

 read ack

- K28.4

}
Trailer

Table 9.: Structure of a slow control packet heading towards an SWB.

When the SWB needs to issue the same write command to all connected FEBs, the
same message can be broadcast to all FEBs simultaneously. Acknowledge packages
would create problems in this case since the SWB would have to process them for all
connected FEBs. The acknowledge for write operations is primarily a system integrity
check and actually not needed for many applications if the system is operating error-
free, which is why acknowledge packages can be suppressed by setting the R̄ bit in
table 8. The same location in all acknowledge packages is also set to 1 since we do
not expect another reply from the SWB in these cases.

Broadcasting is, therefore, a more efficient communication mode if all connected
FEBs should be addressed. If that is not the case, subgroups of FEBs can be defined
in the upper bits of the second word of table 8. At the time of writing this thesis,
the subgroups follow the type of sub-detector specific firmware present in the ArriaV
FPGA. The bits M̄ , S̄ and T̄ are used to instruct the according type of FEB to
ignore everything in this message. If M̄ is set to 1, all MuPix FEBs will ignore the
transaction. The same applies to scifi (S̄) and tile (T̄ ) FEBs. M̄ , S̄ and T̄ are different
from R̄ in the sense that R̄ only causes suppression of the acknowledge package, while
M̄ , S̄ and T̄ prohibit the execution of the read/write action. The reason for the
inversion of M̄ , S̄, T̄ and R̄ is backwards compatibility with a previous version of the
protocol.

In rare scenarios, broadcasting can also be useful for read transactions. For example,
in a situation where a FIFO on multiple FEBs should be read empty, but the content
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is not of interest.

The protocol shown here is used on the optical fibres between the FEBs inside the
Mu3e magnet and the SWBs in the server room. Parts of it were developed for Mu3e
during this thesis. An older version of it was already shown in [51]. The next section
will discuss the firmware implementation for this communication link on the side of
the SWB. The other side requires a detour into FEB firmware architecture first and
will follow afterwards in section 4.4.4.

4.3.2. SWB Slowcontrol implementation

The slowcontrol system of the Mu3e DAQ consists of the firmware and software com-
ponents outside of the magnet and firmware blocks on the frontend boards in the
service support wheels of the Mu3e cage. As previously introduced, these two parts
are connected with a pair of optical fibres for each FEB and are operated at 6.25 Gbit/s
with a 32-bit interface width. This section will discuss the parts on the SWB where
the packets from the previous section need to be assembled and directed towards the
correct FEB. Afterwards, the reply from the FEB needs to be processed. The speed
at which this can be done is essential for the efficient operation of the Mu3e detector.

Section 3.8.6 of the previous chapter introduced PCIe communication and the func-
tion of PCIe base address registers (BARs). As already mentioned there, four base
address registers are implemented for the SWBs in Mu3e and assigned to the resources
read/write registers and read/write memory. These will now be used to build the SWB
end of the Mu3e slowcontrol system. Details on BARs and PCIe communication have
been discussed in section 3.8.6.

The essential firmware components for this end of the slowcontrol system are shown
in figure 52. Conceptually, the software writes the read or write packet into the PCIe
write memory and the packet’s length into a predefined location in the write registers.
A toggle of an enable register in the write regs will start a process in the slowcontrol
main (SC main) entity, which reads the packet from write memory and directs it to
the correct transceiver where it is 8b10b encoded, serialised and sent to the FEB.

The FEB will reply with the read data or an acknowledge package. After deseri-
alisation and decoding, the datastream will first go through a data demerger entity,
where these slowcontrol packages from the FEB are filtered from other packets on the
connection, such as data from the Mu3e detectors.

A secondary slowcontrol entity will then process the slowcontrol packets from the
FEB and write them into the PCIe read memory. The address at which the last packet
was written is reported in a predefined location of the PCIe read registers, which allows
the software to find and read the reply package from the PCIe read memory.
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Figure 52.: Schematic of SC firmware on the SWB. Slowcontrol information flowing
towards the FEB is displayed in red, and the response in green. Control
signals which are directly relevant for slowcontrol transmissions are shown
in blue. Other control signals and clock domains have been left out for
simplification.
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Figure 53.: Software flowchart of a slowcontrol transaction.

79



Chapter 4. Mu3e Data Acquisition System (DAQ)

The software procedure is shown as a flowchart in figure 53. After the enable bit
has been toggled, the software will poll the done register in the PCIe read regs until
the slowcontrol main entity has sent the entire packet towards the transceiver. If
the packet was broadcasted to all FEBs, no reply is expected, and the transaction is
finished. Otherwise, the software will start polling the last address of the secondary
slowcontrol entity until a reply packet is reported in the PCIe read memory. This
packet is then acquired from there and checked for protocol integrity. In case of a
read action, the data read from the FEB is afterwards returned to the part of the
software that requested it.

If the FEB fails to reply within a specific timeframe, the software will issue a
timeout error. This is detected by the polling time of the secondary slowcontrol
entity. Timeouts usually occur when the physical connection to the FEB does not
exist. This is a frequent error during the commissioning of a Mu3e DAQ system and
can be introduced by many reasons5.

The only other way to produce an error is when the packet read by the software does
not comply with the protocol specification. Since the state of some components after
receiving misformatted packets cannot be guaranteed, a single error is often followed
by further errors. In both cases, no action will be taken to rectify the situation.
Transmission errors between the FEB and SWB are considered unacceptable and
require the user’s intervention. The system will not automatically attempt corrections
by resetting all involved entities.

4.3.2.1. FEB routing and Broadcasting

The routing of an SC packet to the correct FEB is implemented via the FPGA ID field
in table 8. The SWB will read the packet from the PCIe write memory and convert
the FPGA ID into a one-hot encoded bit vector, which is used to direct the packet
to the transceiver connected to the targeted FEB. At the time of writing this thesis,
the FPGA ID is the integer position of the FEB within that bit vector. A special
broadcasting FPGA ID of 0x2F marks all FEBs as targets and activates all bits in
the routing vector.

During the development of the Mu3e DAQ, the FPGA ID was determined by the
output of the SWB to which the FEB is connected. The actual FEB ID in Mu3e will
be determined via the position of the FEB within the service support wheel. The issue
with this is that many existing test setups and variations of the Mu3e DAQ do not
have their FEBs connected to the final backplane of the Mu3e detector. Therefore,
the FEBs in these systems do not receive an FPGA ID via that backplane.

The current solution is that the FPGA ID in table 8 is not required to match the
FPGA ID in table 9. The SWB will target FEBs based on the index of the optical
output cable. The FEB on the other end of that cable will not use the received FPGA
ID and will consider any received packet as valid. The response packet from the FEB
is assigned an FPGA ID as specified by location on the backplane PCB. This allows

5
cabling mistakes, FEB not powered, FEB firmware not configured, ...
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for automated checks of correct cabling since both IDs are visible to the SWB.

However, other implementations are possible and will likely be considered in the
future to avoid additional mapping requirements. One option would be to broadcast
all slowcontrol messages from the SWB generally and have the FEBs react only if
their backplane address matches the received FPGA ID. This removes the need for an
FPGA ID on the side of the SWB and would be a simple solution for the actual Mu3e
detector but create issues with other system variations. An advantage of this idea is
that the cabling from the SWB to the FEB does also not require mapping anymore.
Any output of the SWB could be connected to any FEB in this case. Achieving the
same for the SWB inputs would be more difficult since the detector data and other
packets coming from the FEB must also be considered here.

The other option would be to remove the FPGA ID on the frontend board side and
only use IDs assigned by the software. This was in operation for early versions of
the Mu3e DAQ but is likely not a suitable option since it removes the possibility of
verifying the FEB location without physical access to the detector.

For the same reason, the previously discussed broadcasting subgroups (bits M̄ , S̄
and T̄ of table 8) are not purely implemented via software. It would be possible to
write the one-hot encoded routing bit vector on the SWB directly from the software
and thus broadcast messages to arbitrary combinations of FEBs. It was decided not
to implement this. Instead, all broadcast messages are always sent to all FEBs, and
the FEBs decide to which subgroup they belong to.

At the moment, this is done for M̄ , S̄ and T̄ based on the subdetector-specific
firmware present on the ArriaV, but in principle, it could be hardcoded in the FEB
firmware to backplane IDs belonging to specific detector parts. Broadcasting to all
MuPix FEBs, for example, is then not broadcasting to all FEBs with a MuPix firmware
but to all FEBs connected to the actual MuPix detector slots in the backplane, which is
much less error-prone than the software configuration of the SWB. For systems where
this is only steered by software, a wrongly connected cable could lead to damage since
situations where a FEB with scintillating fibre firmware is connected to a pixel sensor
can easily be created6 (Firmware upload to the FEB is also done via the slowcontrol
system, as we will see later).

4.3.2.2. Bandwidth and Latency Optimisation

The schematic in figure 52 was simplified and left out a few important aspects. First
of all, the PCIe interface operates at a frequency of 250 MHz, while the interface to
the FEBs operates at 156.25 MHz (6.25 GHz with 8b10b encoded 32-bit words). This
requires a clock domain transition in the system, which is located between the SC
main and transceiver entity of figure 52. In addition, the SC main entity has to serve
more than just one transceiver with slowcontrol packets. In a previous version of this
system, the timing requirements of the distribution of SC packets to the transceivers
were solved by significantly slowing down the SC main entity, which became the

6
This issue was actually created during test runs.
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limiting factor for the downwards slowcontrol bandwidth.

Different modifications of the system were then investigated to improve bandwidth
and latency. Figure 54 illustrates the latency of a slowcontrol transaction against the
size of the slowcontrol packet for different versions of the SWB firm- and software.
The bandwidth can be calculated by dividing the number of words in the packet by
the latency required to transmit it.
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Figure 54.: Different versions of the SWB slowcontrol system and their response laten-
cies based on slowcontrol packet size. Red is a read packet. Blue, orange
and green are write packets.

The starting point for the optimisation of write packets was the blue line in figure
54, which immediately raises the question about the reasons for the 60 µs y-axis offset,
the jump in latency at a packet size of around 1600 words and the slope between these
points.

The reason for the jump at a packet size of 1600 words is the polling of the done
signal of the SC main entity: The data is written into the PCIe write memory, and
the enable bit is toggled by the software (see figure 53). Immediately afterwards, the
software will read the done signal from the PCIe read regs.

This will return false if the SC main entity did not have enough time to distribute
and read the packet from the PCIe read memory. That is more likely for large packets,
and it happened at around 1600 words on the machine that this was tested on. These
cases will always take longer since at least one additional transaction is required.

However, in the case of this measurement, the software implementation is also
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relevant since it was written in a way where a context switch was introduced and
left the resumption of the polling thread to the OS scheduler. When exactly the
execution of the thread is resumed is not predictable on a scale of a few µs and leads
to the jump in latency and the further scattering of measurement points towards
higher latency values.

To avoid this issue, the software was changed, and a FIFO was introduced at the
SC main entity’s output. This allows the SC main entity to write data words at the
full 250 MHz frequency into the buffer FIFO and report ready towards the software
while data is distributed to the transceivers from the FIFO at a lower speed.

The frontend board will reply with an acknowledge packet once the transaction
header is received and will not wait for the full message. For long write messages, the
acknowledge packet will be in the PCIe read memory before the full data packet has
left the SWB towards the FEB. The software can then continue with filling the next
slowcontrol packet into the PCIe write memory. For large sequences of write actions,
this effectively allows two slowcontrol packets to be processed at the same time and
increases the bandwidth towards the detector.

Collisions between these two packets are not possible since the introduced FIFO
provides backpressure to the SC main entity. The FEB not waiting for the full mes-
sage is also not a concern since transmission errors between FEB and SWB are, as
previously mentioned, unacceptable. Therefore, if the connection is unstable, it does
not matter which exact packets are affected by this.

The y-axis offset resulted from a similar scheduling issue regarding the toggle of the
enable signal for the SC main entity, and the slope between this and the jump point
matches the speed limitation of the previous version of the SC main entity. Resolving
the scheduling issues and introducing the output FIFO results in the green line in
figure 54. For single-word writes, the latency improved by a factor of ten compared
to the previous version.

The latency has a fixed offset of 6.70 µs and increases linearly with packet size
by 0.1342 µs per word, resulting in a bandwidth of 238 Mbit/s. The exact values
are machine and load-dependent. The measurements here were done for individual
write packets without the parallelisation explained above on one of the actual Mu3e
switching servers and without other packets transmitted between FEB and SWB. As
we will see later, latency on the side of the FEB firmware can be neglected if no other
packets are present.

Read packet latency shows a steeper increase with packet size. However, their
optimisation was irrelevant for the following parts of this thesis, and they have not
presented a bottleneck for any procedure in Mu3e at this point. Write transactions
have been – and still are after the optimisation presented here – a bottleneck for a
topic that will follow in section 4.6.3. The slope at which write latency increases seems
to be the speed at which the PCIe driver can copy words into the PCIe write memory.
Changing this would, therefore, require larger adjustments in the system, which are
currently not justified.

This section has discussed the SWB end of communication with the components in
the Mu3e experiment. In addition to their use here, the PCIe read and write registers
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are also used for control functions within the SWB firmware that are unrelated to the
slowcontrol system. Every control signal on the SWB is assigned an address there and
can be accessed by software similarly to the length, enable, done and last address
signals introduced here. As mentioned in the introduction of this chapter, the other
firmware parts on the switching board will be explained once the discussion returns
to the SWB with detector data. The FEB side of the slowcontrol system is discussed
in the following section after an introduction to FEB infrastructure aspects.

4.4. Common FEB firmware

The common FEB firmware is the part of the firmware for the ArriaV FPGA on the
frontend board which does not change depending on the type of connected subdetector.
Technically the FEB also conatins a Max10 FPGA which does also not change with
the type of subdetector but the term common firmware will only reffer to the ArriaV
parts of the system.

These include the processing of packets to and from the SWB firmware discussed
in the previous section. Most parts of the FEB slowcontrol system are located in this
part of the firmware. However, the actual endpoints, such as slowcontrol registers or
memory resources, are located in all parts of the FEB firmware since all parts require
control and monitoring functionalities. The slowcontrol system and packet handling
will be discussed in sections 4.4.3 and 4.4.4.

The other important task of the common FEB firmware is detector synchronisation.
The MuPix and MuTrig ASICs are only able to provide accurate relative timing
information for particle detections if all ASICs in the Mu3e DAQ system operate on
the same time basis. In order to achieve this, a clock and a reset signal have to be
provided to all parts of Mu3e and they need to be sufficiently synchronised across all
detector components. The implications of this for the FEB firmware are explained in
section 4.4.2.

Further tasks of the common FEB firmware include general operational aspects
which are not directly related to detector readout or configuration. However, they are
still very relevant since they provide backup and safety mechanisms, a boot sequence
and other important functionalities. Since those topics are not immediately necessary
for detector operation, they will be postponed to section 4.11.

4.4.1. Clock Domains of the ArriaV FEB Firmware

The ArriaV FPGA on the FEB operates – for the most part – on the three clocks
shown in table 10. The first clock domain of 156.25 MHz is operating at the link
frequency of the connection to the SWB. This is a result of the maximal transmission
frequency of the ArriaV FPGA (6.25 Gbit/s) and the choice of an 8b10b-encoded
interface width of 32-bit between the FEB and the SWB. All communication with the
SWB naturally happens at that frequency.

The extent of this clock domain has then been increased to include all of the slow-
control system, monitoring and ASIC configuration tasks. This is a natural choice
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since these areas need frequent bidirectional communication with the SWB and a
crossing to slower domains would limit the available bandwidth to do so. However,
other domains of the firmware also need access to monitoring and control information
from the SWB. The necessary domain transition into the 156.25 MHz domain hap-
pens at the endpoints of the slowcontrol system at each individual access point. The
reasons and possible alternatives for this decision will be explained in section 4.4.4.4.

156.25 MHz 125 MHz 50 MHz

communication to the SWB ASIC readout, decoding board infrastructure
slowcontrol system detector datapath safety and backup sys.
ASIC configuration sorting boot procedure
system monitoring detector synchronisation disconnected operation

timestamping NIOS processor

Table 10.: Important clock domains of the ArriaV FPGA on the frontend board and
the system areas that they are operating.

The 125 MHz domain is responsible for hit data coming from the detector ASICs.
The MuTrig and MuPix were designed to send data words to the FEB with a frequency
of 125 MHz. Therefore, the decoding and first processing steps also happen at this
frequency. At some point this needs to be translated into the 156.25 MHz domain for
transmission to the SWB.

Apart from data processing, the 125 MHz clock also serves as a global time reference
for the Mu3e detector and is responsible for timestamping and detector synchronisa-
tion processes. Strictly speaking, multiple 125 MHz domains exist which are all based
on the same clock but with unknown shifts relative to each other. This results in
issues for detector synchronisation, which will be discussed in detail in section 4.4.2.

The 50 MHz clock domain is driven by a quartz oscillator located on the FEB.
All other clocks are externally provided to the FEB in some way. Consequently, the
clock is used in the firmware to provide operations that should function even when
the FEB is completely disconnected from the rest of the DAQ system. Safety and
backup systems, as well as the boot procedure, fall into this category. Additionally,
the domain operates an embedded softcore processor (NIOS).

4.4.2. Clock and Reset Distribution

With the exception of the 50 MHz domain, the reference clock for the FEB is provided
by the clock and reset distribution system. The critical task of this system is to
synchronise all detector components of Mu3e. The time resolution of these components
is an important factor for particle track reconstruction since a better time resolution
reduces the number of hits that reconstruction algorithms have to search through,
which is highly relevant at the particle rates expected for Mu3e. Sufficient time
resolution also enables the use of time of flight (ToF) measurements, for example,
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to distinguish clockwise and counterclockwise tracks in the central Mu3e station and
identify them as positrons or electrons.

To make use of the time resolution of the Mu3e detectors, the timing information
for each individual particle detection has to be measured relative to a global time
reference. Providing this global time reference with the required accuracy is what we
will refer to as synchronisation. Since the best time resolution in Mu3e is at around
70 ps, the synchronisation accuracy needs to reach values below 70 ps in order to
preserve this resolution relative to other detector components. This is the task of the
clock and reset distribution system.

Parts of the system have already been introduced by the author in the masterthesis
[51] preceding this work. This section will draw from there and include updates on
recent developments.

The Mu3e clock and reset system distributes a clock and a reset signal. These will
be used to run and reset counters in the detector ASICs and on the ArriaV FPGA
on the FEB. The counter is then used as a time reference (timestamp) for particle
detections and other events in the DAQ.

On the detector ASICs (MuPix and MuTrig), the counter has a limited amount of
bits and will occasionally overflow. The time information lost there needs to be added
again as the data flows through the system. This will be explained once the discussion
follows the path of the data starting from section 4.7.

The advantage of providing the time reference as a clock and reset signal is that
the precision of the synchronisation can depend on the precision of the clock signal
instead of the precision of the reset. This is achieved by resynchronising the reset
signal to the clock at each receiver. The reset signal is then not the actual reset of the
counter or parts of the detector but is instead used to identify the clock edge on which
the actual reset to these components is issued. As long as the distributed reset always
identifies the same clock edge in the complete system, the precision of the actual reset
is a result of the precision of that clock edge.

Precise, low-jitter clock systems can be built from commercial off-the-shelf compo-
nents. Similarly to the clock distribution networks in FPGAs (see section 3.3.1.2), a
low clock skew between different detector parts can be achieved by using the same
cable lengths for all clock lines, which is the approach taken by Mu3e.

Equivalently to the connection to the SWB, the clock and reset distribution to the
FEBs also uses optical fibres to remove any grounding considerations from the system.
The clock is an optical 125 MHz signal and the reset is a 8b10b encoded 1.25 Gbit/s
link with an interface witdh of 8 bit. The parallel frequency of the reset link is identical
to the 125 MHz clock line and synchronised to it since both are generated from the
same device.

The clock and reset distribution lines originate at the so-called clock box (figure
55), which is located outside of the experimental area in the Mu3e server room. It
contains a GENESYS2 board with a Kintex-7 Xilinx FPGA, where the clock and reset
link is generated. The MIDAS DAQ system can control the GENESYS board via an
ethernet connection. It is connected to the clock distribution board, generating 144
active optical copies of the reset and clock line.
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Figure 55.: Picture of the clock distribu-
tion box.

optical
receiver
Module
(Firefly)

SI-Chip 1

FEB

ArriaV

Detector asics

Max10
50 MHz

oscillator

50 MHz
oscillator

SI-Chip 2

125 MHz clock

50 MHz 

50 MHz 

50 MHz 

15
6.

25
 M

H
z 

125 MHz 

reset link

re
se

t l
in

k

reset

125 MHz 

125 MHz 

125 MHz 

Figure 56.: Used clock and reset lines on
the FEB.

Those are then individually connected to each FEB by two about 100 m long optical
fibres and received on the FEB by a bidirectional ECUO-B04 firefly receiver module
[57]. From there, the 125 MHz clock is forwarded through two clock distribution
chips [58] to the ArriaV FPGA and the detector ASICs. Along the way, multiple
other clocks are derived from the 125 MHz reference clock. The reset link is forwarded
directly to the ArriaV FPGA, resynchronised there to the 125 MHz reference and
used to drive the actual reset signal of the detector ASICs. The 125 MHz clock
for the detector ASICs is not provided from the ArriaV since using dedicated clock
distribution components results in a lower clock jitter. A measurement of an FPGA
output jitter is shown in figure 57. The used clock chips are rated with an output
jitter of 90 fs [58].
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Figure 57.: Example of jitter on an FPGA output signal. The delay was measured
against a reference clock. Jitter contributions from the oscilloscope are
negligible.
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Layers 2 and 3 of the DAQ are also provided with the same optical 125 MHz reference
clock. However, since individual particle detections have already been assigned a
global timestamp at this point, no reset needs to be provided and the reference clock
is only used to drive the communication interfaces with the FEBs. A PCB with the
dimensions of a PCIe card to receive the clock in the servers of DAQ layers 2 and 3
was developed in [59].

4.4.2.1. Reset Protocol

As mentioned before, the reset line between the clock distribution box and the FEB is
implemented as an 8b10b encoded 1.25 Gbit link. The naive alternative to this would
be to use a single-bit signal with the two states ”reset active” and ”reset not active”.
From a design point of view, this route was not taken since the implementation as
a data link gives the opportunity to use the reset link for more than just one type
of timing-critical operation. From a technical point of view, it turned out later that
implementation as a simple two-state reset wire was never possible in the first place
since the used optical transceivers are unable to transmit a constant 1 or constant 0
towards the frontend board7.

Therefore, the reset was implemented using 8-bit commands, which can be used
to cycle through a set of possible states of the FEBs. These 8-bit commands and
their payloads are controlled by a MIDAS frontend and sent to the clock and reset
distribution board via ethernet. The possible FEB states and the commands to change
between them are shown in tables 11 and 12.

State Comment

Normal operation
Idle

Run Prepare

Sync Resets active
Running

Terminating

Hard Resets
Reset

Others
Out of DAQ

Table 11.: FEB system states [60]

Command Code Payload

Run Prepare 0x10 32 bit run
Sync 0x11 -
Start Run 0x12 -
End Run 0x13 -
Abort Run 0x14 -

Reset 0x30 16 bit mask
Stop Reset 0x31 16 bit mask
Enable 0x32
Disable 0x33

Address 0x40 16 bit addr

Table 12.: Reset link protocol [60]

In a normal run sequence, the FEB cycles through the states idle, run prepare,

sync, running and terminating before the idle state is reached again. During

7
This was observed during the development of a system variation of the Mu3e DAQ and will be
briefly discussed in chapter 5.
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the run prepare state, all FEBs have to acknowledge that they are ready to start a
new data-taking run8. When this is the case, the MIDAS software will send out the
sync command, which instructs the FEBs to raise the resets of the connected detector
ASICs until the sync state is exited with a start run signal. With the arrival of this
signal, all timestamp counters in Mu3e are supposed to start synchronised counting.

A run is stopped with the end run signal. The frontend boards will move into the
terminating state and continue processing detector data until the controlling entity
receives permission to end the run from other firmware components on the ArriaV.
This will return the FEB back into the idle state.

The additional states Out of DAQ and reset are not used during regular operation.
The Out of DAQ state can only be entered from the idle state and allows to take a
FEB out of the data acquisition system. FEBs in this state do not participate in data
acquisition runs but are still powered and can be reinserted into the DAQ with the
enable command. The reset state is used to hard-reset parts of the FEB firmware
and is unrelated to the task of detector synchronisation. Which parts of the FEB
firmware are reset in this state can be controlled via the payload.

All commands in table 12 can also be transmitted with a target address. This re-
quires the address command and the FPGA ID of the frontend board to be transmitted
right in front of the intended command.

Implementation details on the state controller which operates these FEB state tran-
sitions can be found in the masterthesis preceding this work [51]. The states Sync

test and Link test mentioned there are not used in Mu3e anymore.

4.4.2.2. FEB Reset Resynchronisation

When the reset signal arrives at the receiver on the ArriaV FPGA, the receiver recovers
a clock from the serial input data, divides this clock down to the appropriate frequency
of the parallelised output signal and uses it to drive the parallel output data, which
is then decoded according to the protocol explained in the last section. The reset
line operates at 1.25 Gbit/s and has an 8b/10b decoded 8-bit wide interface. The
recovered parallel clock is, therefore, running at 125 MHz. This clock is identical to
the 125 MHz reference clock since both signals come from the Kintex-7 FPGA in the
clock distribution box. However, there can be a phase shift between them. The issue
is that this phase shift is initially unknown.

The phase shift is a combination of two factors. The first one is a possible cable
length difference between the distribution of the 125 MHz clock and the reset to the
ArriaV FPGA. For a correctly built Mu3e DAQ, this is only the difference in trace
length on the FEB PCB since the optical cables are supposed to have an identical
length. The other factor is that the receiver has ten possibilities for recovering the
125 MHz clock since there are ten rising edges of the fast 1.25 GHz clock available to
which the phase of the slow 125 MHz recovered clock could be aligned to.

The result is the existence of two 125 MHz domains. One is the reference domain

8
How they do that will be discussed later.
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on which large parts of the FEB firmware operate and from which the reset needs to
be driven to the detector ASICs. The second 125 MHz domain was recovered from
the reset link, has one of ten possible phase relations and contains the state machine
which provides the FEB state which is supposed to control the reset.

The problem is that the FEB state needs to go from there into the reference domain
and none of the previously discussed methods for clock domain crossings (CDCs,
section 3.7.4) can be used to do it. CDC methods inherently do not guarantee the exact
cycle in which the data arrives in the destination clock domain. For example, the FEB
state could be converted into a one-hot encoded state vector and a synchronisation
chain could be used to move this to the reference domain. For each individual bit
of the vector the synchronisation chain only decreases the possibility of metastable
results at the destination and does that by adding more possibilities for the contained
registers to resolve their output in either direction.

If the source and destination domain have a phase relation where the timing re-
quirements for the first register in the synchronisation chain are fulfilled, the arrival
cycle at the destination domain is deterministic and the synchronisation chain does
not really serve a purpose. In the case where timing requirements for the first register
are violated, the synchronisation chain does serve a purpose, but the cycle of arrival
at the destination is not deterministic.

The timing of state changes of all FEBs in Mu3e needs to be deterministic in order
to reset and synchronise the detector components. Therefore, we need to fulfill the
timing requirements in the new clock domain without knowing the phase relation of
source and destination clock. Since this is impossible, information about the phase
relation needs to be acquired and needs to be used to enforce timing requirements.

The first step to do so is to implement a method to measure the phase relation in
firmware. The second step is to produce a fixed phase relation of the recovered clock
relative to the word boundaries as they arrive on the FEB via the serial reset line.
In a last step, the reference clock can be shifted to a phase relation relative to the
recovered clock where the timing requirements are fulfilled.

4.4.2.3. Phase measurement

A phase measurement entity was implemented to measure the phase between the
recovered 125 MHz clock and the global reference clock in the ArriaV FPGA. The idea
was already introduced in the masterthesis [51] preceding this work. The entity makes
use of the 50 MHz clock from the oscillator on the FEB shown in figure 56. This clock
is running independently from the 125 MHz recovered and reference clock domains.
Slight frequency variations will randomly distribute the 50 MHz clock edges relative
to both 125 MHz domains since the 50 MHz clock is produced by a separate oscillator
and does not originate from the clock distribution system. These imperfections of the
50 MHz oscillator can be used to measure the phase relation.

On each rising edge of the 50 MHz clock, the two 125 MHz clocks will be sampled
and compared. If their current value is not equal to the value of the other clock, a
counter is increased (blue regions in figure 58). This is done for a measurement time
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clk1

clk2

Figure 58.: Working principle of the phase measurement between clk1 and clk2.

T and then the value of the counter is compared to the total amount of rising edges
of the 50 MHz clock in the time T. The phase difference between the two 125 MHz
clocks clk1 and clk2 can then be calculated using:

phase difference =
counts

T · f
· π (11)

where f is the frequency of the clock from the independent oscillator (50 MHz).

The results of test measurements in hardware are shown in figure 59. With the
description given above, the entity is only able to measure the absolute value of the
delay, therefore the y-axis contains only positive values. In principle, the resolution
should only be limited by the measurement time, but in reality jitter, rise times and
other things can have an influence on it.

The measurements in figure 59 form a plateau near a 4 ns delay on the x-axis. A
part of the explanation for this is an increased duty cycle which was observed for the
recovered clock in the setup where the measurement was performed. A simulation
of the entity for different duty cycles confirms this effect on the measurement (figure
61). In addition to the duty cycle simulation also a simulation with jitter was written,
which is shown in figure 60.

This entity can be used to determine the phase relationship between the two
125 MHz clocks. The method disregards all FPGA design principles from chapter 3.
The 125 MHz clocks are used as logic signal inputs of ALM blocks and all timing
requirements are completely ignored since there is no relation to the 50 MHz sam-
pling clock. However, equation 11 still holds, and the resulting counts have to be
interpreted as a statistical result. It is important to introduce a synchronisation chain
between the count-up decision and the actual counter to avoid metastable counting.
Otherwise, the counter can show quite erratic behaviour9.

9
For example, reach values of counts > T · f in the measurement time T
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Figure 59.: Measurement results from the phase entity. On the x-axis the delay be-
tween a reference clock and the global clock measured by an oscilloscope
is shown. The y-axis shows the mean of 15 delay measurements with the
phase entity for a 50 MHz free running clock and a measurement time of
226 counts. The point of intersection with the x-axis is of no meaning,
since this was moved to 0 ns by cable lengths of the reference signal. Pre-
viously shown in [51].

-4 -2 0 2 4
0

1

2

3

4

delay [ns]

m
ea
su
re
d
de
la
y
[n
s]

Figure 60.: Simulation of the phase mea-
surement entity without jit-
ter (blue) and with a 50 ps
jitter on one of the input
clocks(red). Previously shown
in [51].
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Figure 61.: Simulation of the phase mea-
surement entity with different
duty cycles of one input clock.
50 % (blue), 55 %(green), 65
%(red). The second input
clock was on a fixed duty cy-
cle of 50 % for all simulations.
Previously shown in [51].
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4.4.2.4. Ensuring a fixed phase relation

The ability to measure the phase relation alone is not useful when the result is still
a random choice of one of ten possibilities for every restart of the FEB receiver. It
is possible to remove this ambiguity when the receiver is operated correctly. The
receiver has to be driven from the 125 MHz reference clock and the initialisation
and reset procedure needs to precisely follow the instructions in [61]. All receiver
resets, including the asynchronous ones, must be driven synchronously to the 125 MHz
reference clock. Then, the word alignment has to be driven externally by user logic
operating at the same reference frequency. After this procedure, the clock recovered
by the receiver will have a fixed phase relation of relative to the word boundaries as
they arrive on the FEB via the serial reset line.

The current version of the FEB uses LVDS receivers for the reset line. An older
version used the fast transceiver IPs, where a similar way to enforce fixed phase
relations exists. However, the issue remains the same. FEB state changes will have a
fixed phase relation to the word boundaries of the serial input but not all FEBs will
neccessarily realign these changes to the same 125 MHz reference clock cycle.

4.4.2.5. Enforcing timing requirements

Section 4.4.2.3 showed how to measure the phase relationship and the last section
explained how to produce a deterministic phase relationship. The phase between the
two 125 MHz domains is now reproducible and known. Therefore, timing requirements
can be enforced between them with the goal of avoiding phase relationships where the
synchronisation of the FEB state into the global 125 MHz reference domain can flip
both ways and does not end up on a deterministic cycle.

The method to do that is based on finding the jump point in the phase relationship.
The clock chips on the FEB shown in figure 56 of section 4.4.2 can be used to gradually
shift the phase of the 125 MHz reference clock. At some point, FEB state changes
will necessarily jump to a different clock edge of the reference clock. The phase at
which FEB state changes can randomly jump between two edges is a phase at which
the timing requirements of the first register in the global clock domain are violated.
The current approach is to find that point and rotate the clock phase by 180° from
there using the clock distribution chips.

Outside of the magnet and with physical access to the FEB, the jump point can
be found with an oscilloscope. The result there can be translated to the FEBs in the
magnet by using the phase measurement entity. In principle this has to be done only
a single time once the final FEB firmware is connected in the detector cage with the
final cabling. However, the FEB firmware will likely change a couple of times during
Mu3e operation which might slightly change the optimal phase setting.

There are methods to fix the location of individual logic elements or entire design
sections of the FPGA in order to predefine their timing behaviour. These methods
were not discussed in the digital electronics chapter since there are only two occasions
in the entire Mu3e DAQ where this could be useful for user HDL code. This is one of
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them. It might be possible to predefine the exact implementation and location of reset
resynchronisation parts of the FEB firmware in order to avoid changes in the optimal
phase shift arising from compilation results for different FEB firmware versions. This
idea has not been further pursued since its relevance is questionable at the moment.

4.4.2.6. Alternatives

Distribution of a clock and synchronisation of detector components is not a Mu3e-
exclusive problem but is an important topic in all particle physics experiments. Many
of them use high speed optical transceivers in their readout systems since the pro-
duced data rates often require such solutions. However, commercially available high-
speed data transmission components are often designed for telecommunication pur-
poses where deterministic and known latencies do not play as much of a role as in
particle physics experiments.

For that reason, other experiments have implemented solutions for detector synchro-
nisation issues similar to the ones discussed here. For example, in the white rabbit
project [62] at CERN, synchronisation is achieved by measuring the delay of data
packets which are sent in both directions between components. The timestamp and
delay of these packets can then be used to synchronise timestamp counters.

Another approach is to use clock duty cycle modulation [63], which is the intention
for the DAQ of the g-2/EDM experiment at JPARC [64]. The rising edge of the clock
signal is used as time reference and the position of the falling edge is used to encode
user instructions (figure 62).

Figure 62.: Clock duty cycle modulation.

In such a system the issue of resynchronising the reset to the received clock does
not exist since it is always clear to which clock edge a reset received via a duty cycle
modulation belongs to.

There are also experiments which take a similar approach to Mu3e and use special
configurations of existing transceivers for synchronisation. For example the GBT
Project at CERN [65], which is using fixed latency transceivers [66].

The solution found for the Mu3e DAQ relies more on identical cable length than
other ideas. However, this is not an issue for Mu3e since distances from detector
components to the clock distribution are all quite similar due to the limited size of the
Mu3e detector. If necessary, cable length differences could also be calibrated away by
shifting the reference clock.

This section concludes the discussion of clock and reset distribution in Mu3e. The
FEB state can be changed synchronised for all FEBs in the Mu3e DAQ, which will
be used in the following sections to steer the actual detector ASIC resets and other
operations such as run starts or stops.
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4.4.3. Data merging

data merger

156.25 MHz125 MHz Global

sync FIFO

SWB
Transceiver

Overflow
Check

Overflow
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Other signals ...

packets to SC system ...

packets from SC system ...

detector 

data
data FIFO

control FIFO

Figure 63.: Block diagram of the firmware components involved in the merging of data.

The optical connection from the SWB to the FEB consists of two directions. The
direction towards the FEB is exclusively used by the previously discussed slowcontrol
packets. For the other direction, mutliple types of data have to be transmitted over
the same optical cable. The two most common types there are the data packets from
the detector specific firmware and the slowcontrol packets responding to read/write
commands from the SWB.

A data merger entity is connected to the outgoing optical link of the FEB to organise
these different packet types which have to be transmitted. Data packets from the
detetor datapath and the slowcontrol system are written into the data and control
FIFOs in front of the merger entity where they wait for their transaction.

The packets in these FIFOs only contain the payload from table 6 in section 4.3.1.
When a packet is read by the merger, the preamble and the trailer are added during
transmission. In addition to the 32-bit width of the data words, 4 control bits are
added to the width of the FIFO, which are used to identify the start and end of the
packet in the FIFO.

The transmission of a packet from one of the FIFOs to the SWB can start as soon as
the start of packet marker is seen in the 4 additional control bits. The data merger will
then keep reading from the chosen FIFO until the end of packet marker is received.
Should the FIFO run empty before receiving the end of the packet, idle words will be
transmitted to the SWB to fill the gaps in the datastream until the next word of the
packet arrives at the FIFO output. When the end of packet marker is received, the
packet transmitted towards the SWB will be closed with a trailer according to the
previously discussed protocol and a new FIFO will be selected for transmission.

The prioritisation of packets depends on a priority setting and the FEB state from
table 11. During the states Idle, Run Prepare and Out of DAQ, only packets from
the slowcontrol FIFO will be accepted. During the states Sync and Reset, no new
packets are accepted, but transmissions which are ongoing when the state is entered
will be finished. When the FEB is in the state Running or Terminating, a priority
setting decides which of the two FIFOs is selected first. The other FIFO is then only
selected once the FIFO with priority is empty.

On the write side of the two buffer FIFOs an overflow check is performed. When
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the FIFO is filled at a level of 90% or more, incoming packets will be thrown away.
The decision to throw a packet away is always made at the first word of the packet
and then valid until the packet ends. This was implemented as a precaution against
packet corruption.

However, since the detector datapaths are operated at a lower frequency of 125 MHz
compared to the 156.25 MHz domain of the transmission towards the SWB, packet
corruption should only be possible if the slowcontrol system is able to completely
occupy the remaining bandwidth of (156.25 MHz − 125 MHz) · 32 bit = 1 Gbit/s. As
we have seen in section 4.3.2.2, the slowcontrol system has a bandwidth limitation
on the SWB firmware of 238 Mbit/s and should, therefore, not be able to cause
bandwidth issues on the FEB for extended time periods. On short timescales, the
FEB bandwidth might be insufficient, but this can be resolved with an adequate size
of the buffer FIFOs in front of the merger.

4.4.3.1. Run Control

data merger

state controller

state

state

reset link

terminated

result

50 MHz free clock

Sync
Chain

FIFO

Phase 
Measurement

156.25 MHz
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recovered

to SWB

detector data
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Figure 64.: Run control and reset distribution.

In addition to the task of merging slowcontrol and detector data packets into a single
datastream, the merger also plays a role in the run start and stop procedure. It
is involved there by sending run control signals to the SWB. These are single 32-bit
words containing a unique, otherwise unused 8b10b comma word and a 24-bit payload.
They can be sent completely independent of the previously introduced protocol and
will be inserted by the merger between other packets. On the side of the SWB, these
run control words will be removed and processed separately from the datastream in
the data demerger shown in figure 52 of section 4.3.2.

Also involved in the run start and stop process are the clock and reset system from
section 4.4.2 and the switching board firmware. Those two components are controlled
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by two MIDAS frontends (see section 4.2) called crfe and switch fe. A normal run
start and stop procedure in Mu3e goes through the following steps:

1. The run start in MIDAS triggers a function in the switch fe, which requests a
run start command from the crfe via a watched ODB variable (as described for
communication between MIDAS frontends in section 4.2).

2. The crfe sends the run start command, including the run number N, to the clock
and reset distribution box via ethernet, which forwards this over the optical reset
line to all FEBs (section 4.4.2.1).

3. The state controller on the FEB firmware (figure 64) decodes the command and
changes the local run number to N and the FEB state into Run Prepare (section
4.4.2.1).

4. The data merger acknowledges or denies readiness to start run N based on
information from the subdetector specific firmware. It does that by sending a
run control word, as mentioned above, with the run number as a payload.

5. The SWB firmware creates a list of FEBs which have correctly acknowledged
the start of a run with the number N.

6. The switch fe reads this list and compares it against the expected list of FEBs
from the ODB. If the lists match, the switch fe concludes its run start function.

7. The crfe sends the command sync to the FEBs, which change their state into
Sync and raise the reset signal for the detector ASICs.

8. The crfe sends the command start run to the FEBs, which change their state
into Running and release the reset of the detector ASICs.

9. Data taking until the crfe issues the stop run command to the FEBs.

10. When the FEB receives the stop run command, it changes its state to
Terminating, stops accepting new data at the connection to the detector ASICs,
but continues to send packets towards the SWB until all the data in the pipeline
has been processed.

11. The data merger acknowledges the run end with another run control signal and
indicates towards the state controller that FEB state can be changed back into
idle, which is then executed by the state controller.

12. The SWB records all the FEBs which have stopped the run. This is then read
by the switch fe which allows the MIDAS software components to conclude the
run.

Other run control signals are used to indicate protocol errors to the SWB. For
example, when a data packet is not closed by the slowcontrol system or detector
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firmware after a predefined amount of cycles, the data merger will close the packet on
its own and send a timeout run control signal to the SWB. This can be processed on
the SWB since it is always possible to identify this error signal due to the usage of a
8b10b comma word.

4.4.4. FEB slowcontrol

The FEB slowcontrol system is the part of the FEB firmware which receives slow-
control packets from the SWB. As mentioned before, communication with a FEB is
based on addresses on which read/write actions can be performed. The slowcontrol
system has to execute the read or write instruction contained in received sc packets
and has to send a reply packet towards the control FIFO in front of the data merger
in figure 63. From there, reply packets will be forwarded to the SWB and integrate
into the previous discussion at the data-demerger entity in figure 52 of section 4.3.2.

4.4.4.1. Slowcontrol Receiver

sc_rx

i_link_data 32

i_link_datak 4

i_ram_rdata32

i_ram_rvalid1

o_fifo_we 1

o_fifo_wdata 36

o_ram_addr32

o_ram_re1

o_ram_we1

o_ram_wdata32

Figure 65.: Ports of the sc rx entity.

In order to implement this, the incoming slowcontrol packets from the SWB link
are first converted into an avalon agent (section 3.8.4) compatible interface by the
slowcontrol receiver (sc rx) entity. A write packet for example will apply the write
enable signal (o ram we) and cycle through the target address range while setting
o ram wdata to the according write data contained in the sc packet.

For non-incrementing writes, the output address will be held constant instead.
Therefore, the differentiation between incrementing and non-incrementing packets is
also resolved here and is not relevant anymore for other firmware components.

Read packets will act similar on the output address, but apply the read enable
(o ram re) signal instead. The entity will wait for the arrival of the reply data and
construct the reply packet to be send towards the control FIFO of the data merger.

The arrival of each data word is indicated by the downstream component with the
valid signal (i ram rvalid). The writing of reply data to the merger FIFO is delayed
accordingly if the read data does not arrive at the sc rx entity in an uninterrupted
sequence. However, the data merger might already begin transmission of the reply
packet towards the SWB with the available data. In this case, a delay of the valid signal
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at the sc rx entity can cause transmission gaps in the FEB/SWB communication,
which will be automatically filled by the merger with idle words.

In consequence, data packets from the detector readout in the other merger FIFO
need to wait until the sc rx entity has received the valid signal for all of the data
requested by the slowcontrol read packet. This can become an issue. Buffering of
packets is, in principle, the function of the merger FIFOs. However, buffering of
detector data is problematic since the detector ASICs will produce significant amounts
of data during operation and the FEB does not have the resources to store all of it
for extended time periods. Buffering of slowcontrol packets is much simpler since the
software on the SWB will need the reply packet before it issues another instruction10.

This could lead to packet loss on the detector readout path, which, as we will see
later, has to be avoided for the DAQ layer 2 firmware to operate properly. Therefore,
the next section will discuss how the sc rx entity can be provided with an uninterrupted
reply datastream.

4.4.4.2. Slowcontrol RAM

The slowcontrol RAM (sc RAM) entity provides an access interface to the range of
FEB registers and other resources, which steer and monitor all functionalities on the
frontend board and the connected detector components.

Towards the components on the left side of figure 66, the entity provides multiple
avalon agent compatible memory interfaces. The entity in itself does not contain
random access memory but connects to many components on the right side of figure 66,
the aggregate of which acts like a random access memory. As we have discussed
previously, not all addresses in this constructed RAM will behave exactly like memory.
Some addresses might not be writeable, others might be the write port of a FIFO or
might cause a shutdown of the detector whenever they are accessed. The action
depends on whatever the components on the right are configured to do when their
slowcontrol addresses are read or written.

W W W WR R R R

R

<          Latency N              >
N cycles 
latency

read data

addr, write data, ...Prioritisation
sc_rx > NIOS > MSCB

sc _rx

NIOS

MSCB

addr, write data, ...

sc_RAM

Figure 66.: Concept of the sc RAM entity

10
With a couple of exceptions which have been discussed in section 4.3.1
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Read and write commands from the avalon compatible hosts on the left are priori-
tised and forwarded to components on the right. Those are required to reply to read
commands within a latency of exactly N cycles. Since the latency is exactly defined,
every clock cycle can be used to send commands towards the left. The reply to a
command will arrive back at the sc RAM entity N cycles later. There, a shift register
with length N contains an identifier for the host and type of command (read or write)
and allows the sc RAM entity to keep track of the instructions and route the reply
data towards the correct host after N cycles.

The sc rx entity from the previous section is one of the hosts connected to a memory
interface on the left. As discussed in the last section, the sc rx entity only implements
a valid signal and does not implement the usual avalon waitrequest. Therefore, it is
not possible to slow it down from the side of the sc RAM.

This is intentional and does not cause a problem since the sc rx entity has the
highest priority in the sc RAM entity. Other hosts implement the avalon waitrequest
signal and can be stalled in their current transaction at any time and indefinitely if it
is needed to serve the sc rx entity. This ensures that the sc rx entity can always be
provided with the full write and read bandwidth with a fixed read latency.

This has the important consequence that there is no backpressure needed towards
the SWB soft- and firmware. A instruction can be sent from the SWB to the FEB at
any time and the FEB will have the resources to execute it, independent of all other
operations.

For the other hosts, reply times can vary depending on currently ongoing interac-
tions with the SWB. The hosts NIOS and MSCB shown in figure 66 will be discussed
in the next section.

4.4.4.3. NIOS and MSCB

The NIOS is a processor provided by Intel as softcore IP for the use on their FPGAs.
It is used on the frontend boards to allow them to run software programs. The NIOS
has the same access possibilities through the sc RAM entity as the MIDAS software
via the optical communication. It can read and write all slowcontrol addresses on the
FEB.

Apart from the possibility to execute software on the FEB, this has the advantage
that it can operate independently of MIDAS. This is useful in situations where the
corresponding MIDAS frontends are not running or are unable to reach the FEB. For
example, a user can operate all FEB functionalities via a USB cable connected to
a standalone FEB outside of the Mu3e DAQ. The NIOS on the FEB operates this
terminal and allows direct user interaction without involvement of other software or
hardware. This is not relevant during operation of the actual Mu3e detector, but very
useful for development and debugging.

However, the NIOS operates at a frequency of 50 MHz and the speed at which it can
perform operations on the FEB is not comparable to the actual slowcontrol system.
Other applications of the NIOS in Mu3e will follow in sections 4.4.4.6 and 4.11.

100



4.4. Common FEB firmware

MSCB

The MIDAS SlowControl Bus (MSCB) interface is used to communicate with the FEB
via the backplane in the service support wheel. It is intended as a backup solution for
the optical connection to the SWB. If the optical connection fails for some reason, it
is still necessary to get some critical information in and out of the detector.

MSCB is a slow serial bus which is fully integrated into the MIDAS slow control
system. There is an optical MSCB bridge from the service support wheel to the
outside of the Mu3e magnet, where the connection to MIDAS is made via an ethernet
adapter. Apart from MIDAS, no additional software is needed to operate it.

An MSCB device contains a list of variables which can be accessed directly via
MIDAS. Each device will self-document these variables into the MIDAS online data
base upon connection. This means that all available variables of this device, their
names, current values, length and also their unit are transmitted to MIDAS when the
node is initially connected to MSCB and these informations can be shown and edited
in the MIDAS web interface without any device specific driver software on the PC.
Further information about the MSCB protocol and devices can be found in [67].

There are two independent MSCB connections for the frontend boards in Mu3e.
One of them is made between the Max10 FPGA and the backplane. This is the
actually necessary backup solution. It is important in the context of firmware upload,
which is a separate infrastructure problem that is not relevant for the current line of
discussion. It is therefore postponed to sections 4.11.3 and 4.11.4.

The other MSCB connection is the one referred to by the entity on the left of figure
66 and it connects the ArriaV FPGA with the backplane. Originally, the MSCB line
was operated completely in software by the NIOS. This functionality was removed
since it required too much memory resources in the NIOS11.

A firmware implementation of an MSCB device was written and tested in [68]. This
could in principle be used to implement the MSCB host for the sc RAM entity in
figure 66. However, this part doesn’t exist yet since a backup communication with
the ArriaV on the FEB has not become relevant at this moment. Should this be
implemented, it will likely just use the signals of the interface to the sc RAM entity
as MSCB variables12. This would provide a very slow but full second communication
channel to the FEB with identical functionalities as the optical slowcontrol.

11
In the sense that the amount of memory blocks which need to be assigned to the NIOS processor
for it to be able to operate MSCB is too large. It is possible to operate MSCB in software running
on a NIOS (that is actually done on the Max10) but the ArriaV does not have memory resources
available to do so since they are required by the rest of the firmware. The reasons for the tight
memory situation will become clear in later sections.

12
Using the actual FEB slowcontrol registers seems difficult since there are too many of them.
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4.4.4.4. Slowcontrol Tree
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Figure 67.: Implementation concept of a slowcontrol node.

The connection between the left side of figure 66 and actual slowcontrol resources is
done through the slowcontrol tree. This component was already used as an example
for timing closure solutions in the digital electronics chapter (section 3.7.6).

The different slowcontrol endpoints – such as slowcontrol registers, FIFOs, memories
and other resources with a slowcontrol address – are scattered randomly all over the
design of the FEB firmware. They are now supposed to be accessed by the sc RAM
entity at a frequency of 156.25 MHz.

In the earlier development stages, direct access was possible here. As the system
continued to grow, more and more slowcontrol resources were added until timing
closure was not possible anymore at this frequency. The access latency shown in
figure 66 was introduced to buy more time. The gained additional clock cycles are
used to divide slowcontrol commands into individual target address subranges (top
part of figure 67). Each split into address subranges costs one cycle of latency and
the corresponding logic resources but can also reduce the number of target addresses
in each subrange by a factor of four. This method was then further explored since it
only introduces latency and does not reduce available slowcontrol bandwidth.

Each split is done in a sc node entity. Multiple of these entities connected together
form a tree-like structure as shown in figure 35 in chapter 3. In addition to a reduction
of the fan-out, the split into address subranges might also allow the fixing of certain
bits in the address signal if the range is defined correctly. If these bits of the address
are identified as constant by the compiler that can have further positive timing effects.

In general, the subranges are defined in a way to serve logical sections of the FEB
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firmware. A very early split – for example – is the split between detector specific
and common FEB firmware. The detector specific address subrange will then further
split into detector control components and detector readout components. This is in-
tended to allow better physical separation between slowcontrol endpoints. Firmware
for certain functions tends to occupy a compact space when mapped to the actual
resources on the FPGA. Using individual slowcontrol subranges for these functional-
ities should allow the slowcontrol tree to also form a tree-like structure in terms of
physical location on the FPGA, which can reduce signal distances. Appendix B.1
shows the distribution of slowcontrol endpoints across the ArriaV FPGA. It can be
seen there that endpoints are able to spread over the complete chip independently
without forming a single slowcontrol cluster.

The return path for the read data uses a similar concept as the sc RAM entity.
Each SC node needs to know its level in the tree and can use that to calculate the
read latency at compile time. The deepest nodes will have a read latency of one cycle,
which will increase towards the sc RAM entity. The read latency at the sc RAM
entity results from the number of levels in the tree. Similar to the implementation
there, the sc nodes will keep track of the selected subrange in a shift register and will
connect the according return line exactly after the latency period. Every clock cycle
can be used, and the full bandwidth is available for every address in the tree.

It is possible to configure the tree with differing depths. In a case where one subrange
has a latency different from another subrange of the same sc node, the sc node can
be configured to delay the return data by the difference. All these delay and latency
calculations are done automatically at compile time. The information provided to
each instance of an sc node is just the depth of the following tree for each connected
subrange.
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Figure 68.: Minimal setup slack histograms for before (blue) and after (yellow) the
introduction of the slowcontrol tree.

103



Chapter 4. Mu3e Data Acquisition System (DAQ)

The introduction of the tree structure has led to significant timing improvements.
Figure 68 was already shown in the digital electronics chapter and was actually dis-
playing the difference in setup slack histograms after the implementation of the slow-
control tree and the read latency. Without these changes, timing closure is highly
unlikely and the FEB will probably not function correctly. Further details on this
measurement and minimal setup slack histograms can be found in chapter 3. The
new timing limits, which shape the yellow histogram in figure 68, are unrelated to the
slowcontrol system and will be discussed at a later point.

The choice of splitting at each node into a maximum of four address subranges was
based on the logic elements on the ArriaV FPGA having four signal inputs. Whether
this number is actually the best choice in terms of resource usage and gained timing
performance was not further investigated since the result already sufficiently achieves
timing closure. This variable can be used as a starting point if additional optimisation
is needed in the future.

This concludes the discussion of how the software control system is able to commu-
nicate with the frontend boards and detector components. We will now turn towards
the content of this communication after a discussion of alternative architectures.

4.4.4.5. Alternatives

There are several decisions in the shown slowcontrol architecture where alternative
solutions are possible. A few of those were discussed within the collaboration and the
arguments for and against other solutions will be shown here.

The first point of discussion is the commitment to a fixed latency system. It would,
in principle, be possible to introduce a waitrequest signal in the entire slowcontrol tree
and remove the requirement for a fixed latency. This would have a few advantages.
The slowcontrol nodes would not need to know their position in the tree, which reduces
the possibility of user error when the tree is put together. When the individual
latencies in the current system are not set correctly, collisions on the data return line
can occur and data can be lost. Even worse, data can be interpreted as a response to
a different read request.

The other advantage concerns clock domain transitions. In the version of the system
presented here, domain transitions are not possible since they are incompatible with
the fixed latency concept13. The slowcontrol endpoints need to ensure a safe transition
to the 156.25 MHz domain at the place where they connect to the slowcontrol tree.

The use of a waitrequest or data-valid signal in the entire slowcontrol tree would
make clock domain transitions within the tree possible, which removes the need for
the individual endpoints to implement a CDC. However, many of the currently used
single-word slowcontrol registers are safe to use in a false path configuration and
slowcontrol addresses which end in a FIFO or memory are anyways less of a concern
since one can use a dual clock FIFO or dual clock memory there.

13
At least for unrelated clocks. For related clocks, one could think of a configuration where the
required latency in the 156.25 MHz domain is matched exactly.
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The first consequence of using a wait request would be additional resource usage.
The slowcontrol nodes cannot base the selection of the return data on a fixed delay
relative to the cycle where they send out the request anymore. This means that each
reply necessarily needs a signal for the address which propagates with it back to the
root of the tree. Otherwise it is not possible to match the read data back to the
original request. This is not a concern in the current system since the order in which
replies arrive at each point in the tree is identical to the request order due to the fixed
latency requirement.

The other consequence is that a situation is created where it needs to be possible
to slow down the sc rx entity similarly to the NIOS since the time of arrival of reply
data cannot be predicted. The issue is that the sc rx entity potentially receives a
stream of data at 156.25 MHz. The only point in the system where one could stop
or delay this is all the way up at the slowcontrol main entity in the SWB firmware.
It would require some form of backpressure protocol to be transmitted from the FEB
to the SWB to achieve this. One could also try to buffer data on the FEB instead of
implementing backpressure tp the SWB. However, this idea is based on the hope that
the buffer will be large enough and was discarded for this reason14.

Overall, concepts which preserve the bandwidth of the optical connection but al-
low CDCs within the slowcontrol system cause too many issues which impact the
guaranteed delivery of slowcontrol commands. Write commands have a bandwidth
problem that would require backpressure to the SWB. Read commands have a reply
data collision and ordering issue on the FEB. The fixed latency system described here
ensures packet delivery for read and write commands and CDC implementations at
the slowcontrol endpoints seem necessary for this at the moment.

Another alternative idea was to base the complete slowcontrol system on an avalon
memory mapped interface managed by the intel system integrator tool. Each slow-
control endpoint would be implemented as an avalon agent and the sc rx entity would
act as an avalon host. This idea comes in principle with similar concerns for write
commands as the one above. The read command issues would likely not be present
here.

The reason why this was not further pursued is that an implementation based
on the system integrator tool would affect the portability of the firmware. At the
moment, it seems likely that parts of the firmware developed for Mu3e are going to
be used in other projects. A few examples will be shown in chapter 5. A few of
these projects will use different FPGAs for their DAQ system, including FPGAs from
different vendors. The current implementation is entirely written in user-HDL code
and can be easily copied to any other FPGA. A commitment to intel-specific tools
would impact this portability. Another argument for a pure HDL implementation
is the higher educational value for new students compared to a specific version of a
vendor-specific system integrator tool.

14
Memory usage on the FEB is also quite high and does not allow a very large buffer here.
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Packets without Request

The alternatives above are all concerned with the implementation details of the pro-
tocol introduced at the beginning of this chapter. This protocol is based on a request
and reply idea. A large fraction of slowcontrol communication with the FEBs is the
readback of monitoring information. This information is usually read by the SWB
software in regular time intervals and updated in the MIDAS ODB.

In principle, it would be possible for the FEB to send these monitoring updates
automatically without receiving a request from the SWB. For example, the NIOS
could regularly collect monitoring information from different slowcontrol endpoints in
the tree and assemble a monitoring update packet with a predefined format. This
could then be sent to the SWB where some firmware could be implemented to receive
and process these packets. However, individual read and write requests would still
be needed for other functionalities and currently there is no clear advantage in the
introduction of unrequested slowcontrol packets.

4.4.4.6. NIOS RPC calls

A remote procedure call (RPC) can be used in the current slowcontrol system to trigger
software functions on the frontend board NIOS from the MIDAS software. A part of
the NIOS processor memory is connected with an address subrange in the slowcontrol
tree discussed above. This memory can be accessed by MIDAS via the slowcontrol
and, similarly, by the NIOS processor through the connection at the sc RAM entity.
To the NIOS, this appears as a normal part of its memory since the NIOS system
internally also uses avalon memory mapped connections.

To trigger a function on the NIOS, the MIDAS frontend can write an instruction
to a predefined memory location. Writing this memory location causes an interrupt
signal to be sent to the NIOS by the FEB firmware, which instructs the NIOS to
interrupt the currently executing code and process the instruction by MIDAS instead.
Payload for this instruction has to be written by MIDAS into other memory locations
first.

For the return of data from the NIOS to MIDAS, it has to be written into locations
in the same memory subrange. Software on the MIDAS side can then poll these
addresses and receive an answer from the NIOS.

The speed at which these kinds of transactions can happen is not very high since
the NIOS operates on a 50 MHz clock. In most cases this is not the optimal way of
steering FEB functionalities since the software on the NIOS in itself also just operates
on the slowcontrol RAM again, which can also be accessed directly from the MIDAS
software.

4.5. Mutrig configuration

Each MuTrig chip is configured via a single spi shift register with a length of about
3000 bits. This register contains the thresholds and all other settings for the MuTrig
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ASIC. The data for this register is sent from the MIDAS ODB via an rp call to the
frontend board NIOS. From there, the NIOS operates the spi line from software and
writes the received data to the MuTrig ASIC.

At some point during the development of the Mu3e DAQ, both the MuPix and
MuTrig configurations were based on rp calls to the NIOS. The MuPix configuration
firmware has moved towards a much faster but significantly more complicated config-
uration architecture, which is steered from the SWB software without the involvement
of the NIOS processor. However, the configuration of the MuTrig is still using RPC’s
to the NIOS at the moment but is likely to change to a direct configuration method
due to speed considerations. At the time of writing this thesis, MuTrig chips have not
been operated in large numbers in the same system. Configuration speed issues have,
therefore, not played a large role at the moment.

4.6. Mupix configuration

Configuring a mupix is significantly more complicated than a MuTrig configuration.
However, the underlying concept is the same. Shift registers contain the configuration
for various settings within the ASIC. In a MuPix chip, six individual shift registers are
used to control different functions. Three of them control global settings, such as the
global thresholds, amplifier settings or digital settings for the readout statemachine.
Two shift registers access the tune values (TDACs, discussed in section 2.2.1) for each
individual pixel on the MuPix ASIC. The last shift register is used for characterisation
purposes.

The registers for the global settings are comparable in their combined size to a
MuTrig configuration. As mentioned before, NIOS rp calls were previously used to
write them. This quickly becomes impractical once the number of MuPix chips in
the system increases since the speed of the NIOS is limited and there is no option for
parallelisation.

The tune values (TDACs) contain more than 1000 times more data than the global
MuPix settings since tune values are provided per pixel. Overall, a MuPix config-
uration has a size of roughly 0.5 Mb, which adds up to a total of about 1.5 Gbit
of configuration data for the complete pixel detector. The challenge is to provide a
system which can efficiently deliver this data to the MuPix sensors, especially since
tuning procedures to find optimal combinations of global settings and TDAC values
will involve iterative searches.

The solution to this problem will involve firmware blocks, which are specifically
designed to allow for parallel and independent MuPix configuration and are less reliant
on software components. We will first discuss the interfaces provided by the MuPix
chip and how they can be used to upload configuration data. Then, the firmware
solution for the three global configuration registers will be presented. The design
for the tune value upload will follow in section 4.6.3 and will use large parts of the
implementation for the global registers.
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4.6.1. Mupix Control Interfaces

The sensor side of the configuration upload was developed in [20] with the goal of
providing a fast interface with minimal pin count. The pin count is relevant for Mu3e
since the HDI flexprints on which the MuPix sensor will be glued have a limited
amount of space. All signals from or to the pixel sensor need to be connected from the
upstream or downstream direction. The space on the flexprints is, therefore, shared
between data readout lines, power and configuration. This puts constraints on the
number of MuPix sensors which can be used on the same flexprint and causes the
need for a minimal pin count configuration interface.

D
E

Q
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SOut OutD
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MUX
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Figure 69.: A single cell in a MuPix shift register [20].

The six control shift registers on the MuPix are implemented as a chain of the cells
shown in figure 69. The SIn signal always connects to the SOut signal of the previ-
ous cell in the chain. Moving data through the shift register requires an alternating
sequence of edges on the two clock signals CK1 and CK2. Once the data is in the
correct place, the load signal is applied, which copies the content of SOut to the Out
signal. The Out signal then drives the configuration bit to actual components on the
MuPix. Therefore, no change of the configuration takes place during the time when
data is moved through the shift register. Only the load signal actually applies the
current content of the shift register to the hardware.

SIN bit0 bit1 bit2 ... bitN

CK1

CK2

SOut bit0 bit1 bit2 ... bitN

Load

Out bitN

Figure 70.: Control signals for a single cell in a Mupix shift register. The output signal,
which represents the actual configuration, is only changed when the load
signal is applied.

The readback signal RB in figure 69 can be used to temporarily replace SIn with the
output signal. This creates the possibility to return the configuration to components
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at the end of the shift register by copying it into the space between the CK1 and
CK2 latches and moving it towards the end with a sequence of CK1 and CK2 edges.

The amount of cells is not equal for all shift registers and ranges between 80 and 896.
As shown above, there are five control signals which need to be supplied to each of the
six implementations. The Sin, CK1, CK2 and Load signals exist individually and
the RB signal is shared between them. This sums up to 25 signals. Four additional
control signals will be explained later.

The firmware needs to use these 29 control signals to upload the configuration to
the MuPix. There are three options to do so. The first option is to have a direct
register communication using 29 individual lines connected from the FPGA to the
MuPix sensor. This is a feature that was used for previous MuPix versions during the
development phase and is not feasible for the actual implementation of the detector
since it requires too many connections. Therefore, the following sections will not
discuss this option further.

The second option is an SPI connection. This is implemented by connecting the
29 control signals with a separate 30-bit long SPI shift register15. This can then be
written from the FPGA using an SPI data line, a clock line and a load/chip select
signal. However, writing a single bit into one of the six actual configuration registers
requires the firmware to completely write the 30-bit SPI register six times since the
signals CK1, CK2 and Load must be applied and removed individually. The SPI
connection on the ArriaV FPGA was usually operated at a slow-down factor of 8
relative to the 125 MHz reference clock, which together adds up to 1440 reference
clock cycles to write a single configuration bit to the MuPix.

SPI configuration via NIOS RPC’s was used for the test and development setups
before the beginning of this thesis. The speed issues of the previously discussed RPC
system and the steering of the SPI connection by the NIOS software added more delay
to the 1440 reference clock cycles. Even if an ideal scenario is assumed and delays
from all other sources are ignored, writing the full 0.5 Mbit of configuration data to
the MuPix via SPI would require 720 million cycles and roughly 6 seconds. Without
parallelisation, this adds up to 5 hours of configuration time for the 3000 MuPix
sensors in Mu3e. As mentioned, tuning of MuPix sensors will be an iterative process
and likely require hundreds of these configuration cycles. It is clear that this is not
viable for the operation of the Mu3e detector and a parallel configuration architecture
is needed.

Parallelisation has to be implemented on multiple levels. The highest and easiest
level of parallelisation comes from the separate switching servers. Three of the four
switching servers operate MuPix sensors and they can configure MuPix sensors inde-
pendently of each other. The next level is the firmware on the frontend boards. It
needs to be able to configure the connected MuPix sensors simultaneously. That rules
out the use of sequential NIOS software and RPC’s for this task.

The lowest parallelisation level is at the same time the third option of accessing
the 29 control signals from above. A statemachine in the mupix can automatically

15
The shift register would only need to be 29 bits long. It is 30 bits long.
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perform the CK1 and CK2 cycles and other things. Instead of sending each action
in figure 70 to the 30-bit SPI shift register, a 6-bit command with a 4-bit address and
a 54-bit payload is sent to a statemachine on the MuPix, which then performs the
sequence in figure 70. We will call these commands the MuPix slowcontrol protocol.
They can be found in appendix B.2.

All MuPix sensors on a half ladder are connected to a single MuPix slowcontrol line.
The address is used to identify the targeted chip on the ladder. The statemachine on
the MuPix compares the received address against hardwired address pads, which de-
pend on the ladder position. This saves additional lines on the HDI flexprint compared
to SPI and also enables another level of parallelisation since multiple statemachines
on the same HDI flexprint can be in the process of pushing their payload into the
configuration registers at the same time.

Once the statemachine on a MuPix receives a command with the instruction to
write the 54-bit payload into one of the six configuration registers, the same MuPix
will not be able to receive other commands until the statemachine has finished this
task. This results in a configuration deadtime.

t

receiving configuration deadtime

Figure 71.: Configuration deadtime in the MuPix protocol. A command and payload
is received during the time marked in blue. Afterwards the chip is unre-
sponsive until it comes out of its deadtime at the red line.

At the point where a chip comes out of the deadtime, no other transaction is allowed
to be in progress. Otherwise, is could be falsely interpreted. However, if the transmis-
sion of a command is completely inside or completely outside of the deadtime of all
other chips on the same ladder, a transmission is possible. Consequently, it is possible
for the FEB to have a configuration conversation with multiple chips simultaneously.
The issue is that every conversation with a MuPix will cause a dead point some time
later where no conversation with any MuPix is allowed to be ongoing. This is shown
in figure 72.
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Chip 0

End of Chip 0
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Chip 1
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Figure 72.: Optimal communication in the MuPix protocol.

The task of the firmware is then to arrange communication with all chips on a
ladder in a way where nothing collides with the end of any chip deadtime. The
optimal solution will conceptually look like the graphic in figure 72. The length of
the configuration deadtime is large enough to send commands to five other chips in
the meantime. This is a result of the 54-bit payload and the amount of cycles it takes
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for the statemachine to push this into one of the configuration registers according to
figure 70.

The firmware developed during this thesis implements this by buffering configura-
tion data from the switching servers on the FEB to ensure that data for all sensors is
always available in order to apply the efficient spacing shown above. Due to a bug in
a previous version of the MuPix sensor, this was the first time that the Mu3e protocol
was put into operation in a DAQ system.

The concept shown in figure 72 is difficult to implement in pure software since it
would require a just-in-time delivery of configuration data to all 3000 MuPix sensors
in the system. The margins to avoid the end of deadtime points are small, and pure
software cannot provide such timing precision. Options for a just-in-time delivery
from the SWB firmware were considered during development but later abandoned in
favour of a buffer-based implementation on the frontend board. The next section will
discuss this implementation and show how it is used for the global configuration parts
of the MuPix. The firmware for the tune values will follow afterwards since it will
come with some additional complications.

4.6.2. Global Configuration

Each MuPix has its own slowcontrol address for global configuration. The global
configuration for each chip is initially located in the MIDAS ODB, where it can be
accessed by the MIDAS switching board frontend, which writes it to the corresponding
slowcontrol address on the FEB. The range of slowcontrol addresses which belong to
the global MuPix configuration is connected to the MuPix config splitter entity. This
entity is one of the endpoints of the previously discussed slowcontrol tree on the
FEB and receives the data from MIDAS through all the steps introduced in earlier
sections. The splitter entity splits the arriving data into three separate 32-bit wide
data streams for each MuPix. These three separate datastreams belong to the three
global configuration registers on the MuPix sensor shown in table 13.

Name Length Content

BIAS 210 power and voltage settings
CONF 90 digital settings for statemachines
VDAC 80 global threshold voltages

Table 13.: The three global configuration shift registers on the MuPix.

The data for BIAS, CONF and VDAC is then written into a copy of the MuPix
shift registers on the FEB. The FEB essentially mirrors the shift registers of all MuPix
sensors that it connects to (figure 73). The global configuration arrives at the frontend
board as one slowcontrol packet for each MuPix with a frequency of 156.25 MHz. In
order to match this speed, the data is written into the mirrored shift registers on the
FEB with 32 bits at a time. Therefore, the shift register on the FEB shifts by 32
positions on a write operation instead of just one position.
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BIAS 0

CONF 0

VDAC 0
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Figure 73.: The FEB holds a copy of the configuration registers of all connected MuPix
sensors.

The new state S of the shift register at position i after write cycle n is calculated by:

Si[n + 1] =

{
Inputi[n] from conf. splitter, if i < 32

Si−32[n], otherwise
(12)

There are now two possibilities implemented to ship the data from the mirror reg-
isters on the FEB to the actual shift registers on the MuPix sensors. The first one is
the MuPix slowcontrol protocol, which, as previously discussed, sends data to MuPix
sensors using commands with a 54-bit payload. Therefore, the mirror shift registers
on the FEB are additionally wired up for a 54-bit shift operation.

Si[n + 1] = Si−54[n] (13)

Once a mirror register has been filled from the configuration splitter, this provides a
read port with the correct interface width for the MuPix protocol.

Similarly, a single-bit shift operation

Si[n + 1] = Si−1[n] (14)

was implemented, which allows an SPI configuration option. As shown earlier, SPI
moves data into the MuPix one bit at a time for each configuration register. Adding
another shift operation here provides exactly the type of interface which would be
needed by an optimal SPI configuration entity: One bit out of each configuration
register in order to serve BIAS, CONF and VDAC at the same time from the 30-bit
SPI register on the MuPix.

As an additional improvement, the two ends of the mirror shift registers on the
FEB were connected to each other. This effectively forms a circular shift register with
one write port and two read ports. Each write or read operation rotates the contents
counterclockwise by the interface width of the operation. This is shown in figure 74.
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Figure 74.: Concept of the configuration buffer shift register on the frontend board
using an example with a 6-bit wide write port and two read ports with
widths 1 and 5. The write operation is marked in red. Data is written
to the buffer on the 6 fixed indices Nref , ..., Nref − 5 of the shift register.
Each write there rotates the other contents counterclockwise by 6 registers.
The read operations R1 (green) and R2 (blue) rotate the contents by 1
bit for R1 and 5 bits for R2. The indices for the output ports have to be
calculated relative to Nref . For a 1-bit wide read port the index at which
the output port is located will always be 0. Other read port indices (such
as R2 in this example) will shift counterclockwise, starting from 0, by the
amount necessary to fit an integer amount of reads into the index range
until Nref . The amount of bits Woffset between index Nref and 0 is the
maximum of the same idea applied to all three operations.
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The advantage of connecting the two ends together is that the FEB firmware does
still possess a copy of the configuration data after it has been shipped to the MuPix
sensors. At the moment, there are no use-cases for this implemented. However, there
are a couple of interesting possibilities. The FEB could, for example, perform an
automatic readback of the configuration from the MuPix sensors and compare the
received data at any time to the configuration, which should be inside the MuPix
at this moment. This would not need to involve software since all the data is still
available on the FEB. Another possibility would be to implement a repeat function,
which could be broadcast to all MuPix FEBs and could instruct them to repeat the
last MuPix configuration upload using data from the previous configuration.

On the data readout side, it might also be useful at some point for the FEB firmware
to know the configuration settings for each connected MuPix. Either for the applica-
tion of corrections or readout mode-dependent decoding of sensor data.

4.6.2.1. SPI Configuration

The SPI configuration is the simpler one of the two options to ship data from the mirror
registers on the FEB to the MuPix. However, it is significantly slower compared to the
Mu3e protocol option and is only used in some test setups. When SPI configuration is
enabled via a slowcontrol register, an SPI entity for each SPI line will select a MuPix
sensor and read 1 bit of configuration data from the corresponding BIAS, CONF,
and VDAC mirrors on the FEB. These three bits of data will then be shipped to the
MuPix by writing the 30-bit spi register six times according to the method shown
earlier in figure 70. The load signal is automatically applied once the content of a
mirror register on the FEB was fully read by the SPI entity.

4.6.2.2. Mu3e Protocol Configuration

For the Mu3e protocol configuration, one could, in principle, also just select any mirror
register, send data from it to the MuPix and wait for the configuration deadtime
before sending any other command to any other MuPix. However, the optimal version
was implemented, which makes use of the configuration deadtime to send data to
other MuPix sensors. The firmware to do so consists of three entity types for each
configuration interface. A ticker entity provides the red lines in figure 75.
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Figure 75.: Optimal communication in the MuPix protocol.

Instead of tracking and calculating the end of deadtime point for each MuPix on
the interface, the possible positions of the red lines are defined by the ticker entity.
All other Mu3e protocol entities on the FEB align their operations relative to the
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ticks from this entity. The alignment of commands and spacing of the ticks matches
the expected deadtime behaviour of the statemachine on the MuPix, which ensures
that the actual deadtime endpoints coincide with the ticker. Therefore, the only thing
that the other entities have to ensure in terms of timing is that they do not send two
commands to the same MuPix within six ticks and that every command is properly
aligned relative to a tick.

Every connected MuPix has an instance of a command assembler entity on the FEB.
This entity checks the mirror registers for available data and decides which command
and payload should be sent next to this specific MuPix. It also keeps track of the cur-
rent position within each shift register in order to be able to issue the load commands
at the correct moments. It signals towards the following parts of the firmware when
a command is ready. When a command is picked up, it receives an acknowledgement
and will prepare the next command for the MuPix. This command will not be made
available for collection until the command assembler has seen six ticks. This ensures
compliance with the configuration deadtime of this particular MuPix.

Each Mu3e MuPix slowcontrol connection is steered by a line controller entity. This
entity chooses, at random, one of the commands flagged as ready and acknowledges
it to the appropriate command assembler. After that, the command is serialised and
sent out to the MuPix sensors with the correct alignment relative to the last tick.
Therefore, the line controller prevents any collisions of commands with the end of
deadtime points.

The ticker exists only as a single instance. The line controller exists once for every
interface and the command assembler has one instance for each MuPix. Together,
these three entities are able to operate every MuPix configuration at the same time,
independently and at the highest possible efficiency. The limit of parallelisation is
given by the amount of MuPix sensors connected to the same configuration interface.
If too many MuPix sensors are connected, it is impossible to talk to all of them within
the deadtime of a command. Accordingly, the configuration time will increase in these
cases but still operate at the highest speed allowed by the protocol.

The software on the switching server writes a slowcontrol packet with the configu-
ration data to the address and FEB belonging to the targeted MuPix sensor. There is
no SPI or Mu3e protocol overhead in this packet since the entire protocol is produced
by the firmware on the FEB. The speed limitation for the configuration of the Mu3e
pixel detector is, therefore, given by the downwards bandwidth of the slowcontrol sys-
tem. This is why the discussion earlier in this chapter in section 4.3.2.2 is important.
Starting from the SWB firmware, the full bandwidth is available all the way through
the FEB and the slowcontrol tree to the mirror registers of the MuPix sensors. At the
time of writing this thesis, the limitation is the speed at which the software can push
data to the SWB firmware. Speed improvements in other areas are unlikely since they
already implement a solution which is able to reach the optimal link utilisation.

The next section will discuss the upload of tune values (TDACs) to the MuPix
sensors. Speed considerations play a larger role there since they contain a lot more
data than global MuPix settings. The tune value configuration will use the already
existing entities shown here but will introduce a few additions and modifications.
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4.6.3. TDAC Configuration

Tune values are used on the MuPix for a per-pixel adjustment of threshold values. In
contrast to the global settings from the last section, the TDAC values are not stored
directly in one of the six configuration shift registers. Instead, the configuration shift
registers are only used to write the tune values into their actual location. Two of the
remaining configuration shift registers are used for this task.

One of them, the TDAC shift register, contains a set of tune values and the other
one, the COL register, defines the location in the MuPix matrix to which this set
should be written. The routing and addressing of individual pixels on the MuPix is
done via their column and row positions in the matrix. However, the digital indexing
of columns and rows on the sensor is not identical to the physical column and row
position of each pixel. This is intentional and was introduced in [20] in order to
mitigate crosstalk effects. If the digital and physical addresses were identical, a particle
that crosses between two pixels and causes a signal in both of them would look similar
to crosstalk between neighbouring signal lines. Therefore, the routing of signals on
the sensor was implemented in a way which does not resemble physical pixel locations.
This allows the analysis to distinguish crosstalk from charge sharing and clustering
effects.

In physical coordinates, the MuPix contains 256x250 pixels. In the digital repre-
sentation, there are 512 columns and 128 rows. Each digital row address contains all
the pixels of two neighbouring physical row addresses. The 2x250 = 500 pixels in such
a double row are indexed using numbers from 0 to 511. Therefore, some of the 512
digital indices do not connect to one of the 500 physical pixels. The indexing function
was changed between MuPix versions 10 and 11 but did not follow physical ordering
in either of these versions in order to implement the crosstalk mitigation.

As introduced in section 2.2.1, each pixel contains 7 TDAC bits. The TDAC control
shift register is used to access a specific one of these bits for all 512 pixel addresses in
a double row. The COL register defines the bit and the row index to which the TDAC
register connects to. This is shown in figure 76. For the example there, a single 1 is
written to the fourth position of the COL register and all other COL register values
are set to 0. This causes a connection of the TDAC register to the parts marked in
green in figure 76.

In order to write tune values to the MuPix, the TDAC configuration firmware has
to position a single 1 in the COL register, which is otherwise filled with zeros to select
a row and a bit within that row. Then, the firmware has to write the according tune
data to the TDAC register, which always contains only a single bit out of the 7-bit
tune value for 500 pixels in the section selected by the COL register. This then has
to be repeated for 128x7 selections until all the tune data is written.

Processing of tune data in software needs to happen in physical coordinates at some
point. Since the ordering in which the MuPix would require bits of the tune values
can appear quite chaotic and would require conversion functions in the software, it
was decided to completely hide the existence of the digital address mapping from any
software components. This includes the readout part, which will follow later in this
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Figure 76.: TDAC register access to the tune values in digital coordinates. The part
marked in green is accessed at the same time from the TDAC shift register.
The horizontal location of the green part is defined by the COL register.

chapter, but also the tune value configuration. Therefore, the TDAC configuration
firmware implements the mapping described above and no other DAQ parts need to
know that it exists.

The first step of implementing this is to remove the column index conversion for
the green area in figure 76. This is very simple to implement in the existing firmware
framework since it only requires a minimal change of the mirror register idea from
the previous section. Similar to the implementation for the three registers with global
MuPix configuration, the TDAC configuration register will be mirrored on the FEB
side. Writing data from there to the MuPix then uses the same infrastructure de-
scribed in the previous section. The command assembler will include the TDAC mir-
ror in the same way as the mirror registers for BIAS, CONF, and VDAC. Instead of
issuing only the load command once the shift register was fully written, the command
assembler will also relocate the selection in the COL register on the MuPix. This
happens automatically whenever the TDAC mirror on the FEB was fully written and
does not require any external input to the command assembler.

The digital column indexing required by the MuPix is then produced from the data
in physical order by a minimal change of the mirror register. In the previous section,
mirror registers were introduced as circular shift registers, where the content was
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rotated counterclockwise by the width of the read or write operation. For the TDAC
mirror register, the write operation does not rotate the contents counterclockwise.
Instead, it rotates the contents counterclockwise along a permutation σ of the normal
ordering.

Si[n + 1] = Sσ(i−1)[n] (15)

The permutation σ can be chosen in a way where it produces the conversion between
digital and physical pixel addresses. Therefore, TDAC bits are shifted into the mirror
shift register using their physical ordering and are shifted out of it with digital ordering.
This conversion does not use any additional resources since the only change is in the
cabling order of a shift register which already exists. Per construction, there is no
better place to do this since any other solution will either use CPU time or FPGA
resources.

However, the data which needs to be written into the TDAC mirror register still
contains only a single TDAC bit out of all pixels in the current row. This will be
solved in the next section.

4.6.3.1. TDAC Configuration Memory

Transmitting data in larger slowcontrol packets towards the FEB is more efficient
than transmitting individual words since individual words introduce additional delays
due to protocol overheads and response latencies. This is especially true before the
optimisation shown in section 4.3.2.2. Consequently, it is beneficial to introduce an
additional buffer on the FEB in front of the TDAC mirror register. The three global
mirror registers for each MuPix are large enough to hold the complete global configu-
ration. For the tune values, this situation is not reachable since each MuPix has about
0.5 Mb of tune data. However, buffering on the FEB will still improve configuration
speed since it allows the software to send tune data out in larger blocks.

Tune data is buffered on the FEB in the TDAC configuration memory. This is a
single large RAM implemented in M10K blocks, which is managed by a TDAC memory
controller entity. This memory controller is responsible for storing arriving data in
the RAM and also serving it at the correct moments to the TDAC mirror registers.

Conceptually, the memory controller divides the RAM into a configurable number
of sections (in the following called pages). The software has a slowcontrol address
for each MuPix to which it writes tune data. When the write request arrives at the
memory controller, it will select one or more empty pages and write the received tune
data into them. For each page, the controller saves the ID of the MuPix for which the
data was intended and the order of pages in which the data has arrived.

The controller also provides a slowcontrol register where the software can read
the amount of free space in the memory in the form of an integer number of pages.
Therefore, the software always knows how much tune data it can send to the FEB. The
target chip does not matter for this since the memory controller will save the chip ID
for each received page of tune values. This allows the buffer to be shared dynamically
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Figure 77.: Conceptual idea of the TDAC memory. The memory is divided into a set
of compartments (pages), which can be individually refilled by the sofware
via the SWB and the slowcontrol system. The memory controller keeps
track of the content of each page and provides always the correct page
towards the TDAC mirror registers for each MuPix.

between all MuPix sensors. If the software only wants to configure one of the connected
MuPix sensors, the complete memory can be used for this one. Otherwise, pages will
be assigned on the fly to MuPix sensors as the data arrives from the SWB.

The TDAC mirror shift registers are connected to the output side of the memory
controller. Whenever one of the mirror registers becomes empty, the memory con-
troller will start searching for the next data in its page registry. When the matching
chip and page index is found it will read through the contents of the corresponding
page and use it to refill the TDAC mirror with the correct data. Should the next tune
data for that particular MuPix not be in the memory at that moment, it will be used
once the required data arrives from the SWB.

The tune values are located in the buffer memory in the same format as they have
arrived from the SWB. A series of 32-bit words where each of the four bytes in the
word is the tune data for one pixel. However, as introduced above, only one bit out of
each byte is required for a single refill of the mirror register. Therefore, the memory
controller will read each page seven times before it is declared empty again. These
seven reads are used to gather the seven tune bits for each pixel. Consequently, every
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clock cycle during the read process only provides four bits for the refill of the TDAC
mirror register. This is implemented by simply reducing the write input width of the
mirror register to four and does not have any other consequences.

Once a page has been read seven times, it will be declared empty and is deleted
from the controller’s page registry. The slowcontrol register containing the amount of
free pages is increased by one and the memory section can be used for new data again.

4.6.3.2. TDAC Configuration Speed Tests

The last section concludes the discussion of all Mu3e DAQ parts necessary for MuPix
configuration. As mentioned before, the speed limit is introduced by the time it takes
the software to push the data to the FEB via the slowcontrol system. However, this
is influenced by the size of the TDAC configuration buffer since a larger buffer will
reduce protocol overhead and the amount of roundtrip latencies.

Strictly speaking, that is only the case for a large amount of MuPix sensors. For a
single sensor, the bandwidth of the software towards the FEB is larger than the allowed
speed of the Mu3e protocol from the FEB to a single MuPix sensor. Therefore, the
time it takes to configure the tune values depends on the amount of MuPix chips in
the system.

At the time of writing this thesis, the full system with almost 3000 MuPix chips
was not available for a tune value upload speed test. Instead, an alternative method
was employed. This method involved using a DAQ system with a single FEB and
simulating other FEBs with a wait time. The SWB software reads the amount of free
pages from the one existing FEB and sends data to fill all of them. It then waits for
a time T before reading the amount of free pages again, repeating this process until
all MuPix sensors of that FEB are configured. This sequence is then repeated for
different wait times T. The result is shown in figure 78.
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Figure 78.: Raw data of the TDAC upload speed measurement.
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T simulates the time that the software would have spent on interactions with other
FEBs if they existed. After the time T, the software returns to the existing FEB. For
large values of T, the number of needed configuration cycles is low since all TDAC
pages on the FEB buffer are empty when the software returns to the existing FEB.
For lower values of T, not all TDAC pages are empty when the software returns.
Therefore, less data can be written to the FEB for each cycle and more configuration
cycles are required to complete the TDAC upload. This is shown in red in the plot
above.

This measurement can then be used to estimate the configuration time for any
number of MuPix chips. The first step is to calculate the fraction of time that the
software was spending on the existing FEB by subtracting T times the number of
configuration cycles from the total configuration time. The total configuration time
is then divided by this number, which results in an estimate for the number of FEBs
that the software could serve simultaneously, assuming that it always spends the same
amount of time for each FEB and configuration cycle.

The variation of T produces then a relation of total configuration time against the
amount of FEBs. That can be translated into a configuration time against the number
of MuPix chips by multiplying the amount of FEBs with the number of MuPix sensors
per FEB. The result is shown in figure 79 for different versions of the TDAC upload
firmware.
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Figure 79.: Configuration time needed for different amounts of MuPix sensors and
firmware versions.
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The blue line in figure 79 represents the currently implemented version of the TDAC
firmware. The two orange measurements are versions with a smaller buffer memory
and without the optimisation of the SWB firmware shown in section 4.3.2.2. The
green measurement is only achievable if the TDAC upload memory is increased with
memory resources of other firmware parts of the FEB. Therefore, this will not be
implemented for the final FEB firmware. The almost vertical red line is the reference
before the introduction of the TDAC upload firmware.

For the first hundred MuPix sensors, the configuration time for the blue version
is almost constant. In this region, a full parallelisation is possible and the Mu3e
protocol between the FEB and the MuPix sensors limits the speed. For a larger
number of MuPix chips in the system, the software’s speed limitation is reached,
causing a linear increase in time. About four seconds are needed for the configuration
of 1000 MuPix sensors. This should also be roughly the achievable configuration time
for the full Mu3e pixel detector since the 3000 chips there are distributed across three
independent switching servers.

The pixel-individual thresholds are determined by three settings: The global thresh-
old, a pixel-individual tune value which modifies the global threshold and a global
dynamic range setting which defines by how much a single tune value step changes
the threshold. An automated tuning procedure is still to be implemented by the col-
laboration. It will have to involve iterative search methods with many configuration
cycles. After each configuration cycle some amount of data will have to be taken to
calculate the next step of configurations. The reduction of configuration time to a
total of four seconds for the entire Mu3e pixel detector is an essential part of this
process. Previous configuration methods would have been unusable since a single con-
figuration cycle would have required multiple hours for the amount of MuPix sensors
in Mu3e.

4.6.4. Initialisation and Reset

It was already mentioned previously that there is not much space for additional signal
traces on the flexprints to which the MuPix sensors are glued. For this reason, the
reset signal to the MuPix is also provided through the Mu3e slowcontrol protocol. A
reset of a MuPix sensor is achieved by driving a high signal into the Mu3e slowcontrol
link for an extended time period. If the slowcontrol link to the sensors is high for
more than 512 cycles of the 125 MHz reference clock, then the signal will act as
a reset. Timestamp counters and other digital components on the MuPix will start
operating once that signal is released. This includes the statemachine which interprets
the Mu3e slowcontrol protocol. It is, therefore, necessary to issue a reset before any
slowcontrol communication with the sensor can be started. Otherwise the alignment
of the slowcontrol statemachine on the MuPix with the machinery on the FEB cannot
be guaranteed and will likely not operate correctly.

This creates a problem. For the synchronised operation of the Mu3e detector during
a physics run, the reset of the MuPix is provided by the clock and reset system dis-
cussed in section 4.4.2. As discussed there, this has to operate on the 125 MHz global
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reference clock domain. However, the configuration firmware on the FEB from the last
sections operates on the 156.25 MHz clock of the optical link to the SWB. The issue
is that the configuration firmware requires a reset in its own clock domain to achieve
alignment with the MuPix statemachine before it can send commands to the MuPix.
The consequence is that the control line to the MuPix sensor needs to be handed
over between the 125 MHz and 156.25 MHz clock domains whenever the system state
changes between physics data taking and ongoing MuPix configuration. Configuration
during a physics data run is not possible in the current architecture since the required
reset in the 156.25 MHz domain would displace timestamp synchronisation for the
remainder of the run.

Alternatively one could think about a CDC to the 125 MHz domain within the
configuration firmware. For the tune values, the CDC could be easily implemented in
the TDAC RAM by using a dual clock memory version and modifying the memory
controller. However, for the global MuPix settings the earliest point where a transition
is possible is at the read port of the mirror shift registers. It would likely be neccessary
to use some sort of manual handshake there since these registers exist three times for
every MuPix which makes it a very wide and resource-intensive interface for any mem-
ory based CDC. It could be possible to circumvent this by introducing a CDC FIFO
earlier in front of the configuration splitter. Since the global parts of the MuPix con-
figuration are not particularly large, this FIFO could be chosen large enough to buffer
the difference between the two clock domains. However, currently it does not seem like
a problem to separate physics data taking from MuPix configuration. Consequently,
these ideas were not further explored.

This section concludes the discussion of the concepts for control, monitoring, and
configuration of the detectors in Mu3e. A few independent aspects have been out-
sourced to section 4.11. The following sections will discuss the readout path of physics
data. They will make use of the previously described systems for any monitoring or
control functions and will merge and demerge with the control data flow according to
sections 4.4.3 and 4.3.2.

4.7. MuPix Readout

The MuPix sends serialised 8b10b encoded hit data packages at a data rate of
1.25 Gbit/s over three separate LVDS output links. Each of these links is respon-
sible for a vertical section of the sensor. A fourth LVDS output is configurable and
can either be used to send data from all three sensor sections over one link or it can
copy one of the three separate outputs.

The fourth link is used for the outer layers of the Mu3e pixel detector. On the
outer layers, the space constraints for traces on the HDI flexprints do not allow the
use of three individual LVDS data readout traces for each MuPix. On the inner pixel
detector layers, the individual links are used. Therefore, the output bandwidth per
sensor on the inner layers is larger. The sensors there will also receive more particle
hits per area since they are located closer to the target.
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The LVDS signals are routed out of the detector area via a series of connectors and
adapters followed by a distance of O(1 m) of custom-build micro twisted pair cables
before arriving at the service support wheel. There, the signals are received by LVDS
repeater chips on an adapter board before being sent to the FEB on the other side of
the backplane PCB.

Figure 80.: Signal path between MuPix chip and the FEB. Taken from [15].

Achieving an error-free transmission over this connection chain is not a trivial task.
It is not just influenced by the connections shown in figure 80 but also by settings
and manufacturing variations of the connected MuPix chips. The frontend board
firmware has to provide the tools to monitor signal integrity and tune the MuPix
settings accordingly.

Signal integrity is measured on the FEB by counting invalid 8b10b codes, realign-
ment cycles of the LVDS receiver and 8b10b-disparity errors. Signals from the MuPix
sensors are deserialised in an LVDS receiver and sent to a data decoding entity for
each input link. This entity performs 8b10b decoding and searches for the alignment
pattern by shifting the deserialisation in the receiver. Once alignment is achieved, it is
locked, and a large number of invalid codes are required before it can be moved again.
This allows to distinguish errors introduced in the chain from the MuPix to the FEB
from errors introduced by clock variations on the MuPix: A bad connection between
the MuPix and FEB, which occasionally produces an 8b10b error, should be unable
to shift the alignment of word boundaries relative to the reference clock on the FEB.

The three counters for each link are connected to the slowcontrol system and are
regularly read by the SWB software and written into the ODB for monitoring in
MIDAS. These values can then also be used for automated scans of relevant MuPix
settings.

From the data decoder, each data stream is then forwarded to a data unpacker entity,
where the data packets from the MuPix are deconstructed into hits with column, row
and timestamp information. Additionally, the timestamps are gray-decoded. The next
step is to condense the up to 36 data streams into a lower number of interfaces. This
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Figure 81.: Structure of the MuPix datapath on the FEB.

is possible since the statemachine on the MuPix is only able to produce one hit every
four cycles. The three vertical sections of each MuPix can, therefore, be condensed
into a single datastream on the FEB, which reduces the maximal number of interfaces
to twelve.

4.7.1. Hitsorter

These twelve interfaces are then fed into a single hitsorter entity, where the hits of all
twelve inputs are sorted in time and merged into a single output stream. This stream
is required to be sorted in time by some of the following readout components. The
concept behind the sorter entity was first introduced in [2] and then finalised in [69].
It was not developed in this thesis and will be shown here for completeness of the
datapath. The idea is to store the incoming column and row information in a memory
address determined by the timestamp of the hit. This memory can then be read in
order, which results in a sorted output. However, the implementation of this idea is a
bit more complicated.

The first complication is that more than one hit with the same timestamp can be
received. For this reason, the timestamp cannot be directly used as a memory address
since multiple memory locations are required for the same timestamp. Another issue
is that one needs to keep track of the locations which are filled with hit data. Both
of these complications are solved with a second memory, which contains the number
of hits in each timestamp slot. This is shown in figure 82.

When a hit arrives at the sorter, the counter memory location (green) at the times-
tamp of the hit (blue) is read. The column and row is then written into the according
memory slot (red), and the entry in the counter memory is increased by one.

The counter memory can then be used to construct the output datastream by read-
ing through the counter memory in order and sending the according content from the
main memory. This needs to happen with some separation with respect to the writing
process. To achieve this, a sliding read and write window of addresses is defined. The
write side is only allowed to receive timestamps within its current timestamp win-
dow. Other hits are thrown away. Similarly, the read side needs to operate outside

125



Chapter 4. Mu3e Data Acquisition System (DAQ)

0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7

Memory slots

time

co
unter m

em

tim
esta

mps

0
1
0
0
1
0
1
0

0
1
2
3
4
5
6
7

Memory slotsco
unter m

em

tim
esta

mps

0
3
0
1
1
0
3
0

0
1
2
3
4
5
6
7

Memory slotsco
unter m

em

tim
esta

mps

XX

X

X X

X

X XX

X

Figure 82.: Write procedure of the hitsorter.

of this timestamp window and needs to throw away hits if it cannot keep up with the
movement of the write window.

The size of the write window needs to be large enough to cover the expected range
of timestamps that could arrive from the MuPix sensors. The FEB and all connected
MuPix sensors are synchronised at each run start. Therefore, particle detections on
the MuPix sensors are assigned a timestamp that is always identical to the current
reference timestamp on the FEB. The time range that it can take the MuPix to
deliver this hit to the FEB needs to be fully covered by the write window in the
sorter. Consequently, the borders of this time window are defined as a fixed offset
relative to the reference timestamp on the FEB. Hits arriving in time and out of time
are counted for each input link and these counters can be monitored from the software
via the slowcontrol system16. Shifts of the write window can also be configured from
a slowcontrol register.

The depth of the MuPix hitsorter covers 11 timestamp bits for each input line and
the main memory contains 16 slots for each possible timestamp and sensor. This is one
of the main reasons why memory blocks on the ArriaV FGPA are a rare resource for the
other firmware components. During this thesis, an attempt was made to implement
the counter memories in MLAB cells since they currently only utilise about 51 % of the
space in their M10K blocks. This attempt failed due to the lower timing performance
of MLAB cells. At the time of writing this thesis, the connections of the memories in
the sorter are the most timing critical paths in the MuPix FEB firmware and make
up most of the minimal slacks shown in the histograms in sections 3.7.6 and 4.4.4.4
after the optimisations discussed there.

16
The sorter is one of the slowcontrol tree endpoints discussed in section 4.4.4.4.
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4.7.2. Mupix Data Packets

Each roundtrip of the read pointer in the sorter memory produces a data packet. Since
the sorting depth contains eleven timestamp bits, that will happen on average every
211 clock cycles. The packet is then sent towards the data merger in the common part
of the FEB firmware and follows the previously introduced 36-bit interface. It arrives
in the common firmware part via the synchronisation FIFO in figure 63 of section
4.4.3, which translates it into the 156.25 MHz clock domain. Starting from there, it
integrates into the previously described common firmware parts and is merged with
run control and slowcontrol data packets to be sent to the SWB via the optical fibres.

The protocol follows the description in table 6 at the beginning of this chapter but
adds a MuPix-specific substructure. This substructure is shown in table 14. After
the preamble, a header followed by a sequence of sub-headers and mupix hit data is
transmitted and the packet is closed with a trailer as defined earlier in this chapter.

The header contains a continuously increasing header identification number (H-
ID)17. It is followed by a subheader and hit counter of the previous data packet and a
reference timestamp. The reference timestamp is the timestamp counter on the FEB
at the creation time of the packet. That is not necessarily identical to the timestamp
to which the contained data belongs to, which can be calculated by multiplying the
header ID with 211.

The header is followed by a sequence of sub-headers with their contained data.
Each sub-header provides eight more timestamp bits and overflow information from
the previous sub-header. The hits in each sub-header deliver the rest of the timestamp
bits and the location of the hit in the detector.

It is necessary to split the individual timestamp bits into different header levels
to reduce bandwidth usage. Sending the full timestamp information for every single
hit is not efficient since the higher bits of the timestamp counter will be identical for
every transmission. Therefore, the total timestamp of each hit is provided in different
stages. The lowest bits are transmitted in the individual 32-bit hit words and some
higher bits are transmitted in a sub-header. The sub-header is only sent when the
time information provided there changes. The highest bits of the timestamp can be
constructed from the header of the packet.

These packets flow through the common firmware parts described earlier and are
further processed once they arrive on the SWB in section 4.9.

4.8. Mutrig readout

Conceptually, the MuTrig readout works similarly to the MuPix readout from the
previous section. Data is also received by 8b10b encoded 1.25 Gbit/s LVDS links and
is also fed into a variation of the sorter, which produces packets similar to the one
shown in table 14. The only difference there is the packet ID in the preamble and the

17
The header counter in the second word is identical to the lower bits of the H-ID. This has historical
reasons and was kept for backwards compatibility [70].
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0 reference timestamp(30:0)
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}
sub-Header
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}

hit

...
}

hit

ts(11:4) overflow K23.7

}
sub-Header

...
}

hit

overflow - K28.4

}
Trailer

Table 14.: Structure of a mupix data packet between the FEB and SWB.

information contained in each hit. Mutrig hits will contain a channel ID instead of
column and row information and will provide more timestamp bits due to their higher
time resolution.

However, the timestamp measurements provided by the MuTrig require some further
processing before they can be sent into the hitsorter. The MuPix timestamp is gray
encoded, which is solved by a simple conversion function implemented in the unpacker
entity. The MuTrig timestamp is a pseudo-random number that comes out of a linear
feedback shift register (LFSR) on the MuTrig. The reason for this implementation
is a higher maximal frequency. The maximal speed at which a circuit can operate
is related to the Fan-in and Fan-out of the registers within it. The highest bit of a
counter – also a gray encoded counter – will have a Fan-in of at least all the lower
bits. An LSFR can operate at higher frequencies since registers only have to connect
to their neighbours in the register chain.

As discussed in section 3.4.1.3, LFSRs only have 2N−1 possible states since an LFSR
where all registers are set to one is stuck at this output. Therefore, the overflow of
an LFSR counter will happen one cycle earlier than the overflow of a binary counter
with the same amount of bits. The consequence is that there is no direct conversion
between the content of the LFSR and the according binary counter value. Such a
conversion is only possible if the number of overflow events of the LFSR counter is
known. Therefore, the number of overflow events since the reset has to be calculated
on the FEB and has to be used before the sorter to convert the time information of the
MuTrig. This thesis was not involved in the development of this firmware. Further
details can be found in [71].
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Another difference between the MuPix and MuTrig readout is introduced in the
FEB firmware for the scintillating fibre detector. The FEBs connected to the fibre
detector are expected to produce a higher data rate than any other FEBs in the DAQ.
These FEBs are, therefore, equipped with a second optical output link, which doubles
the bandwidth towards the SWB. The firmware for the second link is equivalent to
the first one. A second instance of hitsorter and data merger is used and all other
components and protocols are applied accordingly. The slowcontrol packet input of
the secondary merger is unused.

4.9. Switching Board

Once the data packets arrive at the SWB, they are first separated from run control
and slowcontrol packages in the data demerger. This entity uses the packet ID for
this purpose and was already mentioned in figure 52 of section 4.3.2. Large parts
of the datapath following that entity were developed in [71] and will only be briefly
summarised here.
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Figure 83.: Simplified structure of the SWB datastream merging.

After the separation from other packets, the data packets from MuPix, sciFi or
sciTile FEBs are buffered in FIFOs and transit into a faster 250 MHz clock domain.
This CDC happens because the optical link between the SWB and the GPU farm is
operated at 10 Gbits/s and the parallel frequency needs to follow accordingly. The
increase in the optical transmission speed is possible since the Arria10 FPGA on the
switching board supports faster transceiver speeds than the ArriaV on the FEB.

The task of the SWB, as already mentioned in the introduction of this chapter,
is to combine the time-sorted data streams from all connected FEBs into one time-
sorted datastream to the GPU farm. This is implemented in a tree structure where
each node combines two data streams. This is repeated until all streams are merged.
Each combination circuit reads hits from both inputs, merges them according to their
timestamp into a time-sorted output stream and buffers that in another FIFO. When
no data is available on one of the inputs, the circuit has to wait until it is available
to be able to compare the timestamps of both inputs. This is the reason why packet
loss or even the loss of a single subheader is not acceptable in the Mu3e DAQ since
missing data will stop the data flow for the entire system at the stream merging on
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the SWB.

As a consequence of the merging, the chip ID in MuPix or MuTrig packets needs
to be modified. The packet format between the FEB and the SWB has enough bits
reserved to identify the chip for this specific FEB. When the streams are combined,
additional information is needed to identify the source of a particle detection since the
chip IDs are not unique anymore. This mapping to a new addressing scheme is also
done on the SWB.

From the SWB, the re-packaged data is sent via 8b10b encoded 10 Gbit/s optical
lines to the GPU filter farm.

4.10. GPU Farm

On the first machine of the GPU farm, all the data from all detectors in Mu3e is
received by a single commercial board with an Arria10 FPGA. The four switching
boards in the previous DAQ layer send a continuous, time-sorted data stream with a
total of 16 optical connections opertaing at 10 Gbit/s.

The Arria10 selects a time frame of the incoming data and writes a copy of it to
a DDR4 memory on the same PCB. The selected frame is flagged as processed. The
received datastream is then – otherwise unchanged – forwarded to the next server of
the GPU farm. This is repeated until all time frames are flagged as processed.

On each Arria10 board, the detections of the pixel sensors of the central station
are converted into physical coordinates and sent to the main memory of the server
via direct memory access (DMA). From there, the data is accessed by a tracking
algorithm on the GPU, which makes a selection decision after reconstruction of the
decay vertices based on the expected kinematics for a µ → 3e decay.

If a frame was selected, another DMA transfer is used to copy the data from the
DDR4 buffer on the Arria10 board to the server’s main memory. This includes then
also the data of the remaining parts of the pixel detector in the upstream or down-
stream recurl station and the data from the scintillating detectors. The selected frame
is received by the CPU, processed and sent to the MIDAS data collection server via
an ethernet connection. The selected frames from all GPU farm machines are ac-
cumulated there and written to long-term storage for offline analysis. The complete
process is shown in figure 84.

It was shown in [23] that 12 PCs equipped with Nvidia GTX1080Ti graphics cards
can process the expected data rates in the first phase of the experiment. Newer work
on the online selection [72] will likely be able to reduce that number, also because
graphics cards with a higher performance are available now. Further details on the
firmware implementation can be found in [71] and [47].

A previous version of the concept for the layer 3 DAQ was removing selected time
frames from the stream instead of just flagging them as processed. The change towards
flagging was made to add the possibility of other selection algorithms at the end of
the Mu3e filter farm. The full data is still available there and more machines with
alternative selections can be added. This could be used at some point, for example, for
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a GPU-based cosmic selection for alignment purposes in Mu3e or for other searches
([73], [74]) using the Mu3e detector.
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131



Chapter 4. Mu3e Data Acquisition System (DAQ)

4.11. Other Aspects of the Mu3e DAQ

This section is intended to cover aspects of the Mu3e DAQ which are relevant to
operate it but have not been necessary to understand the previous discussions.

4.11.1. FEB Boot Sequence

When the FEB is turned on, the firmware on the ArriaV and parts of the clock
distribution between components on the FEB are in an undefined state and will not
operate properly immediately. The FEB has to follow a certain sequence to put its
components into operation since some components might depend on others. This
sequence has to be predefined and has to proceed automatically after power-on since
there is no connection to steer this process externally at this point. The FEB is located
inside the Mu3e magnet, and any communication with the outside requires some parts
of the FEB to function properly.

The first thing that starts operating on the FEB is the Max10 FPGA. The firmware
there is automatically loaded from non-volatile memory included on the chip. The
firmware waits for an internal PLL to lock onto the 50 MHz clock provided by a
quartz oscillator and uses this lock signal to reset its firmware blocks. This is the
start of the boot procedure. Once the Max10 is in operation, its task is to start up
and configure the main ArriaV FPGA on the FEB. Ensuring that the ArriaV operates
is why the Max10 is present on the frontend board.

The Max10 loads a firmware image from flash memory on the FEB and uses it to
configure the ArriaV FPGA. Only the 50 MHz domain on the ArriaV (table 10) is
operational after configuration since it is supplied by another external quartz oscillator.
The other clocks are supplied by two clock chips on the FEB (SI-1 and SI-2, shown in
figure 56), which must be configured before they drive the correct clock signal. The
NIOS configures these chips with the settings saved in the firmware image via an SPI
connection operated in the 50 MHz domain, starting with SI-2. SI-1 is configured a
few seconds later since it is driven from SI-2 and requires a stable input signal. An
earlier configuration of SI-2 does not achieve a defined phase of the 125 MHz clock for
all components and breaks synchronisation between the individual FEBs in the DAQ.

Once both clock chips are configured, all clocks on the FEB will be available. Start-
ing from there, the NIOS can steer the slowcontrol system in the 156.25 MHz domain
from the connection shown earlier in figure 66. This is then used to reset and properly
start the other parts of the ArriaV firmware and to move the FEB state into idle. Be-
fore the clocks are stable, the receivers of the reset link on the FEB can misinterpret
the input stream and change the FEB state randomly.

Following the boot of the frontend boards in the magnet, a connection with the
MIDAS software can be established. When the software is started, it will read the list
of the expected frontend boards from the MIDAS ODB and iterate over them with a
slowcontrol ping. A slowcontrol ping is an SC writerequest to a specific not writeable
address which is used to check if the connection exists. If the ping was successful, first
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setup informations are exchanged between the MIDAS ODB and the frontend board18

and the system is ready for user operation.

It would be possible to extend this procedure by a cabling check in the future.
The slowcontrol port on the SWB could be compared against the backplane ID read
from the FEB. This would allow the automated detection of any wrongly connected
cables, which might be a valuable addition, especially once more parts of the DAQ
are assembled at PSI.

4.11.2. FEB Shutdown and Overheat Protection

A shutdown function was implemented on the FEB following an incident that will be
discussed in a later chapter. The intention of the shutdown function is to reduce the
power consumption of the FEB quickly. It can be triggered via the slowcontrol system
but is intended to be used as an automated overheat protection.

The temperature of the FEB can be monitored by an internal IP on the ArriaV
FPGA and via measurements of an ADC on the Max10. If the temperature increases
above a hardcoded limit, the Max10 will send a shutdown signal to the ArriaV. When
the ArriaV receives the shutdown signal, it will turn off the 156.25 MHz and 125 MHz
clocks by permanently raising the resets of the clock chips. The 50 MHz clock also
gets disconnected on the ArriaV and the optical transceiver module is instructed to
turn off.

Turning off the clocks removes most switching processes in the FPGA. Switching
a register state requires power. Therefore, the power consumption is reduced when
registers do not change their state anymore. Some of the power drawn by the FEB
is used by the adapter boards on the other side of the backplane. These components
are not affected by a shutdown. On a standalone FEB a shutdown causes the power
consumption to drop by more than 50 %. It is not foreseen to recover from the
resulting state except by a power cycle of the FEB.

4.11.3. FEB Firmware upload

Once the FEBs are mounted at the service support wheel and the detector is inserted
into the Mu3e magnet, there is no longer any physical access to change the firmware
manually. During normal operation, the firmware image is loaded from the flash
memory by the Max10 FPGA, as discussed in the boot sequence. A change of the
firmware image on the flash memory is only viable via the communication channels
provided by the Mu3e DAQ at this point.

Physical access to the FEB would require partial disassembly of the experiment
and, in the case of the upstream side, the movement of a heavy beamline quadrupole
magnet. Additionally, the helium atmosphere will be lost and must be replenished
after reassembly.

18
The git hash of the firmware is read to the ODB and information about the amount and location
of connected ASICs is written to the FEB.
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This amount of work is not reasonable for a firmware change. Therefore, the
firmware image can be uploaded via the slowcontrol system to the ArriaV FPGA,
which forwards it via an SPI connection to the Max10, where it is written to the
external flash memory.

4.11.4. Backup communication via the Backplane

If any transmission error or interruption of the mentioned write process of a firmware
image to the flash memory occurs, the image on the flash is unusable and the FEB
will not be functional after a reboot.

There are two more lines of defense before the FEB is not accessible from the outside
anymore. The first one is a backup image on the flash memory. The flash is large
enough to hold two firmware images. Which one is loaded at boot can be selected in
the Max10 firmware via a pin on the connector to the backplane. An MSCB node
controls the signal on the backplane. The idea of the backup image is to always just
overwrite one of the images on the flash memory during firmware upload. If anything
fails during that upload, it is possible to switch to the backup emergency image and
use this one to write the broken image again. Should this fail a second time, the FEB
will not be reachable via the SWB slowcontrol system anymore.

In this case, it is foreseen to have a backup communication channel via MSCB on
the backplane to be able to write a functional firmware image to the flash memory.
MSCB was discussed earlier in this chapter in section 4.4.4.3. However, this method
will require a significant amount of time for the upload process due to the low speed
of the MSCB interface.

4.12. Generators and injection points

Data generators are used in different locations in the Mu3e DAQ in order to generate
fake data for system tests without operating the full Mu3e detector with a beam at
PSI. Depending on the location at which this fake data can be injected, the generators
provide a different level of realism. For example, on the last layer of the DAQ, the
collaboration performed multiple test runs where data frames from the geant4 simu-
lation were converted into frames of the DAQ to test the reconstruction and analysis
flow.

A similar concept allows running the software parts of the system without the
presence of any hardware components. A simulated, digital version of the SWB can
be used, which actually does provide some simulated slowcontrol functionalities.

With actual hardware present, data generators in the firmware can be used to
produce a fake datastream. The highest hardware data generator is located before
the PCIe interface. In the lower layers of the DAQ, there are additional generators,
so the components there can also be tested.

On the MuPix FEB, a single multi-purpose generator is built from linear feedback
shift registers (LFSRs). A first LFSR is used to generate hits with a pseudo-random
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column, row and timestamp in each clock cycle. The output data rate can be config-
ured from the slowcontrol system. In order to make the output timing patterns more
realistic, additional LFSRs are used to decide for each clock cycle whether or not the
generated hit is actually sent to the output of the generator.

The rate is adjusted from the slowcontrol by changing the conditions for which
the secondary LFSRs will allow the output. These conditions can be made more
or less likely, which defines the average output rate. This method implements an
adjustable and deterministic average output rate but also produces a pseudo-random
time structure of the outgoing hits, which is more realistic than a strictly regular
output pattern. The pseudo-random output time structure is, of course, also regular
but on a much larger timescale. Providing realistic generator data is essential for
system tests. It is conceptually of similar importance as finding good test vectors
for firmware simulations: the simulations will only discover edge-case errors in the
firmware if the tests are realistic enough to produce them.

The stream of output hits can then be injected either at the input or output of the
hitsorter. Additionally, the possibility was added to inject single hits with a column,
row and timestamp written from the slowcontrol system.

It is also possible to configure the MuPix and MuTrig ASICs to inject fake signals.
For the MuTrig, this feature is actually used for calibration purposes. The pixel sensor
does currently not plan on using this functionality. It would be controlled via the sixth
configuration shift register on the MuPix, which was intentionally ignored during the
discussion of the configuration upload firmware. However, it is still accessible via a
modification which will be shown in the next chapter, but it is very inefficient to do
so since the system was not optimised for it.

4.13. DAQ Summary

This chapter summarises the author’s contributions to the data acquisition and control
systems of the Mu3e experiment. A design for an FPGA-based multi-layer DAQ
system was presented, which is capable of processing the expected data rates and
provides the infrastructure for configuration and monitoring of the Mu3e detector.
The author’s work has focused on the lower layers of the system, while the design for
the upper layers was mainly produced in [71].

Unless mentioned otherwise, the components discussed for the lower DAQ levels
have been implemented and are operational. Parts of the system were verified by
the author against the detector ASICs using functional HDL simulations. The seed
variation methods shown in chapter 3 were used to evaluate the timing behaviour of
the resulting FPGA designs. Test runs will be discussed in chapter 6.
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The development of DAQ system elements shown in the previous chapter repre-
sents the primary contribution of this work to the Mu3e experiment. However, the
construction process of a detector system does not just involve the development of
the data acquisition system but will also require variations of the DAQ system for
applications outside the context of the final Mu3e detector. Such applications are, for
example, the development and construction of Mu3e detector elements and their qual-
ity control test procedures. Additionally, parts of the Mu3e system will be used with
some modifications in other experiments. This chapter will cover the contributions of
this thesis to DAQ system variations.

5.1. Dummy FEB

A particularly simple modification is the introduction of the dummy FEB firmware.
The dummy version of the FEB removes the detector-specific part from the ArriaV and
only leaves the common firmware parts. Since the communication and infrastructure
aspects of the DAQ are exclusively handled in the common part, the FEB will still
function in the DAQ system but will not be able to read out any detector.

This is particularly useful for DAQ infrastructure tests since the resource usage
of the dummy version is much lower compared to the other FEB flavours. It does,
therefore, not come with their timing issues and allows faster development cycles due
to the lower compile time.

It is also safe to connect this version to any of the three subdetectors. Normally, a
MuPix FEB firmware accidentally uploaded to a FEB connected with a scintillating
fibre detector might cause damage since the input and output pin distributions on the
backplane are not completely compatible. The dummy FEB version does not drive
any of these pins on the backplane and can, therefore, be used in both cases. For this
reason, a tested version of the dummy firmware will be used as the emergency image,
which was mentioned in section 4.11.4. Any infrastructure-related functionalities are
included in the common firmware. Therefore, the dummy firmware is also able to
perform a firmware upload to the flash memory. It is likely that the dummy FEB
firmware will be used as the default image for any FEBs not currently attached to a
detector in order to prevent any accidental damage once they become connected to
something again.
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5.2. Operation without DAQ Layer 3

Developing, testing and characterising detector components has been a consistently
ongoing task for many members of the Mu3e collaboration in the last few years. Sensor
characterisations or component tests often require a DAQ. The system used for this
purpose is based on the Mu3e DAQ but not tailored towards the reconstruction of
µ → 3e muon decays. The GPU selection in the third DAQ layer is not useful in these
scenarios. The requirements shift from µ → 3e reconstruction towards the ability to
write a high bandwidth to disk in more portable systems, which are available in higher
numbers and can be deployed at multiple institutes participating in Mu3e.

To achieve this, the third layer of the Mu3e DAQ is dropped and only a single SWB
mounted in a desktop-PC is used. Additionally, the hardware used for the SWB layer
is replaced by a commercial DE5a-Net development board since the PCIe40 – which
is nominally used there – is produced by the LHCb collaboration and is not available
in large numbers. Porting the firmware to this new hardware is not a concern since it
uses the same Arria10 FPGA and is also used for the receiver boards in layer 3 of the
Mu3e DAQ.

The firmware on the SWB replacement combines the slowcontrol functionalities
of the nominal SWB with a new readout method. Instead of sending data to the
third layer for the GPU reconstruction, the firmware builds MIDAS events and sends
them to the MIDAS buffers via DMA. Building the event according to the protocol
defined by MIDAS saves CPU time and can increase the reachable bandwidth. The
development of the MIDAS event builder firmware was done in [71] and is discussed
in more detail there.

Regarding hardware, the other Mu3e DAQ component with limited availability is
the clock and reset distribution system. The clock and reset box shown in figure 55
only exists twice and needs to be replaced with another solution here. The options
for this will be shown in sections 5.3 and 5.4.

On the side of the frontend board, only minimal firmware modifications are neces-
sary. Depending on the test system, the number of sensors and the connector type
used for them changes, which produces a variety of FEB versions which mostly only
differ in their pinout configuration towards the detector adapters. Mupix setup ver-
sions which use the SPI configuration method instead of the new protocol do not
require any additional firmware change since the configuration upload was written
fully compatible with SPI. This was discussed in section 4.6 of the previous chapter.

5.3. Other Reset Options

The standard reset link controls state changes of the FEB via an 8b10b encoded
1.25 Gbit/s optical link from the clock and reset box shown earlier in figure 55. Alter-
natives to this system either have to produce this optical signal or implement another
method for state changes on the FEB.

The first concept is implemented on the SWB replacement from section 5.2 by
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emulating four reset lines with one of the optical output modules of this board. The
commands are identical to the normal reset system and are controlled via the PCIe
interface. Since they are sent simultaneously on all four outputs, this method provides
synchronisation between the connected FEBs equivalent to the actual clock and reset
box. However, the number of FEBs is limited to four.

The other option is to control state changes on the FEB without using an optical
input signal. This method bypasses and disables the state controller on the FEB and
uses write requests to predefined slowcontrol registers to induce state changes. State
changes are still acknowledged by the data merger as defined in section 4.4.2. When
this option is used, the SWB software will automatically bypass any actions from the
clock and reset software and send broadcast SC commands instead to accomplish the
requested state change. Since the NIOS is also connected to the slowcontrol system
on the FEB, a state change can also be requested manually by a user connected to
the USB terminal.

The slowcontrol-based reset replacement does not ensure synchronisation of all con-
nected FEBs since it is distributed in the 156.25 MHz domain. However, the resulting
time deviations on the FEB will likely be limited to one or two 125 MHz reference
cycles since the signals are broadcasted from the SWB and not sent individually to
each FEB.

5.4. Other Clocking Options

Similarly to the reset link, an optical clock signal can be emulated by the SWB, which
is the standard method used for Mu3e DAQ setups outside of the Mu3e magnet. Al-
ternatively, the 125 MHz reference clock can be provided electrically via an LVDS pair
of cables to the FEB. In this case, the configuration of the second clock distribution
chip needs to be changed to use the electrical input as the reference clock.

Another option is to drive the second clock distribution chip from an oscillator on the
FEB, which allows the FEB to operate disconnected from other system components.
User interactions are only possible via the USB terminal in these cases, but most
functionalities can still be used via the connection of the NIOS to the slowcontrol
system. High-speed data readout is not available since a stable connection from the
FEB to the SWB cannot be assembled due to the missing reference clock between
them.

5.5. Zero Suppression

During normal Mu3e operation, the GPU selection algorithms are used to reduce
incoming data to an amount that can be written onto a disk for offline analysis. For
the system variations in test and quality control setups, this data reduction step is
not present and the system will aim to write all received data to disk.

The issue with this is the resulting protocol overhead. Section 4.7.2 defined the
structure of data packets from the FEB to the SWB. A data sub-header has to be
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sent on average every 16th cycle in this protocol. With the presence of hits, the concept
of sub-headers saves bandwidth since it avoids repetitions of timestamp information.
Without any hits, they are still needed in the full system to form a time-sorted stream
for the GPU farm. This is not necessary anymore for most systems which do not
include the GPU farm. Empty sub-headers are just unnecessary data in these cases.

A single FEBs datapath sends 32-bit data words out with a frequency of 125 MHz.
On average, every 16th cycle is a subheader. Therefore, a single FEB produces at
least 31.25 MB/s which are written to disk if the system is operated without layer 3.
That is a significant fraction of the usual bandwidth to a hard drive and with 3-4 more
FEBs the system would be completely occupied with writing empty data frames, even
without any detected hits.

For this reason, zero suppression options were introduced to improve data storage
efficiency and analysis speed by eliminating the storage of unnecessary data. An entity
for zero suppression is currently connected to the data output of each data demerger on
the SWB. For a previous version, it was connected on the FEB side of the optical link,
which does not make a difference in this case. When the sub-header zero suppression
is activated it will receive a sub-header word and store it until either a hit or the next
sub-header word arrives. When no hit arrives between the stored sub-header and the
next sub-header, the word will be discarded.

A header zero suppression was built on top of this idea. When enabled, a header will
be stored until the first sub-header is seen, which indicates that the packet contains
hits since the sub-header was not removed by the previous sub-header zero suppression.
When no sub-header arrives, the complete packet will be discarded.

The advantage of a zero-suppressed readout is obvious. The resulting file sizes are
smaller and only contain actual particle detections. Additionally, the number of FEBs
that can be read out simultaneously has increased. However, the concept of the time
alignment tree [71] on the SWB does not work anymore since the subheaders are
missing and an alternative, sequential readout of the buffer FIFOs needs to be used.

5.6. Reference Trigger Inputs

When the Mu3e DAQ has to be used together with other detector systems, these other
components either have to be fully integrated into the DAQ or time markers have to
be put into the Mu3e datastream to be able to reference events in the separate system.

These reference inputs or trigger inputs replace one of the usual sensor datapaths
on the frontend board. When a reference input signal arrives, a hit is created and
inserted to one of the inputs of the sorter entity in section 4.7.1. The timestamp
of this hit is created from a 125 MHz counter on the FEB. Since this counter runs
synchronised to the other detectors in the Mu3e DAQ, it can be used in the analysis
to correlate events from the Mu3e system with the external input.

In this version of the system, the timing precision of the reference input is limited by
the 125 MHz counter frequency on the FEB. Further improvements were implemented
with the intent to increase the precision of externally provided time references. This
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became relevant in some situations where multiple external references were present
in the Mu3e system or references to the scintillating detectors had to be made. For
the analysis of relations with the timing of MuPix hits, these improvements would
not have been necessary since the time resolution of a MuPix is already worse than
sampling with a 125 MHz clock.

The first step to increase the reference timing precision is to add a faster reference
counter on the FEB. The 125 MHz counter is still providing the timestamp bits used
by the sorter in order to ensure proper propagation of the hit through the rest of the
Mu3e DAQ. However, the bits that are normally used for column, row, and tot in
the MuPix hit are replaced with more precise timing measurements from the faster
counter. These locations in the hit are never modified again by the DAQ and will end
up unchanged in the output file.

The reference timing precision in this modification is limited by the fastest clock
that the FEB can use in internal user logic, which is 625 MHz due to the device
limitations of the ArriaV FPGA.

clock0

data arrival 0 1 2 3 4

clock1

data arrival 0 1 2 3 4

clock2

data arrival 0 1 2 3 4

clock3

data arrival 0 1 2 3 4

input

Figure 85.: Usage of clock shifts to increase timing precision. The clocks 0 and 1 will
register the arrival of the input in cycle 3, clocks 2 and 3 will measure
it already in cycle 2. The average of these measurements is more precise
than each individual one.

A further improvement is possible by the method shown in figure 85. Multiple
fast clock domains are created with shifted sampling points. Sometimes not all clock
domains will register the reference input at the same counter value. The average of
these counter values can be used to improve the timing precision since the number
of domains which registered the input in cycle N vs the number of domains which
registered it in cycle N + 1 contains information about the arrival time of the input
signal.
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This modification of the Mu3e DAQ was, for example, used for time-of-flight par-
ticle identification between e+, µ+ and π+ in [75] or as a cosmic trigger reference in
section 6.2 of this thesis.

5.7. Timestamp Replacement

Using a similar idea to the previous section, the timestamps of particle detections can
be replaced with the FEB 125 MHz counter value at the time of arrival of the hit
on the FEB. This concept was first used during a testbeam, where tuning issues of
the involved sensors did not allow them to deliver reasonable timing information. An
option controlled via an SC register was introduced to replace the time information
with the arrival time. This reduced the timing precision significantly but allowed this
specific testbeam to proceed with the measurement.

Although this idea came about in a distress situation, this is a feature that could
be used for further studies in the future since it allows an analysis of delivery times
between a hit on the MuPix or MuTrig and the arrival on the FEB. These delivery
times are relevant for the size and position of the hit acceptance window in the Mu3e
hitsorter and will depend on the total hit rate on the sensor. One possibility for such
a test would be to copy the output of a MuPix sensor on the FEB to a datapath which
was foreseen for another sensor and replace the timestamp with the arrival timestamps
for this copy. This should allow an analysis of delivery time depending on the rate
and position of the hit on the sensor1.

5.8. QC histogramming

For quality control (QC) procedures it is sometimes relevant to record the response of
a MuPix sensor accurately under increased noise conditions. This poses a challenge
for the type of system discussed in section 5.2 since the readout method there can
be saturated, which leads to the loss of hit information. For these types of tests, the
actually relevant information is the noise level for each pixel and not the recording of
each individual hit on the sensor. For this reason, a quality control histogramming was
connected on the SWB, which allows snapshots of the hit distribution map for a specific
MuPix sensor to be taken. This histogramming entity is dynamically configured to
connect to a specific MuPix and FEB and will count the hits for each pixel for a
given duration. Data loss is not possible for this method since the hits are counted in
hardware and not transferred to the software first. After the hits have been counted
for some time the histogram can be read out via the slowcontrol system. This provides
a reliable way of measuring noise levels unaffected by most readout limitations.

1
It is probably also possible to simulate this instead by using the design files.
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5.9. Operation without DAQ Layer 1

Other projects are looking into the use of MuPix sensors for beam monitoring pur-
poses. Either as part of a detector system or as a tool during development. Some are
already using MuPix sensors ([76], [75]), and others are planning for modifications of
the readout hardware. One of these projects ([77]) plans to operate the MuPix sensor
without the use of a frontend board by moving the frontend board firmware shown
in the previous chapter almost completely to the Arria10 on the SWB. The MuPix
would then be operated via optical cables directly from the FPGA there. This will
form another system variation of the Mu3e DAQ. Apart from porting firmware compo-
nents, the control interface of the MuPix shown in section 4.6 will need to be modified
since the optical modules are not able to drive constant values. Developments in this
direction will be available in [77].

5.10. Manual MuPix Commands and Readback

Commands to the MuPix do not just upload the global and TDAC configuration as
shown in section 4.5. They can also be used to set up the injections from section
4.12 or to read a configuration back to the FEB. Additionally, the MuPix includes an
ADC, which can be configured to measure different voltages on the sensor. The ADC
functionality is steered by a separate control command. Injections are controlled via
the sixth configuration register, which was ignored during the discussion in section
4.5.

These options are currently not heavily used for sensors in a Mu3e DAQ system,
and it is questionable whether they will be used at all during the normal operation
of the Mu3e detector. For this reason, the slowcontrol architecture on the FEB was
not optimised for these functionalities. However, they are still reachable by sending
64-bit commands to the MuPix manually.

Every connected MuPix has an instance of a command assembler entity on the FEB,
as discussed in section 4.6.2.2. This entity decides which command should be sent and
reads the payload data from the mirror registers. The command assembler entities
are equipped with an additional 64-bit input for manual commands. A command
applied to this input will only be considered in the decision when none of the mirror
registers, including the TDAC and load cycles, are currently able to provide one.
If that is the case, then the command from the manual input will be selected and
provided for pick-up to the lane controller. This implementation ensures that manual
commands also automatically adhere to the tick alignment, configuration deadtimes
and the interleaving command order on the slowcontrol line of the ladder.

The manual inputs are exposed to the software via the slowcontrol system. Each
input is connected to two slowcontrol addresses and is written whenever a write com-
mand from the SWB is targeting this address. Apart from the timing aspects above,
the Mu3e protocol is not produced by the firmware in this case and has to come from
the software.
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Optimisations to this method should be considered if one of these features requires
frequent use during the operation of Mu3e at some point. In the current system an
efficient use of them is not foreseen.

During the development of the MuPix configuration system the method shown here
was considered as an alternative to buffering data on the FEB. The SWB could buffer
the data instead and automatically write slowcontrol write commands to the manual
input ports of the command assembler entities without a direct involvement of the
software. This would remove the issue of just-in-time delivery, which was mentioned
in the MuPix configuration section, since the precise timing of commands would still
be taken care of by the FEB. Should the resource situation on the ArriaV become
worse in the future, then this is something to be considered again.

For the SPI configuration method a similar solution was implemented by providing
a manual software access port to the SPI line. However, this is even less efficient than
manual 64-bit commands.

The reply from the MuPix to these ADC or configuration readback commands is
sent via the data output lines. The reply occupies a specific location in the output
protocol and can be distinguished from hit data. For each MuPix, a small FIFO was
inserted in the datapath which collects these reply words. The read port of the FIFO
is connected to a slowcontrol address and can be read from the software. It is currently
not foreseen to automatically forward this reply data to the higher layers of the DAQ.
As mentioned above, this should be further optimised if these features are required
frequently in the future.

The readback of configuration data is implemented via the RB line in figure 86.
This signal can be controlled via a separate command and copies the data from the
output latch to the latch controlled by CK1. Afterwards, the data can be shifted
towards the end of each configuration register. Data which is shifted out at the end
is sent towards the FEB and then also written to the FIFO there. The software has
to keep track of the order of replies expected in the readback FIFO.
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Figure 86.: A single cell in a MuPix configuration shift register. Taken from [20].

In principle, it would be possible to automatically compare the returned data for
the three global configuration registers with the data that is still left over from the
write process in the mirror registers. This could be used to build a fully automatic
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write validation function. This is possible since the mirror registers are implemented
as circular shift registers, which still contain a copy of the configuration data after the
write process.

However, the idea of automated write validation has not been explored further
in this thesis. An unstable configuration line that leads to incorrect settings on the
MuPix can also easily produce an unstable data output line. However, the data output
line can also be unstable with the correct settings. The readback of configuration data
via this output line can then introduce additional mismatches compared to the content
of the mirror registers on the FEB. Therefore, the validation idea can only work in
cases where the configuration is received correctly on the MuPix. It can also fail
in these cases if the output link is unstable despite a correct configuration, which
somewhat contradicts the concept of a validation.

5.11. Mupix Gating

The P2 experiment [78][79] is planning to measure the weak mixing angle sin2θw for a
low momentum transfer using electron-proton scattering of a 150 µA electron beam.
The P2 tracking detector will be built using a variation of the MuPix sensor. The
expected electron rate of 0.1 THz [78] does not allow a fully streaming DAQ concept
as in Mu3e. The data rate needs to be reduced by adding a gate signal on a sensor
level to enable the MuPix for some time period and disable it again.

Gating a MuPix sensor is, in principle, possible by uploading a new configuration.
A first configuration contains settings where the threshold or some other setting is
changed to disable hit detection, the standard configuration is uploaded for data
taking and then the configuration is changed back to the original one. The issue with
this idea is that it takes time to upload a configuration to the MuPix. The gate would
be open for at least this time period.

A faster gating method for the MuPix was developed during this thesis and is shown
in figure 87. The idea is to repurpose the three latches in figure 86 and the readback
function from the previous section. The signals CK1, CK2, RB and Load in a MuPix
register cell can be steered individually with the SPI interface or the direct output
pins. This can be used to store and switch between two different sets of configuration
bits in the MuPix.

In a first step, configuration 1 (config 1 in figure 87) is fully written and loaded.
Then, the second configuration is written but not loaded into the last latch. The RB
signal is applied and configuration 1 is copied back into the first latch with a pulse on
CK1. This is the starting position before the gate is opened. Configuration 1 contains
settings which disable the sensor.

From this state, it is now possible to switch the positions of config-bit 1 and config-
bit 2 by just four pulses on Load, CK2, followed by RB and CK1. The Load pulse
overwrites the content of the third latch with config-bit 2, which enables the MuPix.
Then, the disabling configuration is moved into the second latch with a pulse on CK2
and the enabling configuration is copied back into the first latch with a pulse on
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RB and CK1. At this point, another Load signal would close the gate again. The
contents of the first and second configuration have switched places and the process
can be repeated again. The idea was tested using the SPI interface.
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Figure 87.: Gating concept for a Mupix 11.
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This is not the intended design purpose of a MuPix cell, but it allows switching
between two configurations in just a few clock cycles. The drawback is that the SPI
interface or direct input pads must be used to control this process. The slowcontrol
statemachine on the MuPix would be perfectly able to do this on command, but
the idea came up after version 11 of the MuPix was already produced. This is the
disadvantage of ASICs: once they are produced, they cannot be changed anymore.
The MuPix 11 fulfils all requirements of the Mu3e experiment, and therefore, it seems
that version 11 will be the final version of the sensor. Should this not be the case,
the addition of a

”
Exchange configurations“ command in the Mu3e protocol could be

considered.

Another aspect to consider is the stability of the output link during configuration.
It was observed under lab conditions that a configuration can be changed without
causing 8b10b errors, but generally, the link stability seems to be negatively affected
during a configuration process. To which degree that would apply to the idea in figure
87 is an open question. The P2 experiment has opted for the production of a separate
MuPix variation which includes an input pad for a gate signal.

5.12. Temporary System Splits

The preparations for the test runs of the next chapter have made it clear that during
tuning and other test operations of the Mu3e detector, it is not always beneficial to
have all subdetectors connected in the same DAQ system. During run preparations,
the different detector groups have to perform tasks specific to their subdetector system,
which can collide in terms of run starts and stops or required readout modes.

For following runs, it should, therefore, be foreseen to split the Mu3e DAQ into four
SWB sections. Each SWB server could temporarily act as the MIDAS host system
and use reset commands via the slowcontrol for state changes of the connected FEBs.
This would bypass the clock and reset system and would also not require the emulated
signals discussed in section 5.3.

Operating the Mu3e DAQ in four separate sections has the advantage that the
people working on the subdetectors can work independently on their detectors and do
not have to share a single DAQ at all times.

5.13. Alignment

After the construction of the Mu3e detector, the absolute position of each pixel on
each MuPix sensor is only known to the accuracy of the expected assembly toler-
ances. Therefore, an alignment must occur to reach the targeted spatial resolution.
As discussed in [80], large parts of this alignment process can be based on tracks from
muon decays. However, some movements and deformations of the detector will not
be detectable in this way and represent weak modes of track-based alignment. One of
these weak modes is shown in figure 88.
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Figure 88.: Illustration of a deformed Mu3e barrel. The actual track (blue) will be
reconstructed as the purple track if the reconstruction software is unaware
of the deformation. The χ2 of the reconstructed track can be unaffected.
Image taken from [80].

The deformation shown in the figure above is not detectable by reconstructing
the blue track since a track with a different momentum will lead to the same χ2.
More of these weak modes, for example relative station movements, are listed in [80].
The discussion there came to the conclusion that external measurements and the
trajectories of cosmic muons are needed to correct these weak modes.

The need for external measurements and cosmic muon tracks results in the require-
ment of additional functions in the DAQ system. The reconstruction and selection of
timeframes is optimised for muons decaying via µ → 3e and does currently not include
the identification of high-energetic cosmic muons. Additionally, a readout method for
the external measurements needs to be provided.

5.13.1. Camera Alignment

The proposed solution for the external alignment measurements is a camera system
mounted on the detector cage [15]. The cameras will be mounted in a way where they
can see each other and reference points on the detector module. This will allow them
to calculate relative movements. First measurements with a prototype of the system
have been done in [81] and will be continued in [82].

For the data acquisition, the task is to read the images produced by the cameras
and move them out of the detector. It is planned to use the existing infrastructure in
the form of a frontend board for this task. Other collaboration members have already
started the development of the necessary firmware, but it is not completed and is
currently not operated on a frontend board. The idea for the implementation is to
consider the cameras as another type of sub-detector and replace the sub-detector-
specific part of the FEB firmware with the camera readout. Whether the camera data
will be read out via the slowcontrol system or sent as detector data packets is still to
be decided. However, the readout of the cameras will operate separately from other
detector parts and will not need synchronisation or other hardware-level interactions
with detector data. Further work is needed to integrate the camera readout into the
DAQ [83].
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5.13.2. Cosmic Alignment and Cosmic Trigger

In principle cosmic tracks are already recorded with the DAQ system presented so
far. The GPU farm will select time frames with a µ → 3e signature. These selected
time frames will include any cosmic particle trajectories that happened to arrive in this
time window. However, this means that only a small fraction of the cosmic muons will
be available in the offline data. Higher efficiencies for cosmic muon detection require
an additional online selection which searches for cosmic muon tracks. Multiple im-
plementation options are currently considered. One of these options was investigated
during this thesis and will be discussed below.

The idea is to build a hardware cosmic trigger on the Arria10 FPGAs of the receiver
boards in the GPU farm using only the pixel data of the outer two tracking layers.
When a cosmic particle passes through the Mu3e detector, it is likely to hit both outer
tracking layers twice. There are some inactive areas, so not every cosmic particle will
produce four hits, but we will not consider these cases here. Each point where the
particle enters or exits one of the outer tracking barrels will be located on a different
MuPix sensor. Therefore, a cosmic is likely to hit at least four of the 2844 MuPix
sensors in the system.

For each data frame, the sensor IDs which have recorded a hit can be marked in
a 2844-bit vector (top of figure 89) on the Arria10 FPGA. A single four-hit pattern
can now be tested by calculating the logic AND of the according four registers in the
vector. Multiple tests of four-hit patterns can be combined by a logic OR afterwards.
Overall, there are (

2844

4

)
= 2.72 · 1012 (16)

possibilities of 4 hit patterns. However, the track of a high energetic cosmic muon is
approximately a straight line and will not be able to produce most of these patterns.
The fact that straight lines can only produce a limited amount of four-hit patterns
can now be used to build a trigger decision using the method explained above and
shown in figure 89: A pattern in the 2844-bit hit vector is tested by combining the
four register outputs with a logic AND, followed by a logic OR to combine the output
with all other tested patterns.

The next questions are how many of these pattern checks can be implemented with
the available resources and is that enough to result in a sufficient cosmic detection
efficiency. The 2844-bit vector will require the same amount of registers on the FPGA
and is negligible in terms of resource usage. Each pattern will require a single ALM
to calculate the AND of the four registers. The following combination in an OR logic
will require a number of ALMs which depends on the number N of patterns which
should be combined. In the Arria10 FPGA, each ALM can be configured as a 6-input
OR element [84]. Therefore, the first layer of OR-combinations will need N/6 ALMs,
the second layer will need N/62 ALMs and so on. Overall, the structure will require

N +
N

6
+

N

62
+

N

63
+

N

64
+ · · · = N

i=∞∑
i=0

6−i = 1.2 N (17)
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Figure 89.: The conceptual idea for a firmware cosmic trigger. In the upper part of
the figure, the pattern detection logic is connected to the chip ID vector.
For simplification, only two patterns (blue and green) are shown here. In
the lower part of the figure, an OR of all detection patterns leads to the
trigger decision.

ALM blocks. Each Arria10 in the GPU farm has about 4 ·105 ALMs and could maybe
test 2 · 105 patterns. It is not possible to use all of the ALMs for pattern tests since
the other firmware components will also require resources. Combining all FPGAs in
the GPU farm, a million pattern tests seem to be reachable2. Combining FPGAs of
the different farm servers is not an issue since it does not matter on which one the
cosmic is detected.

The Mu3e geant4 simulation in the cosmic-only mode was used to generate this set
of patterns and to test the detection efficiency. Whenever a cosmic produced four hits
in the pixel tracker in a chip combination that had not previously occurred in the
simulation, it was added to the pattern set. This was repeated until the set had a
size of 1.15 million unique patterns. During the creation of this set, it was regularly
tested against a reference simulation file with a different seed to measure the expected
cosmic detection efficiency. The result is shown in figure 90.

For the 1·106 pattern tests, which could be implemented with the available resources,
a detection efficiency of 85 % is reached. However, the same pattern set was then also
tested in the standard Mu3e simulation with the nominal phase I muon rate and
accepted 46 % of the frames as false positives there. A false-positive percentage of

2
This is not an exact number since the number of farm servers is currently not final.
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Figure 90.: Detection efficiency of simulated cosmics for different sizes of the pattern
set.

46 % is too large for this method to be viable on its own. Improvements might be
possible by a reduction of the frame length or an increase of the 2844-bit vector by
using sensor quadrants or even smaller partitioning instead of the sensor ID. This
would decrease the false positive rate but also require more patterns to reach the
same cosmic detection efficiency. The resources for this step are not available on the
farm FPGAs.

The unchanged concept is able to reduce the data rate by 54 % while keeping most
of the frames with cosmic muons. This could already be used for a preselection in
combination with other cosmic selection methods.

One of these other methods would be to run a cosmic reconstruction on the GPU,
conceptually similar to the normal Mu3e track reconstruction. The issue with this idea
is that the standard reconstruction is based only on the central station’s tracker data.
A cosmic reconstruction would need to consider data from all three stations, which
would increase the hit combinatorics and require the FPGA to convert all tracker
data to physical coordinates before sending them to the GPU. The additional GPU
server(s) for this task could be added at the end of the standard GPU daisy chain.

Another option that was considered by the collaboration was the addition of large
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scintillators above and below the Mu3e detector or magnet. Limited available space
complicates such an addition. The readout of scintillators for a cosmic trigger would
be included in the DAQ according to section 5.6. The data frames containing a cosmic
trigger could be flagged and read out at the first farm server.

Further studies on cosmic pattern training can be found in [85]. The discussion
there also includes a potential use of associative memories for a cosmic trigger.

5.14. Phase II

The high-intensity muon beamline (HIMB) upgrade at PSI is estimated to increase
the muon stopping rate on the Mu3e target to 2 · 109 µ/s [12]. This second phase of
the Mu3e experiment will require some changes not just in the detector but also in
the DAQ. An order of magnitude increase in data rate will run into a bottleneck at
the input to the first farm server, which is currently limited to 160 Gbit/s due to the
available optical input bandwidth of the FPGA receiver board.

If the processing concept of timeslices on single GPUs should be kept, the data of
each timeslice still needs to be served to a single server. Doing so either requires a
receiver board with a larger optical bandwidth or a form of preselection of the time
slices before they are transmitted to the GPU farm.

A preselection would break the idea of a single daisy chain of GPU servers since
some frames would be missing in the datastream. However, it could be possible to
keep this concept by distributing time slices into multiple GPU daisy chains. The
optical output bandwidth of the SWBs is not fully utilised in the phase I design and
could be used to serve additional GPU server chains. Once the existing SWBs outputs
are fully used it could be possible to implement a second set of SWBs by passively
splitting the optical cables from the FEBs. This second set of SWBs would double
the available output bandwidth and could serve more GPU chains. However, the
total number of GPU servers will likely not increase by an order of magnitude since
changes in the detector hardware will aim for a better timing precision in the tracker
[12], which would reduce the computation requirements since it reduces the amount
of hits which need to be considered for track reconstruction.

An alternative would be to increase the optical bandwidth of each GPU server. This
does not necessarily require the use of a receiver board with more optical bandwidth.
It could, for example, also be implemented by mounting more than one receiver board
in each farm server. However, these are just ideas at the moment and the architecture
of the Mu3e phase II DAQ will need further investigation. It will likely be possible to
reuse large parts of the phase I DAQ developments.
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The design and development of the data acquisition do not end once the experiment
starts operation. The practical experiences and real issues during the experiment’s
lifetime provide input to the design of the DAQ and will result in adjustments to the
system over time. A perfect DAQ on day one is not likely. The situation for other
parts of the Mu3e detector is similar: practical operation of the detector is likely to
unveil some aspects that were not considered during the initial design phase.

The Mu3e collaboration has conducted two test runs with the intent to gain such
operation experience with a prototype of the Mu3e detector. The goal of these test
runs was not sensor characterisation or physics results but to provide input and proof
of concepts for constructing the actual Mu3e detector. For the prototype system, final
hardware was used wherever possible in order to construct something that is close to
the final design.

This chapter will discuss these two test runs in terms of their consequences for
the design of the Mu3e DAQ. The test runs also provided an opportunity to validate
the DAQ under real conditions. This is different from a DAQ performance test.
A functional DAQ is not a test result but a consecquence of designing the system
correctly. The test runs have been used to find bugs or aspects which had not yet
been considered.

6.1. Integration Run 2021

The first test run was performed in 2021 with a prototype of the inner vertex tracker
mounted in the actual Mu3e magnet with beam on the final target. Mu3e timing
detectors could not be operated due to hardware issues. The DAQ consisted of ten
frontend boards connected via optical cables to a single SWB and the final clock and
reset distribution in the Mu3e server room. The variation discussed in section 5.2 was
used since the GPU farm did not exist at that time. Only a fraction of the data from
the FEBs was read out on the SWB since the data rate exceeded the SWB server’s
disk write speed.

6.1.1. The Mu3e Vertex Detector Prototype

The construction of the Mu3e pixel tracker and also the construction of the vertex
prototype used here are discussed in detail in [16]. 108 MuPix sensors are arranged
in two barrel-shaped layers around the target. Groups of six sensors are mounted on
U-shaped PCBs instead of flexprints since the flexprints were not available in 2021.

153



Chapter 6. Test Runs

The dimensions are slightly larger than the nominal vertex tracker design and the
tracker has some gaps between the pixel ladders. The reason for this is the height of
the connectors on the ladder PCB, which does not allow the overlap planned in the
final design [16]. A Comparison is shown in figure 91.

Figure 91.: Comparison between the vertex detector prototype and the final geometry.
Adapted from [16].

The PCBs with the MuPix sensors are mounted on a 3D-printed structure, which
is attached to the beam pipe. A kapton foil is wrapped around the detector to form
a structure which allows a controlled helium flow for cooling purposes. The helium is
provided through normal plastic tubes since the upstream and downstream recurl sta-
tions are not present and do not introduce the space constraints that would normally
exist there in the final detector design. Similarly, power and data cables do also not
follow the final design and use more space. A picture of the setup is shown in figure 92.

The pixel sensors are connected to the frontend boards via an SPI line for configura-
tion and three LVDS data lines for each MuPix. The Mu3e slowcontrol interface could
not be used since the detector was built with version 10 of the MuPix sensor which
included a design flaw breaking the configuration possibility via the Mu3e protocol.
The cables used for these connections will be different in the actual detector. As
visible in figure 92, the blue cables which connect one side of the detector prototype
with the FEBs in the service support wheel would require too much space when one
considers that those only read out about 4 % of the final tracker in this image.

The module mounted on top of the vertex detector is a scintillating fibre ribbon.
It was initially intended to be operated together with the vertex tracker. This was
not possible due to a hardware issue with the SciFi readout. The entire circular cage
shown in figure 92 was then inserted into the Mu3e magnet and connected to the
outside via feed-throughs in the magnet doors.

The included ladders went through a first step of testing before and after being
mounted in the vertex tracker. The test results are available in [16] and showed that
a maximum of 83 sensors would be able to fully operate. The other chips showed
different types of defects, such as shorts or visible cracks in the sensor. The number
of working chips was reduced to 52 during data taking for various reasons, including
8b10b errors and the loss of an entire FEB section.

154



6.1. Integration Run 2021

Figure 92.: Image of the Detector used for the test runs.

6.1.2. Results

The analysis of the integration run data has already been published in [86], [71] and
[16]. In summary, it was possible to find spatial correlations between MuPix sensors
and to reconstruct the target position. However, the results relevant for this thesis
are the consequences to be drawn for the DAQ design. These will be discussed here.
Some of the decisions in the previous chapters result from the things learned from the
integration run. These cases will give references to the according parts of this thesis.

As already mentioned above, only a fraction of the MuPix sensors were fully op-
erational. Some of these sensors were already broken before mounting the detector.
Ensuring a functional detector requires chip tests on every step of the construction
process: On the level of individual chips, ladders, modules, stations and finally for
the complete pixel detector. Multiple versions of the simplified and portable DAQ
discussed in sections 5.2 – 5.4 have been adapted and distributed to the different in-
stitutes involved in pixel detector construction to be able to perform these quality
control tests. Test procedures have been developed in [87].

Additional chips were unusable after the mounting of the detector due to 8b10b
errors and the loss of an entire FEB. The issue of 8b10b errors requires thorough
quality control tests beforehand, as mentioned above. It is also necessary to provide
monitoring possibilities in the DAQ in order to distinguish cable- and transmission-
induced 8b10b errors from sensor issues. This is the reason to monitor disparity,
realignment cycles and invalid codes separately in section 4.7. 8b10b errors can also
be influenced by the tuning of driver settings on the MuPix, which will require the
development of automated tuning procedures in the future. These will benefit from
the configuration speed improvements made in section 4.6.
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The problem of losing an entire FEB is solved by the redundant firmware upload
from section 4.11.3 and the secondary emergency image (section 5.1) on the flash
memory. The redundant firmware upload was already planned before the run but
was not implemented at that time. Therefore, physical access with a USB cable was
needed to revive this particular FEB. The reason why it initially lost its ability to
boot after a power cycle is not clear. Should such cases happen regularly, they will
need further investigation.

The access to the lost FEB led to another incident. The detector was completely
powered off for a night and the detector atmosphere was opened the following day.
The detector volume is located inside of the superconducting Mu3e magnet. Small
insulation leaks to the cooling of the magnet can cause the detector volume to cool
down even when all other systems – including the detector cooling – are turned off.
Opening the detector volume in such a case causes the helium to exchange with air
and allows humidity to enter the system. The temperature on the inside was below
the dew point, which caused condensation to form on the detectors. It seems like
no significant damage occurred, but it could have easily led to the loss of detector
components if they were powered during this incident.

Another unplanned temperature extreme occurred when the FEBs were accidentally
left powered on without the water cooling. The measured temperature increased from
20°C to 64°C on a sensor in the service support wheel. The final temperature on the
FEBs is unknown but likely much higher. These events show that some critical values
of the system have to be constantly monitored and alarms have to be set for too high
and too low values. When communicating these alarms to the users, it is important
to rank their criticality: A lost data packet in the DAQ is a very different level of
problem than condensation water in the detector. Alarm structure and messaging to
the users will have to evolve further once the experiment operates. A push-notification
option was added to MIDAS to make very critical alarms directly visible to the user.
Additionally, the automated FEB shutdown in section 4.11.2 was introduced after the
incident. As discussed there, the shutdown will decrease heat production. This would
not have prevented the accident, but it is everything that the FEB can do on its own
for self-protection in such a case.

Another issue regarding FEB powering occurred whenever the detector was turned
on. It turns out that the FEBs boot sequence from section 4.11.1 causes some power
spikes when the NIOS boots and the SI-chips are configured. During the integration
run, a hardware interlock was connected to the power drawn by the FEBs and would
turn them off whenever it exceeded a limit. Measurements outside of the magnet
showed that it was possible to reduce these power spikes by changing the boot se-
quence. However, doing so in the magnet was complicated since the boot procedure
could only be changed by a firmware upload. Firmware uploads require the FEB to
be powered. This effectively created a situation where a safety mechanism works fine
when the detector is operating, but it also prevents the detector from being turned
on. Therefore, safety mechanisms and also the topic of alarms from above depend on
the state of the detector and on the things that users are currently doing with it.

Constructing and testing the different detector parts before the run took a significant
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amount of time and people from each subsystem. Also, the limited availability of DAQ
resources sometimes caused a bottleneck for progress in the setup process. Separated
operation of the three subdetectors and operation outside of the beam area would
have been required to completely avoid any collisions between the tuning and testing of
detectors and ongoing infrastructure activities at the magnet. A method for separated
detector operation was proposed in section 5.12 and a staging area close to the Mu3e
server room was reserved for following runs to be able to operate the detectors outside
of the beam area. The staging area is supposed to prevent the continuous assembly and
disassembly of standalone DAQ systems whenever some test of a detector component
is required. Centralising the infrastructure at the staging area allows a connection of
all parts to the actual DAQ resources in the Mu3e server room instead of multiple
smaller systems. These smaller systems have been discussed in 5.2 and are useful
for tests at the involved institutes. However, for tests at the actual magnet cage at
PSI, multiple of these systems turned out to produce too much clutter in terms of
organisation and cables.

The data analysis after the run was difficult since the DAQ was operating with a few
flaws. The most notable one was introduced by a disabled gray decoder in the data
unpacker block of section 4.7 in the MuPix FEB firmware. The MuPix timestamps
are gray encoded and need to be decoded before they are send into the hitsorter. The
gray decoder in the MuPix firmware which was supposed to do that was not turned
on for the integration run. This was a mistake and the option to turn it on or off was
removed afterwards.

As a consequence of this mistake, the data was not sorted in time in the hitsorter
but received an additional mixing by being sorted along the gray timestamp. Some
data was lost in this process due to the limited size of the time acceptance window
discussed in section 4.7.1. Some additional bugs were later found in the sorter which
produced doubled subheaders and similar issues.

These issues propagated into the SWB firmware, where the time alignment tree
did not function properly and had to be replaced with a sequential readout of FEB
frames. As a result, the data which did end up on disk was not really the intended
series of time slices of the entire detector data but could more be described as random
parts of it with some kind of sorting along an incorrect timestamp. The issue with
that is that the amount of data which can be saved is limited by the speed of a hard
drive. For properly working time slices this would not have been a problem since all
detector data would have been available for this time period.

Fortunately, the lower bits in a gray counter are still the most likely ones to flip
when the counter is increased by one. This can be seen in figure 38 of section 3.8.3.
Therefore, hits with timestamps which are close to each other have an increased prob-
ability to be close to each other when their gray-timestamp is interpreted as a normal
binary counter by the sorter. Untangling this situation and additional DAQ bugs has
been a mayor task after the run. However, it was possible to do so, which led to the
correlation and tracking results published in [86], [71] and [16].

Further consequences for the DAQ include the need for online data quality moni-
toring. During the integration run the online monitoring functions, for example for
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correlation histograms or pixel hitmaps, had speed issues and were not able to process
larger amounts of data. Some live event monitoring is going to be needed to identify
problems quickly. Which exact parameters will be required there and how they can be
presented efficiently to the users will have to evolve over time as the system is used.

In summary, the integration run has provided a lot of input for the DAQ devel-
opment and also for other aspects such as detector construction and cooling. The
following section will discuss the cosmic run 2022, which reused large parts of the
integration run system.

6.2. Cosmic Run 2022

Scintillators
for a reference
cosmic trigger

Figure 93.: Image of the scintillators for the reference trigger.

The cosmic run in 2022 used the same vertex tracker from the previous integration
run. The ladders on it were rearranged to achieve a larger overlap between the working
sensors of the two layers. Additionally, scintillator paddles were added above and
below the vertex tracker to provide a reference trigger for cosmic muons (figure 93).
The coincidence of the three scintillators was created in an external crate and then
fed into a frontend board using the method discussed in section 5.6. The scintillating
fibre ribbon, which was not functional in the previous integration run, was replaced.

The setup was operated without a beam and without a target outside of the magnet
at the staging area. Relying on cosmic muons affects how the detector has to be tuned
to allow reasonable tests. In particular, the acceptable noise limits in the pixel sensors
are much lower compared to the integration run. In the integration run, the noise levels
were insignificant compared to the rate of muon decays. For the cosmic run, the pixel
detector had to be brought into an almost noise-free state.
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Noise-free in this context also includes that no 8b10b errors on the LVDS links
between FEBs and MuPix sensors are acceptable. Even small error rates there can
produce fake hits on the FEBs, which can saturate the DAQ since the GPU selection
is absent. The tuning process of the pixel sensors required multiple days of work since
it was not fully automated. In addition to the sensors that were already known to
be broken from the integration run, multiple functioning sensors had to be removed
from the DAQ because no settings could be found to reduce the LVDS 8b10b error
rates to zero. In the end, only 27 out of the 108 Mupix sensors were able to contribute
to the measurements in the cosmic run. For the final experiment, the quality control
process is supposed to filter the problematic sensors out before they are mounted on
the detector.

Another few days of the tuning process were spent uploading TDAC values. At the
point where the LVDS links of all remaining sensors operated properly, noise data was
taken and used to turn off individual noisy pixels on each sensor. This process had to
be repeated multiple times. The reason for this is that the noise was high enough to
saturate the DAQ. Once the noisy pixels were turned off, other noisy pixels appeared
which were not previously visible due to DAQ saturation. These then again saturated
the DAQ, and this process was repeated multiple times before an almost noise-free
operation was reached.

A single upload of TDAC values to turn off pixels required 28 minutes, which made
this a time-consuming process. It is important to note that the process here was not
a tuning process adjusting individual pixel thresholds but was just turning off pixels.
An actual tuning process will have more free parameters and will require significantly
more upload cycles. Afterwards, more effort was put into optimising the tune value
upload since it was clear that this would not be viable for almost 3000 sensors. This
then leads to the system discussed in section 4.6.3, which is expected to configure the
entire Mu3e pixel detector in about four seconds. However, more work is still required
to develop and automate a tuning procedure. How to deal with DAQ saturation during
this tuning procedure is a question that might also need a solution in the future. For
a small number of sensors, the firmware QC histogram introduced in section 5.8 can
be used, but that is not going to be applicable for the entire detector due to resource
limitations on the SWB. The rate of each pixel may need to be extrapolated from the
fraction of time slices which were recorded in the DAQ.

The zero suppression from section 5.5 was introduced during the cosmic run to
reduce protocol overheads. It is impossible to read out the complete data otherwise
since every FEB would produce 31.25 MB/s of empty frames.

The cosmic run obviously acquired less statistics compared to the integration run
from the previous section. However, the mistakes made there were not repeated for the
cosmic run, which resulted in much cleaner data and accurate timestamp information.
This is relevant for the DAQ since it can be used to validate the synchronisation
between the components.
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Chapter 6. Test Runs

6.2.1. Pixel Detector and Reference Trigger Coincidences
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Figure 94.: Sum of all coincidences between MuPix timestamps and the reference cos-
mic trigger.

The largest amount of cosmic data for the pixel detector was accumulated during a
15 hour long, unattended overnight run, which was remote-controlled from Mainz.
Remote control of the Mu3e experiment from the participating institutes is also the
intention for the final detector operation. Remote control options and DAQ system
stability are important aspects since they determine how many people the operation
of the Mu3e detector is going to require. The cosmic run in 2022 was the first time
that this was actually exercised. In summary, remote controlling via MIDAS worked
without issues and the DAQ was able to run stable for 15 hours without any user
interventions.

The accumulated data was then compared against the reference triggers received
from the scintillator coincidence. The result is shown in figure 94. It shows that the
DAQ system ran synchronised over 15 hours and that O(1000) hits of cosmic particles
were recorded in coincidence with the scintillators.

It is important to mention that the histogram shown there is the sum of all coin-
cidences in all MuPix sensors. The same data for the individual chips is shown in
figure 95. As visible there, the shape of the time distribution is different for each
sensor. Additionally, they do not provide the nominal time resolution of roughly
20 ns [15]. This is expected since the sensors were not properly tuned for timing

160



6.2. Cosmic Run 2022
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Figure 95.: Coincidences between MuPix timestamps and the reference cosmic trigger.

precision and since the applied reverse-bias voltage was reduced for some sensors.
The tuning process described above was only concerned with link stability and noise.
For timing precision, other parameters have to be adjusted and a timewalk correction
needs to be made. This is also the reason for the tail towards negative values in figures
94 and 95 since the timestamp of late hits will need to be corrected using the time
over threshold (ToT) measurement. The correction for this data can be found in [71].

These coincidences were then used to search for particle tracks using only the time
information. Due to the many non-functional sensors, the probability of hitting three
or more independent sensors is quite low. For the 15-hour measurement, only a handful
of 4-hit events were found. Those were then provided to [88], where it is shown that
they indeed also turn out as a straight line in terms of geometry.

An example of such a 4-hit track is shown in figure 96. In this graphic, only the
58 sensors that were operational during the integration run are shown. In the cosmic
run, only the 27 sensors in figure 95 delivered data, which significantly reduces the
possible parameter space for 4-hit tracks in coincidence with the external scintillators.
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Chapter 6. Test Runs

Figure 96.: Example for a 4-hit cosmic track. Image adapted from [88].

6.2.2. SciFi Detector and Reference Trigger Coincidences

Similarly to the MuPix coincidence, the timestamp received from the SciFi detector
was compared against the reference trigger timestamp. The result is shown in figure 97.
The width of this distribution can be attributed to the precision of the reference
trigger. The logic used there is unable to match the time resolution of the SciFi
detector. Therefore, the distribution width in figure 97 is determined by the reference
signal instead of the scintillating fibre ribbon.
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Figure 97.: Coincidences between SciFi timestamps and the reference cosmic trigger.
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7
Conclusion and Outlook

The Mu3e project is aiming to improve the upper experimental limit for the branch-
ing ratio of the charged lepton flavour violating decay µ+ → e+e−e+. According to
the standard model, this decay is not observable and is suppressed to a level of be-
low 10−54. Experimental observations of this decay would provide a clear signature
of BSM physics. Without the detection of such an event, the improvement in the
branching ratio measurement will further constrain BSM models.

Mu3e phase I is pursuing a challenging branching ratio sensitivity goal of 2 · 10−15.
A planned second phase of the experiment is supposed to further increase this sen-
sitivity to 10−16. This would improve the current limit measured by the SINDRUM
collaboration in 1988 by four orders of magnitude.

Reaching these sensitivity goals requires a detector system able to analyse large
amounts of muon decays. The collaboration has developed this system in recent years
and this thesis has contributed to the design, implementation and commissioning of
the data acquisition.

The phase I Mu3e detector will observe 108 muon decays per second with six layers of
MuPix HV-MAP tracking sensors. A scintillating fibre and a scintillating tile detector
improve the time resolution of the tracks. These detectors will produce a data rate of
about 100 Gbit/s in phase I and 1 Tbit/s in phase II.

A multi-layer DAQ system based on field programmable gate arrays has been de-
veloped to process this data. The work in this thesis has focussed on the lower layers
of this system and has additionally provided infrastructure for communication with
detector components.

Setup- and hold-time violations of the used firmware components have been inves-
tigated using a seed variation approach to gain reliable information about the timing
effects of firmware adjustments. This technique has been utilised to find a solution
for read and write access to control ports and registers in the lower DAQ layers. The
implemented solution makes use of a tree-shaped structure and allows the use of the
full available bandwidth for communication between layers one and two of the DAQ.

Firmware structures have been implemented to integrate the different types of read-
out paths into the DAQ framework and to allow a shared connection for the control
and detector data. The thesis has also contributed to the pixel-specific readout path
and has led to the development of a configuration system which is expected to be able
to configure the entire Mu3e pixel detector within four seconds.

The thesis has made contributions to the development of a clock and reset system
to provide a synchronisation method to the detector. A method was developed to
measure phase shifts between a recovered and reference clock domain, which can be
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Chapter 7. Conclusion and Outlook

used to ensure detector synchronisation.
The DAQ system was tested and validated in two test runs, which also provided

further input in form of design changes and additional functionalities for subsequent
Mu3e operations. It was shown that the implemented synchronisation system works
and is stable for longer time periods. The stability of the DAQ system has been
sufficient, and remote operation of the detector was possible without user intervention.

Further developments and DAQ adjustments will have to follow in the future and
will be based on the experiences gained during the test runs. The fast configura-
tion upload introduced in this thesis enables the development of automated tuning
procedures, which will be necessary for the efficient operation of the Mu3e detector.

Before operating the final detector, various studies will have to be conducted. The
developed phase shift measurement method has to be used to adjust clock shifts in
the DAQ for a proper reset synchronisation. Another study will have to compare the
timestamps received by the detectors with their arrival timestamps on the first FPGA
in order to configure shifts of acceptance windows in the firmware datapath correctly.

Additionally, an alignment has to be performed. Parts of the alignment will likely
be based on tracks from cosmic muons. The DAQ must find these tracks online.
The concept which was investigated in this thesis will not be able to do so due to
limited hardware resources. Therefore, further developments are required to integrate
a cosmic trigger in the DAQ.

Further work is also required for the camera alignment system’s readout firmware.
The major missing component there is communication between the camera sensor and
the FPGA. Once the image data has reached the FPGA, the existing infrastructure
developed in this thesis can be used to provide it to the alignment software.

A number of other projects will use detectors developed for the Mu3e experiment.
Parts of the DAQ shown here will be adjusted for these projects. Some of these
adjustments have been started during this work. Especially the increase of the data
rate in Mu3e phase II is going to require architectural changes in the data acquisition.
However, the phase II DAQ will likely be based upon the developments presented in
this thesis.
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A
Further Details on FPGAs and ASICs

A.1. Lookup Table
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Figure 98.: Block diagram of a lookup table. The LUT-Mask is stored in static random
access memory (SRAM) cells and configures the logic for the calculation of
Y from the inputs A, B, C and D. A LUT with 2n entries in the LUT-Mask
can implement any function of n inputs. The lookup table (LUT) shown
here can therefore implement any boolean function of A, B, C and D [32].
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Appendix A. Further Details on FPGAs and ASICs

A.2. Detailed Schematic of an ALM cell
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A.3. Alternative Implementation of Tree Structure

An alternative implementation of the tree structure discussed in section 3.7.6 and 4.4.4
is a version where each node of the tree only has one output register connecting to the
four following nodes instead of four copies of that register. The conceptual difference
is shown in figure 99. This situation can be created accidentally if the compilation
tool identifies the four output registers as identical and automatically merges them.
This shows the importance of implementation directives since the automatic decisions
of the tools are not always beneficial for timing.
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A.3. Alternative Implementation of Tree Structure
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Figure 99.: Comparison of tree structures. The concept on the left was already shown
in section 3.7.6.

The concept on the right increases the fanout compared to the idea on the left but
saves register resources. Compared to the reference without the tree structure, the
mean minimal setup slack improves by 0.18 ns and the timing closure probability from
1 % to 26 %. The concept with four individual registers (as discussed in section 3.7.6)
showed a slack improvement of 0.24 ns and 48 % timing closure.
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Figure 100.: Timing improvement of alternative tree structure. Blue is the original
reference, yellow the alternative tree.
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B
Mu3e Firmware Implementation Details

B.1. Distribution of slowcontrol endpoints on the FEB

Figure 101.: Distribution of slowcontrol endpoints on the FEB.

171



Appendix B. Mu3e Firmware Implementation Details

B.2. Mupix Slowcontrol Protocol

Command Bit-identifier Effect

WriteDacRegister 111000 Write Bias DAC register

LoadDacRegister 000111 Load Bias DAC register

WriteConfRegister 110100 Write Config register

LoadConfRegister 001011 Load Config register

WriteVDACRegister 110010 Write VDAC register

LoadVDACRegister 010011 Load VDAC register

WriteColRegister 110001 Write PixelRam Write register

LoadColRegister 100011 Load PixelRam Write register

WriteTestRegister 101100 Write Test register

LoadTestRegister 001101 Load Test register

WriteTDACRegister 101010 Write TDAC register

LoadTDACRegister 010101 Load TDAC register

ReadbackDACs 100110 Readback for all registers

ReadbackTDACs 100101 Readback for the pixel bits

SteerADC 100000 Steer the ADC

Inject 001000 Trigger an injection

ResetBiasBlocks 000010 Reset the registers

ShiftColRegisterbyOne 111101 SHIFT-BY-ONE

SyncReset[64bit] Synchronous Reset

Table 15.: Mupix Slowcontrol Protocol. Copied from [20].
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connect express

PCS physical coding sublayer

PLL phase locked loop

PMA physical medium attachment

PSI Paul Scherrer Institute

QSFP quad small formfactor pluggable

RAM random access memory

ROM read only memory

SFP small formfactor pluggable

SM Standard Model

SPI serial periphal interface

SRAM static random access memory

TCL tool command language

UART universal asynchronous receiver-
transmitter

VCO voltage controlled oscillator
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