

MELCOR validation of PANDA facility tests

TEMPEST 1.1 (T1.1) & HYMERES 4 (H1P4) experiments

Rainer Kelk Brno, 11 April 2025

TEMPEST 1.1 (T1.1) test model

Main objectives:

- Learn MELCOR
- Highlight key parameters to influence big-scale condensation

T1.1 test of TEMPEST project

- The main purpose of test T1.1 was to investigate the long-term
 PCCS cooling phase in presence of NCGs air (heavier than steam) and helium (lighter than steam).
- Previous work has been done also with MELCOR
 - Sevón, T. (2012). *MELCOR Modeling of a Passive Containment Cooling System*.
 - Andreani, M. (2004). EU 5th FWP Project TEMPEST, Deliverable D07: GOTHIC calculations for representative passive containment cooling system tests.
- Integral test, all components of PANDA except IC are included
 - 1 RPV (electrical heaters), 2 DWs, 2 WWs, 1 GDCS, 3 PCCS

Test procedure

- Post-LOCA scenario MSLB in a scaled ESBWR
 - Decay curve
- Four phases:
 - Venting phase MVL valves between DWs and WWs open
 - Before He MVL valves closed, steam-air condensation
 - He injection Steam-air-He condensation
 - After He settling of the system, steam-air-He condensation

Nodalization – full system

- FL 282
- HS 198
- CF 56

MELCOR model

- No modified correlations, only SC altered were steady-state iteration parameters
- Library NCGs and materials were used. Defined insulation layer materials for vessels and lines
- Mass spectrometre gas consumption and leakage modelled
- Vertical surfaces film tracking on
- Boundary conditions as-given

6

- Except helium injection mass as deduced by Tuomo
 - 82% of the reported He mass
- MELCOR version 2024.0.3 is used together with SNAP

Variable	Unit	Experiment value	MELCOR value	Error
Penv	bar	0.98	0.98	0.00
T_{sat} at P_{env}	°C	99.1	99.1	0.0
RPV Total Pressure	bar	2.66	2.59	-0.07
RPV Fluid Temperature	°C	129.6	129.2	-0.4
RPV Water Level	m	12.7	12.5	-0.2
DW Total Pressure	bar	2.65	2.45	-0.20
DW Air Pressure	bar	0.04	0.05	+0.01
DW Gas Temperature	°C	127.0	126.2	-0.8
DW1 Water Level	m	0.14	0.14	0.00
DW2 Water Level	m	0.12	0.12	0.00
WW Total Pressure	bar	2.37	2.38	+0.01
WW Air Pressure	bar	2.02	2.01	-0.01
WW1 Fluid Temperature	°C	73.2	72.7	-0.5
WW1 Gas Temperature	°C	72.7	74.0	+1.3
WW2 Fluid Temperature	°C	72.9	72.7	-0.2
WW2 Gas Temperature	°C	72.4	74.0	+1.6
WW Water Level	m	3.9	3.9	0.0
GDCS Total Pressure	bar	2.37	2.38	+0.01
GDCS Fluid Temperature	°C	56.5	56.2	-0.3
GDCS Water Level	m	0.0	0.0	0.0
PCC1 Pool Temperature	°C	96.1	95.3	-0.8
PCC2 Pool Temperature	°C	96.5	95.7	-0.8
PCC3 Pool Temperature	°C	96.5	95.3	-1.2
PCC1 Pool Level	m	4.34	4.34	0.00
PCC2 Pool Level	m	4.36	4.36	0.00
PCC3 Pool Level	m	4.40	4.39	-0.01

PS

PSI Center for Nuclear Engineering and Sciences

512

 PCC units do not behave as supposed – too small pressure drop induces close to no temperature drop which diminishes condensation and heat removal rate

PSI Center for Nuclear Engineering and Sciences

- PCC units do not behave as supposed too ٠ small pressure drop induces close to no temperature drop which diminishes condensation and heat removal rate
- Experiment MELCOR 600000 500000 sure [Pa] 400000 300000 Pressure is too high 5000 10000 15000 20000 25000 30000 35000 40000 Time [s] Total pressure at the top of WW1 Experiment MELCOR 600000 500000 ssure [Pa] ž 400000 300000 5000 10000 15000 25000 30000 35000 40000 20000

Total pressure at the top of DW1

Time [s]

PSI

- PCC units do not behave as supposed too small pressure drop induces close to no temperature drop which diminishes condensation and heat removal rate
- Pressure is too high
- Helium partial pressure is too high in DW and WW

- PCC units do not behave as supposed too small pressure drop induces close to no temperature drop which diminishes condensation and heat removal rate
- Pressure is too high
- Helium partial pressure is too high in DW and WW
- Amount of condensation in the system is less than the experimental values
 - Simulation condensation rate goes down in phase 3

HYMERES 4 (H1P4) test model

Main objectives:

- Study effects of cooler modelling choices on condensation
- Highlight key parameters to influence medium-scale condensation

HP4 test series of HYMERES project – "Spray and cooler"

- Assessment of the combined effect of the **cooler and spray** on the distribution of gas species (air, steam, helium) inside a containment
- The test HP4_0 serves as a "Base Case" for the test series.
 - **No spray actuation** in base case
- Carried out in large two vessels
 - Vessel 1 and 2 (DW1-2) for a volume of 180 m3
 - *Di* = 3.96 m, *H* = 8 m
 - Interconnecting pipe

12

Di = 0.928 m, *L* = 5.175 m

Tube Bundle (Plate above tube bundle is not shown for clarity)

Isometric View

Spray nozzle

Cooler

PSI

(e)

Vessel 2

PSI Center for Nuclear Engineering and Sciences

Figure 5.1: Evolution of gas temperature distribution

Test procedure and initial conditions

Initial Conditions	Nominal	
	Value	
Initial vessel pressure [bar]	1	
Vessel 1 gas molar fractions	100% air	
Vessels wall temperature [°C]	112	
Vessels fluid temperature [°C]	112	
Boundary Conditions		
Phase 1		
Cooler flow rate [kg/s]	0.5	
Cooler injection temperature [°C]	30	
Steam injection flow rate [g/s]	60	
Steam injection temperature [°C]	150	
Phase 2		
Cooler flow rate [kg/s]	0.5	
Cooler injection temperature [°C]	30	
Steam injection flow rate [g/s]	60	
Steam injection temperature [°C]	150	
Helium flow rate [g/s]	2	
Phase 3		
Cooler flow rate [kg/s]	0.5	
Cooler injection temperature [°C]	30	
Steam injection flow rate [g/s]	60	
Steam injection temperature [°C]	150	

MELCOR model

PARAMETER	MEASURED	MODEL	ERROR
Wall TEMP			
DW1 up	117.7°C	112.8°C	-4.9°C
DW1 low	112.2°C	112.8°C	+0.6°C
DW2 up	114.5°C	112.8°C	-1.7°C
DW2 low	114.0°C	112.8°C	-1.2°C
IC pipe	102.4°C	101.9°C	-0.5°C
Gas TEMP			
DW1 up	111.1°C	106.3°C	-4.8°C
DW1 low	102.7°C	105.1°C	+2.4°C
DW2 up	112.7°C	111.1°C	-1.6°C
DW2 low	110.0°C	110.7°C	+0.7°C
IC pipe	105.4°C	106.8°C	+1.4°C
Pressure			
P in DW2	1.015 bar	1.012 bar	-0.003 bar

Three main ways to model the cooler would be investigated:

- 1. Explicit, convective HS presented today
- 2. Explicit, Zukauskas HS
- 3. FCL package
- Fine nodalization to study stratification
- Gas consumption via mass spectrometers + leakage is modelled
- All parameters values and boundary conditions modelled as reported by experiment

Figure 3.4: Vessel pressure during the steam injection phase

Cooler outlet temperature

Lessons learned & future work

Lessons learned:

- MELCOR is a feeling
- Nodalization on each level affects the end result
 - "More control volumes cause more problems" T. Sevon
 - Started off with too fine nodalization in my models
- Systems are often too big to point out exact reasons for discrepancies

Next steps:

• H1P4 model development (Zukauskas, FCL)

Sensitivity analysis of all scales will be used in **model development phase** as knowledge foundation of the most influencial parameters to affect condensation.

• Formation of relevant experiment portfolio focusing on wall and on-tube condensation

sector and a sector and a sector of the sect

ale such peaks peaks peaks with adding state totals weaks and a

4.4. 189-9 20402 20104 404.5 -20209 406.4 108.5 #08.4 108.5 108.5

Encountered issues/questions

Hysteresis valve issue

• The same logic that works for 1/0.5 bar does not work for 1/0.25 bar

CVH vs FL flow velocity

• Inconsistency when observing CVH vs FL flow velocity as highlighted in Slide 15

No way to plot external sources

• Injected energy to CVH – cannot plot the value for double-checking

Thank you for paying attention! Thank you for organizing EMUG!

Rainer Kelk | PSI | rainer.kelk@psi.ch Brno, 11.04.2025, EMUG