

Development of an external routine using External Data Files for fusion modeling needs

Tommaso Glingler, Matteo D'Onorio

NERG

Nuclear Engineering Research Group

Faculty of Civil and Industrial Engineering Department of Astronautical, Electrical and Energy Engineering (DIAEE)

MELCOR modeling of EU-DEMO reactor

Fusion specific models present in MELCOR

EU-DEMO Safety Analysis

1. MELCOR modeling of EU-DEMO reactor

Development of an external routine using EDF

11th Apr. 2025

EU-DEMO Water Cooled Lithium Lead Breeding Blanket

SAPIENZA Università di Roma

Development of an external routine using EDF

EU-DEMO Tokamak building

Università di Roma

EU-DEMO Vacuum Vessel Pressure Suppression System

In liquids

Cooling water gets activated by means of the following reactions: ¹⁶O(n, p) ¹⁶N, ¹⁷O(n, p) ¹⁷N)

Materials activated under nuclear loads (neutrons,

 \Box In structures (e.g., stainless steel: ⁵⁶Mn, ⁵⁵Fe, ⁵²V,

 \Box In gas (e.g., air activation is possibly occurring ⁴¹Ar

- Activated Corrosion Products
- **Dust** (i.e. Be, W, etc)

or Nitrogen reactions)

Tritium: b-emitter.

⁵¹Cr, ⁶⁰Co, ⁵⁷Ni)

g):

7

Source Term in Tokamak Reactor

Parameter	Unit	Value	where
Tritium	kg	2.6	VV inventory across all components, including PFCs, dust, pumps, and atmosphere.
НТО	g	67.8	Water cooled system of the breeding blanket
Tungsten dust	kg	1034	deposited on VV surfaces
ACP	g	20	ACP mass present in the coolant, including ions and cruds

11th Apr. 2025

2. MELCOR 1.8.6 for fusion applications

Development of an external routine using EDF

11th Apr. 2025

What MELCOR has and what MELCOR is missing

3. EU-DEMO Safety Analysis

- H-O explosion risk assessment

Development of an external routine using EDF

11th Apr. 2025

H-O explosion risk assessment

Context: combination of Loss Of Vacuum Accident and small in-vessel Loss Of Coolant Accident

Postulated Initiating Event: break of the Vacuum Vessel side with consequent pressurization of VV and mobilization of air

Development of an external routine using EDF

MELCOR DLL user functions

- Found some example of dll usage in the MELCOR 2.2.18019 installation folder under "tools"
- We are attempting to recompile a working MELCOR DLL (melcor_user_extension.so) using Visual Studio + Intel Fortran on Windows (Compiler ifort or ifx), but several issues are blocking the build:
 - Module structure compatibility is fragile, especially between TArgUDF_compatible_structure and TUDFArguments.
 - Common sources of errors:
 - USE ... ONLY: statements referencing non-existent or inaccessible symbols.
 - Variables passed to C_LOC() without the POINTER or TARGET attribute.
 - The Makefile is originally tailored for Linux builds, not for Windows.
 - Conflicting procedure names, e.g., multiple definitions of fun1, fun2, etc.
- How to proceed?
 - Try to debug this reporting to <u>melcorbugs@sandia.gov</u>
 - Wait for the new External MELCOR Plug-In interface?

ogram Files (x86) > MELCOR-2.2.18019 > t	ools > dynamic_link >	vÕ ⊂	erca in dynamic_li
Nome	Ultima modifica	Тіро	Dimensione
📙 Debug	15/02/2021 16:07	Cartella di file	
C c_string_copying.f90	23/12/2020 15:49	Fortran Source	7 KB
CopySourceFiles.py	10/09/2020 16:56	Python File	2 KB
CF entry.f90	19/08/2020 15:06	Fortran Source	8 KB
🔓 funbox.f90	23/12/2020 15:49	Fortran Source	12 KB
m_af_argPassing_structures.f90	23/12/2020 15:49	Fortran Source	4 KB
m_Af_user_library_functions.f90	23/12/2020 15:49	Fortran Source	10 KB
Imanalytical_function.f90	04/11/2020 18:39	Fortran Source	5 KB
L M_ArgCF.f90	23/12/2020 15:49	Fortran Source	1 KB
🕼 m_getcstring.f90	23/12/2020 15:49	Fortran Source	1 KB
L M_kind.f90	23/12/2020 15:49	Fortran Source	1 KB
Image: m_shared_constant_definitions.f90	23/12/2020 15:49	Fortran Source	2 KB
🗋 Makefile	23/12/2020 15:51	File	4 KB
melcor_user_extension.sln	19/08/2020 15:06	Visual Studio Solut	1 KB
melcor_user_extension.so	19/08/2020 15:06	File SO	647 KB
Fo melcor_user_extension.vfproj	23/12/2020 15:49	Intel Fortran Proje	. 4 KB
📄 PrepareForDistribution.py	19/08/2020 15:06	Python File	2 KB
☐ ptr_addressing.f90	23/12/2020 15:49	Fortran Source	2 KB
C raw_copying.f90	23/12/2020 15:49	Fortran Source	6 KB
L ^F uccf_externals.f90	23/12/2020 15:49	Fortran Source	1 KB
LF UserCodedCF.f90	23/12/2020 15:49	Fortran Source	8 KB

4. Python external model coupled with MELCOR

MELCOR simulation coupled with an external Python script 🖗 🔅 🛠 🖞

MELCOR side of coupling

Combination of type WRITE and READ EDF files

CV85100	'PlasmaVo	lume'	2	0	3	
CV85101	0	0				
CV85103	87.0					
CV851A0	2					
CV851A1	PVOL	100.0				
CV851A3	TATM	700.0				
CV851A4	PH20	0.0				
CV851A5	MFRC.4	1.0				
CV851B0	-11.0996	0.0				
CV851B1	-9.32	233.92	260			
CV851B2	-7.840	544.14	255	11		
CV851B3	-6.361	909.27	981	13		
CV851B4	-4.881	1299.1	508	23		
CV851B5	-3.402	1684.8	296	74		
CV851B6	-1.923	2047.8	708	52		
CV851B7	-0.443	2340.9	029	35		
CV/85188	0 6435	2466 0				
CV851C0	MASS.5	RATE	CF.	888	8	
CV851C1	ENERGY.A	RATE	EDF	.6.	2	
EDFOODAG H	S TEMP.507	00				

Meastian has a source conduct the source of the source of

H₂ as a mass source term for Plasma Volume Heat generated due to tungsten dust oxidation Heat generated from oxidentiperature from significant oxidentiperature from significant tungsten dust particles Tungsten mass reacted

Python External Model for Tungsten Dust Oxidation

4. Main Results

Development of an external routine using EDF

Simulations performed

Parametric study based on the size of the LOVA and LOCA to investigate the **worst** combination in terms of H₂ explosion risk.

Scenario ID	LOVA area [m ²]	LOCA area [m ²]	Notes
Case 1	2.0 E-3	9.8 E-4	(10 FW channels)
Case 2	2.0 E-3	9.8 E-3	(100 FW channels)
Case 3	2.0 E-2	9.8 E-3	(10 FW channels)
Case 4	2.0 E-2	9.8 E-4	(100 FW channels)

First Results show **deflagration** inside VVPSS tanks and inside N-DS lines

Main Results

- Pressure transient in the Plasma chamber is safely mitigated due to intervention of VVPSS
- HTO releases outside of the primary confinement barrier due to LOVA breach. Main releases of HTO are to the VVPSS reaching 40% of the initial inventory

Main Results

Pressure Transient in the small leakage tank

Shapiro Diagram for the small leakage tank

- Deflagration occurs in the small leakage tanks of the VVPSS and flame propagation reaches the E-DS. Ignition of mixtures might damage the connection to the tank with consequent release of HTO condensed in the pool
- Results show that combustion model of MELCOR has some drawbacks. Ignition is highly conservative and in case
 1 a highly unrealistic burn is simulated

Conclusion and next steps

Conclusion and Next Steps...

Conclusions:

- Main process of hydrogen production comes from tungsten dust due to the high specific surface (**189 m²/kg**)
- Hydrogen in vessel inventory is one order of magnitude higher than the hydrogen produced in vessel
- For the baseline model of the VVPSS a concurrent LOVA and LOCA generates explosive mixtures in the SL tank
- Releases of HTO to Vertical Shaft are in the order of 0.15-0.25 %i.i. Most of HTO (~40 %i.i.) is released towards the VVPSS
- Hydrogen Mitigation strategies have been studied and involve the use of PAR. Results show that deflagration of H O mixtures can be avoided

Limitation

• MELCOR BUR model approximates ignition

References

[1] Glingler T., Dongiovanni D. N., Caruso G., D'Onorio M., Hydrogen explosion risk for EU-DEMO reactor considering tungsten dust reaction with steam, Fusion Engineering and Design, (2025), <u>https://doi.org/10.1016/j.fusengdes.2025.114945</u>.

[2] D'Onorio M., Glingler T., Porfiri M.T., Dongiovanni D.N., Ciattaglia S., Gliss C., Elbez-Uzan J., Cortes P., Caruso G., **Development of a Thermal-Hydraulic Model for** the EU-DEMO Tokamak Building and LOCA Simulation. Energies 2023, 16, 1149. <u>https://doi.org/10.3390/en16031149</u>.

[3] Merrill Brad J., Moore, Polkinghorne S.T., Petti D.A., Modifications to the MELCOR code for application in fusion accident analyses, Fusion Eng. Des., (2000), https://doi.org/10.1016/S0920-3796(00)00220-9

[4] Merrill Brad J., Recent Updates to the MELCOR 1.8.2 Code for ITER Applications., May. 2007. https://doi.org/10.2172/911944

[3] Dongiovanni D. N., and D'Onorio M., Loss of Liquid Lithium Coolant in an Accident in a DONES Test Cell Facility, Energies (2021), https://doi.org/10.3390/en14206569.

[4] D'Onorio M., Caruso G., Porfiri M. T., In-box LOCA accident analysis for the European DEMO water-cooled reactor, Fusion Engineering and Design, (2019), https://doi.org/10.1016/j.fusengdes.2019.01.066.

[5] Smolik G.R., Hydrogen generation from steam reaction with tungsten, Journal of Nuclear Materials, (1998), https://doi.org/10.1016/S0022-3115(98)00169-X

[6] McCarthy K.A., The safety implications of tokamak dust size and surface area, Fusion Engineering and Design, Volume 42, (1998), https://doi.org/10.1016/S0920-3796(98)00295-6

[7] Cortes P., Dust inventory working group, EFDA_D_2Q997T (2022).

[8] Mazzini G., Qualification of the Source Term for DEM, EFDA_D_2L9RG4 (2017).

[9] Gupta S., et al., THAI test facility for experimental research on hydrogen and fission product behavior in light water reactor containments, Nuclear Eng. Des (2015), https://doi.org/10.1016/j.nucengdes.2015.09.013

Development of an external routine using EDF

Realising Fusion Electricity

Thanks for the attention!

Tommaso Glingler tommaso.glingler@uniroma1.it

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 EUROfusion). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

