

emol

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

# Latest Experiences with MELCOR 2.2: An Overview of **Applications, Issues and Challenges**



## M. Garcia\*, T. Lugo, L.E. Herranz

\*monica.gmartin@ciemat.es Unit of Nuclear Safety Research Department of Nuclear Fission CIEMAT

16<sup>th</sup> European MELCOR User Group, EMUG 2025 Brno University of Technology, Czech Republic, 7th-11th April, 2025

# Areas of Work:



MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

# **Plants applications**

1. BWRs: 1F1 Fukushima Analysis

2. iPWRs: SA scenarios assessment



D MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

# 01

# **Scenario re-calibration in 1F1**

## • Frame

- OECD/NEA FACE project (2022-2026): Fukushima-Daiichi Nuclear Power Station Accident Information, Collection and Evaluation project.

## • Objective

- Fukushima-Daichii accident analysis.

- Tool
  - MELCOR 2.2

## • Scope

- Re-calibration of the possible scenario in Fukushima Daiichi Unit 1
  - (i) MELCOR version update (from MELCOR 2.2.9607 to r2024.0.3)
  - (ii) Scenario re-calibration

### CODE EM (Evaluation Model)

CORE





SD

SH

LP

**PCV** 

**CAVITY** 





CAV 1

## **MELCOR version update**





 ✓ Significant variation in accident progression among MELCOR versions.

Scenario re-calibration with r2024.0.3 (August 1, 2024) (Diagnosis based on P<sub>RPV</sub>, P<sub>DW</sub>)

#### Hypotheses setting

- RCS leakages (GK & LP)
- No water injection before 24 h
- IC effect fitting
- SRVs (4;1 on)
- PCV venting
- Time of calculation = 24h

## Scenario re-calibration



#### **RCS** leakages

- SRV gasket (steam) [10<sup>-2</sup>m 3·10<sup>-2</sup>m]
- "Solid" RCS (water) [0 − 5·10<sup>-3</sup> m]

#### □ Thermal setpoints

• Penetrations failure [1153K – 1673K]

#### Materials interactions

- Eutectics formation
- Ad-hoc materials interaction





## □ Main On-going work – Consolidation stage:

- $\,\circ\,\,$  Diagnosis based on  $\mathsf{P}_{\mathsf{RPV}},\,\mathsf{P}_{\mathsf{DW}}$
- Postulated RCS leakages as an effective tool to guide the core degradation pattern

## Generation Future work:

- Eutectic model fitting (delay in the liquefaction time)
- $\circ~$  Running time extension to 10 d  $\,$
- $\circ$  Explore other possible scenarios



D MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

# 02

# SA scenarios assessment in a generic iPWR

## • Frame

The HORIZON 2020 SASPAM-SA project: aims to investigate the applicability and transfer of knowledge and know-how accumulated on the operating large-LWR to the iPWRs.
Coordinated by ENEA – 23 partners from 13 European countries

## • Objective

- Evaluation of the code capabilities for a generic iPWR SA sequences.
- Explore the potential impact of different SSs availability on the accident progression.

## • Tool

- MELCOR 2.2\_18019 (SNL, UNRC).
- Original input from UNIROMA/ENEA.

## Scope

- D2 (300 MWe, dry spherical containment, several passive SSs).
- Small LOCA (r = 2.14 cm) in one Direct Vessel Injection (DVI) line.



#### Plant Overview



- LWSMR
- 300 MWe iPWR design
- 17x17 XL fuel assembly W design
- Cylindrical RPV (6 m diameter x 21 m height)
- Spherical dry containment (25 m diameter)

#### • SPSs: LGMS, PSP, ADS, EHRS, EBT

| SS       | #<br>Units | Actuation condition                  | Function                           | Connections<br>(From/To)             |
|----------|------------|--------------------------------------|------------------------------------|--------------------------------------|
| EHRS     | 2          | High DW P/Low PRZ P/Low<br>PRZ level | Decay heat removal                 | Secondary coolant<br>system/RWST     |
| EBT      | 2          | Low PRZ P                            | High pressure safety<br>injection  | Upper plenum/EBT tank<br>EBT tank/DC |
| ADS st-1 | 3          | Low PRZ P                            | Primary automatic depressurization | PRZ/QT                               |
| ADS st-2 | 2          | Low LGMS tank mass                   | RPV pressure relief                | PRZ/DW                               |
| LGMS     | 2          | Low RPV/DW differential P            | Low pressure safety<br>injection   | LGMS tank/DC                         |



### CODE EM (Evaluation Model)



RPV: 20 CVs Core: 6 radial rings, 16 axial nodes SSs: EHRS, PSS, LGMS, EBT, ADS Containment: 1 CV NPP: 97 CVs, 112 FLs, 121 HSs, 206 CFs No propriety data used



#### Scenario (DBA)

- Small LOCA in DVI line
- D2
- Steady state analysis carried out



#### CODE EM – Core nodalization refinement





#### **Coarse nodalization**



#### **Detailed nodalization** (based on SOARCA best practices)

| Vessel Vol. | # CVs<br>(coarse/detailed) | # FLs<br>(coarse/detailed) |
|-------------|----------------------------|----------------------------|
| Core        | 1/20                       | 1/35                       |
| Bypass      | 1/5                        | 1/5                        |
| LP          | 1/1                        | 1/5                        |



•

#### CODE EM – Core nodalization refinement



- Both calculations finish successfully(tend =  $1.728 \cdot 10^5$  s)
- CPU time x 1.5 when detailed nodalization is used

• Both calculations fail (tend =  $1.728 \cdot 10^5$  s)



### CODE EM – Core nodalization refinement



Core damage slow down (10000 s in 65 %)

Minor changes:

- Containment failure delay (aprox. 1000 s) in the detailed calculation.
- H<sub>2</sub> production decrease ~ 12 % (detailed model)

#### **Back to previous core modeling**

## Scenarios

| SSs     | DBA          | SA1 | SA2 |
|---------|--------------|-----|-----|
| ADS_st1 | $\checkmark$ | Х   | Х   |
| ADS_st2 | $\checkmark$ | ✓   | Х   |
| EBT     | $\checkmark$ | ✓   | Х   |
| LGMS    | $\checkmark$ | ✓   | Х   |
| EHRS    | ✓            | Х   | Х   |
|         | DW Fast      | DW  | DW  |



#### Main results

| Event time (s)                  | DBA   | SA1   | SA2   |
|---------------------------------|-------|-------|-------|
| Start of the transient          | 0     | 0     | 0     |
| Scram time                      | 28    | 28    | 28    |
| Actuation of the EHRS           | 38    | -     | -     |
| Actuation of EBT                | 112   | 153   | -     |
| Actuation of ADS-1              | 128   | -     | -     |
| Begin of core uncovery*         | 186   | 610   | 1690  |
| Containment failure             | -     | 4630  | 5730  |
| Begin of core degradation       | -     | 13450 | 10270 |
| H <sub>2</sub> production onset | -     | 12290 | 9070  |
| Complete core uncovery**        | -     | 23970 | 18680 |
| Actuation of LGMS (s)           | 1770  | 44720 | -     |
| Actuation of ADS-2 (s)          | 11090 | -     | -     |
| Time of vessel failure (s)      | -     | -     | -     |

\* Swell water level TAF reached

\*\* Swell water level BAF reached





#### Main results



- Water reverse flow from the PSS to the DW.
- Attention to FPs redistribution.



#### Scenarios: SSs assessment

| SSs          | DBA    | ADS_st1 | EBT    | LGMS   | EHRS   | ALL-EHRS |
|--------------|--------|---------|--------|--------|--------|----------|
| ADS_st1      | ✓      | ✓       | Х      | Х      | Х      | ✓        |
| ADS_st2      | ✓      | Х       | Х      | Х      | Х      | ✓        |
| EBT          | ✓      | Х       | ✓      | Х      | Х      | ✓        |
| LGMS         | ✓      | Х       | Х      | ✓      | Х      | ✓        |
| EHRS         | ✓      | х       | Х      | Х      | ✓      | Х        |
| LGMS<br>EHRS | ✓<br>✓ | X<br>X  | X<br>X | ✓<br>X | X<br>✓ | ×<br>X   |



# Conclusions/Remarks

- Passive SS performance as designed prevent any core damage in case of a small double-guillotine break in the DVI line.
  - Containment pressure was kept far from losing its integrity.
- □ SA scenarios might be possible if EHRS is not available.
  - The combined operation of all passive SSs except for EHRS is predicted not to be able to prevent core melting.
- □ Containment failure is unexpectedly estimated at early times.
  - This should be further explored to check its sensitivity to the scenario modelling.
- □ RPV integrity preservation, as predicted, should be confirmed with additional studies.
- □ Flow reversal by depressurization of the containment.
  - Particular attention should be paid in all regards: timing, intensity, consequences on FPs redistribution.
  - This should be proved not to be scenario model sensitive.

# Conclusions/Remarks

## □ In addition

- H<sub>2</sub> risk (AMHYCO project).
- Uncertainty quantification
  - Optimization of a BE case.
  - UQ of ex-vessel phase (in collaboration with UNIPI).
  - IUQ for SAs (in collaboration with UNIPI).

## Looking ahead

- WC-ATFs.
- Non-WC.

## Our highest appreciation goes to:

SNL colleagues for an exceptional work & USNRC for their continuous support to it CSN for making MELCOR accessible through its bilateral agreement with USNRC



# Thank you for your attention!

Unit of Nuclear Safety Research Department of Nuclear Fission CIEMAT monica.gmartin@ciemat.es