

Securing the future of Nuclear Energy

MELCOR 2.X for Fusion – HS Energy & Diffusion

2025 European MELCOR Users' Group Meeting April 7th-11th, 2025

CARUS NIRC US NIRC Deschart Refer States - Description

MELCOR

SAND2025-04010PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview

Review

- MELCOR-TMAP (TMAP4 + MELCOR 1.8.6 for fusion)
- MELCOR HS energy/temperature solution
 - Heat conduction equation
 - Finite difference equation on the interior
 - Finite difference equation on the boundary

Proposed adaptation of TMAP HS diffusion modeling for MELCOR 2.X on HS

- Conservation statement
- Diffusive and thermophoretic fluxes
- Transport to and across a surface
- Nodalization, finite difference equation, and generalized interface flux on the interior
- Nodalization, finite difference equation, and surface flux on the boundary
- Pool and atmosphere interfacial heat/mass transfer

Summary

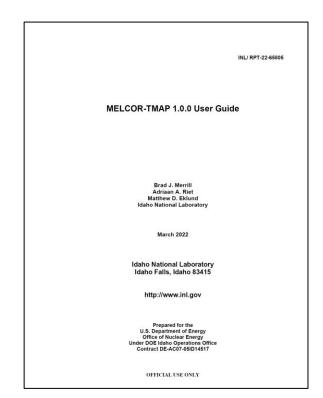
MELCOR-TMAP

INL FSP tasked with developing "fusion accident analysis tools required for licensing future U.S. fusion reactors", and created MELCOR-TMAP accordingly

- Tritium Mitigation Analysis Program (TMAP)
 - Under development for decades
 - Physics:
 - Multi-species surface absorption
 - Dissolved gas (atomic or molecular) diffusion in/through composite materials including dislocation traps
 - Gas transport between structures and enclosures (gas spaces)
 - Own models for advection and transport between enclosures
- MELCOR 1.8.6 for fusion
 - Added new fluids
 - Added various fusion specific models/capabilities
- Integrated to create MELCOR-TMAP

MELCOR-TMAP

- TMAP physics models described in chapter 4 of UG \rightarrow
- New MELCOR Input to inform integrated TMAP
 - HS surfaces (initial species concentrations, surface BC's)
 - HS implanted species sources and trapping inputs
 - MP inputs various (and many) new properties to inform diffusion calculations on HS of one or more materials



MELCOR HS package - see HS Users' Guide and Reference Manual

• HS conduction modeled with a heat conduction equation in one spatial dimension for many geometries

$$C_p \frac{\partial T}{\partial t} = \vec{\nabla} \cdot \left(k \vec{\nabla} T \right) + U$$

Where:

 C_p = volumetric heat capacity (product of specific heat capacity at constant pressure and density) – $\left[\frac{J}{m^3}\right]$

$$T = \text{temperature} - [K]$$

$$U = \text{volumetric power} - \left[\frac{W}{m^3}\right]$$

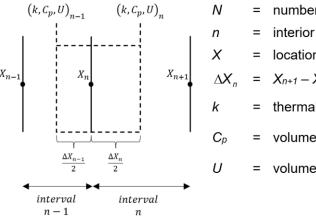
- · Spatially partition structures into a number of temperature nodes
 - At boundary surfaces
 - At interfaces between materials within a structure
 - Arbitrarily within structure otherwise
- Region between two adjacent temperature nodes is called a mesh interval
- Mesh intervals of arbitrary thickness (i.e. arbitrary distance between adjacent nodes)
- Mesh intervals consist of a single material
- Control volumes of integration for finite difference equations relate to mesh intervals
 - CV interfaces located at mid-mesh interval, site of property information storage
 - CV "mid-points" are mesh interval interfaces, site of temperature information storage

TMAP diffusion solution occurs on same computational grid and is temperature dependent

Mesh intervals, nodes, CV of integration, and finite difference equations on HS interior

- About n^{th} node X_n on interior
- 2 mesh intervals: *n*-1 and *n*
- 1 CV of integration
 - Left "half" part of interval n-1
 - Right "half" part of interval *n*
- Thermal properties and sources stored at CV interfaces (MI midpt)

Integrate heat equation



= number of temperature nodes in near structure
= interior node number (2, 3, ..., N-1)
= location of temperature node – [m]

$$X_n = X_{n+1} - X_n$$
, length of n^{th} mesh interval – [m]
= thermal conductivity of material – $[W/_{m*K}]$
= volumetric heat capacity of material – $[J/_{m^3}]$
= volumetric power source – $[W/_{m^3}]$

$$\int_{V} \left(C_{p} \frac{\partial T}{\partial t} \right) dV = \int_{V} \left(\vec{\nabla} \cdot \left(k \vec{\nabla} T \right) \right) dV + \int_{V} (U) \, dV \longrightarrow \int_{V_{L}} \left(C_{p,L} \frac{\partial T}{\partial t} \right) dV + \int_{V_{R}} \left(C_{p,R} \frac{\partial T}{\partial t} \right) dV = \int_{V} \left(\vec{\nabla} \cdot \left(k \vec{\nabla} T \right) \right) dV + \int_{V_{L}} (U_{L}) \, dV + \int_{V_{R}} (U_{R}) \, dV$$

Apply divergence theorem, carry out volume integrations, and apply time-differencing

$$\int_{V} \left(\vec{\nabla} \cdot \left(k \vec{\nabla} T \right) \right) dV = \int_{S} \left(\hat{n} \cdot \left(k \vec{\nabla} T \right) \right) dA \longrightarrow \left(\left(C_{p,L} \Delta V_L \right) + \left(C_{p,R} \Delta V_R \right) \right) \left(\frac{T_n^m - T_n^{m-1}}{\Delta t} \right) = A_R \left(k \vec{\nabla} T \right)_R - A_L \left(k \vec{\nabla} T \right)_L + \left(U_L \right) \Delta V_L + \left(U_R \right) \Delta V_R$$

Approximate unknown flux terms (Fourier's law)

$$\left(\left(C_{p,L}V_{L}\right) + \left(C_{p,R}V_{R}\right)\right)\left(\frac{T_{n}^{m} - T_{n}^{m-1}}{\Delta t}\right) = A_{R}k_{n}\left(\frac{T_{n+1}^{m} - T_{n}^{m}}{\Delta X_{n}}\right) - A_{L}k_{n-1}\left(\frac{T_{n}^{m} - T_{n-1}^{m}}{\Delta X_{n-1}}\right) + (U_{L})V_{L} + (U_{R})V_{R}$$

Define "left" and "right" surface (HSL, HSR) and volume (HVL, HVR) "weights"

$$\left(C_{p,n-1}HVL_n + C_{p,n}HVR_n\right)\left(\frac{T_n^m - T_n^{m-1}}{\Delta t_m}\right) = HSR_nk_n(T_{n+1}^m - T_n^m) + HSL_nk_{n-1}(T_{n-1}^m - T_n^m)$$

Surface and volume weights on the interior Various definitions pending geometry Rectang Outworking of divergence theorem and CV int flux 1-D interpretation of "area" divided by interval width Cylindr Spheri

 Volume weight Outworking of volume integration Mesh interval "half-volume"...1-D "volume" Cartesian "1-D surf areas" evaluate to unity "1-D volumes" evaluate to slab volume per length

Surface weight

Cylindrical

- "1-D surf areas" are a circumference
- "1-D volumes" are cylindrical shell vol per length

Spherical/hemispherical

- "1-D surf areas" are spherical shell surface areas
- "1-D volumes" are spherical shell volumes

HS Geometry		Weight Units
gular	$HSL_n = 1/\Delta X_{n-1}$	<i>m</i> ⁻¹
	$HVL_n = \Delta X_{n-1}/2$	m
	$HSR_n = 1/\Delta X_n$	m^{-1}
	$HVR_n = \Delta X_n/2$	m
rical	$HSL_n = 2\pi \left(X_n - \frac{\Delta X_{n-1}}{2} \right) / \Delta X_{n-1}$	_
	$HVL_n = \pi \left(X_n^2 - \left(X_n - \frac{\Delta X_{n-1}}{2} \right)^2 \right)$	m^2
	$HSR_n = 2\pi \left(X_n + \frac{\Delta X_n}{2} \right) / \Delta X_n$	_
	$HVR_n = \pi\left(\left(X_n + \frac{\Delta X_n}{2}\right)^2 - X_n^2\right)$	m^2
ical	$HSL_n = 4\pi \left(X_n - \frac{\Delta X_{n-1}}{2} \right)^2 / \Delta X_{n-1}$	m
	$HVL_n = \frac{4\pi}{3} \left(X_n^3 - \left(X_n - \frac{\Delta X_{n-1}}{2} \right)^3 \right)$	m^3
	$HSR_n = 4\pi \left(X_n + \frac{\Delta X_n}{2} \right)^2 / \Delta X_n$	m
	$HVR_n = \frac{4\pi}{3} \left(\left(X_n + \frac{\Delta X_n}{2} \right)^3 - X_n^3 \right)$	m^3

Mesh intervals, nodes, CV of integration, and finite difference equations on HS boundary

- Path bifurcates based on absence/presence of a liquid film
- If liquid film absent:
 - No extra mesh intervals created, no extra equations for the heat structure
 - Apply a boundary condition to calculate surface temperature
- If liquid film present:
 - Create additional film mesh interval(s) (bound inside by HS surface, bound outside by interfacial node)

α

β

γ

Т

 $\frac{dT}{dN}$

- Extra equation for the liquid film
- Particular form of a convective heat/mass transfer boundary condition applied at film/atmosphere interface

Generic boundary condition

- Implicit in surface temperature
 Where:
- Derive any particular condition
 - Symmetry (adiabatic)
 - Convective
 - Specified flux or specified temperature

$$\alpha T + \beta \, \frac{dT}{dN} = \gamma$$

- = first boundary condition coefficient
- = second boundary condition coefficient
- = third boundary condition coefficient
- = surface temperature (collocated with a temperature node)
- = gradient of temperature along outward normal from surface

Back-up slides outline boundary nodalizations and finite difference equations

Elements of transport theory:

• Conservation – Solute (atomic or molecular gas) species *s* transports as:

$$\frac{\partial C_s}{\partial t} = -\left(\vec{\nabla} \cdot \vec{J_s}\right) + S_s - \frac{\partial C_s^t}{\partial t}$$

Where:

 C_s = Concentration of atomic species *s* [atom|molecule/m³]

 $\vec{J_s}$ = Flux of species *s* atoms [atom|molecule/m²/s]

- S_s = Source (production rate) of species s [atom|molecule/m³/s]
- C_s^t = Concentration of trapped species s [atom|molecule/m³]
- Diffusive and Thermophoretic Flux for solute species *s* is generally:

$$\vec{J_s} = -D_s \left(\vec{\nabla} C_s + \left(\frac{Q_s^* C_s}{RT^2} \right) \left(\vec{\nabla} T \right) \right)$$

Where:

- D_s = Diffusivity (diffusion coefficient) of atomic species s in structure [m²/s]
- Q_s^* = Heat of transport [J/mol] of Ludwig-Soret coefficient, atomic species s
- R = Universal gas constant = 8.314 [J/mol/K]
- T = Local structural temperature [K]

MELCOR

Elements of transport theory:

- Trapping and Release
 - Trap sites effectively increase energy required to move through material (relative to pure diffusion)
 - Could result from impurities or structural irregularities (e.g. cold working or neutron fluence)
 - Mathematically modeled as:

$$C_{j,t}^{e} = C_{j,t}^{o} - \sum_{s=1}^{N_s} \left(C_{s,j}^t \right)$$

$$\alpha_{t,s} = \frac{D_s}{\lambda^2}$$

$$\alpha_{r,j} = v_0 e^{\left[-\frac{E_{j,t}}{k_{BC}T}\right]}$$

Where:

 $C_{s,i}^t$

 $C_{i,t}^{o}$

 $C_{i,t}^{e}$

λ

 v_0

Ν

- = Concentration of trapped species s [atom|molecule/m³] in trap site j
- = Concentration of trap sites, type j [1/m³], sum of occupied and empty sites
- = Concentration of empty trap sites, type j [1/m³]
- = Jump distance, usually the lattice constant [m]
- = Release attempt frequency, usually the Debye frequency ~ 10^{13} [1/s]
- $E_{j,t}$ = Trapping energy [eV], diffusion activation plus binding energies of trap site type j
 - = Atomic number density [atom/m³] of host (heat structure) material
- N_s = Total number of solute species s
- $\alpha_{t,s}$ = Trapping rate coefficient [1/s] for species s
- $\alpha_{r,j}$ = Release rate coefficient [1/s] for all species from trap site type j
- Trapping source term for species s is a sum over N_T total trap site types j
- Trapping functions as a source term in conservation equation

Elements of transport theory:

- Transport to/across a surface
 - Gas movement across a surface mathematically described depending on material
 - If metal, gas molecules dissociate, transport in solution as atomic gas, and must recombine upon exit (Sievert)
 - If non-metal, gas molecules do not dissociate but transport through material and exit in same form (Henry)
- Sievert's law and Sievert's solubility coefficient
 - Rule for solubility of diatomic gas in metal
 - Depends on partial pressure in equilibrium (above surface)

$$C_i = K_s P_m^{1/2}$$

Where:

 K_s = Sievert's law solubility coefficient [atom /m³/Pa^{1/2}]

- C_i = Surface concentration [atom/m³] of atomic species *i*
- P_m = Partial pressure [Pa] of molecular species m containing species i
- Henry's law and Henry's solubility coefficient
 - Rule for solubility of gas in non-metal
 - Depends on partial pressure (above surface)

$$C_m = K_h P_m$$

Where:

 K_h = Henry's law solubility coefficient [atom /m³/Pa]

 C_m = Surface concentration [atom/m³] of molecular species m

 P_m = Partial pressure [Pa] of molecular species m above surface

Elements of transport theory:

• Transport to/across surface –Sievert's or Henry's law – formulated with mass transport coefficients

$$\Gamma_i = -K_{T,i} \big(C_{B,i} - C_{S,i} \big)$$

Where:

 $C_{B,i}$ = Bulk concentration [atom/m³] of species *i*

 $C_{S,i}$ = Surface concentration [atom/m³] of species *i*

- $K_{T,i}$ = Mass transfer coefficient [m/s] for species *i*
- Mass transport coefficients ascertained from heat/mass transfer analogy

$$\frac{K_{T,i}}{\rho_l D_{i,l}} = \frac{h_l}{k_l} \left(\frac{Sc}{Pr}\right)^{1/3}$$

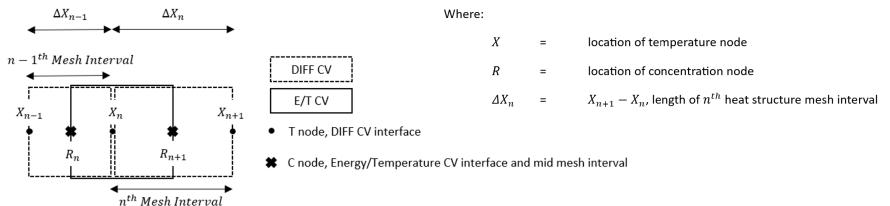
Where:

Pr =Liquid *l* Prandtl number = $(\mu_l c_{p,l})/k_l$

- Sc = Liquid *l* Schmidt number = $\mu_l / (\rho_l D_{i,l})$
- h_l = Liquid heat transfer coefficient = $0.02 \rho_l c_{p,l} v_l$
- Computational nuances entailed in the bulk vs surface concentrations
 - Sievert's condition to describe equilibrium given the dissociation/recombination complication
 - Bulk atmosphere of multiple mixed-atomic gases, and surface with dissociated atomic gas species
 - Chemical equilibrium condition applied
 - · Henry's condition more straightforward in describing relationship between bulk and surface
- Use mass transport coefficient approach when describing mass transfer from pool

Nodalization and control volume of integration on interior

- Diffusion CVs of integration are staggered with respect to energy/temperature CVs
- Diffusion CVs coincide with HS mesh intervals (material transitions at CV interfaces)
- Diffusion coefficients and property information stored where concentrations known



• Integrating, applying divergence theorem, and writing in terms of unknown diffusion fluxes:

$$\int_{V} \left(\frac{\partial C_{s}}{\partial t} \right) dV = -\int_{V} \left(\vec{\nabla} \cdot \left(\vec{J}_{s} \right) \right) dV + \int_{V} \left(S_{s} \right) dV - \int_{V} \sum_{j=1}^{N_{T}} \left(\frac{\partial C_{s}^{t}}{\partial t} \right) dV \longrightarrow \left(\frac{\partial C_{s}}{\partial t} \right) \Delta V_{i} = A_{R}(J_{s})_{R} - A_{L}(J_{s})_{L} + (S_{s})\Delta V_{i} - \left(\sum_{j=1}^{N_{T}} \left(\frac{\partial C_{s}^{t}}{\partial t} \right) \right) \Delta V_{i}$$

• Require a general relationship for unknown interface flux terms

Generalized interface flux relationship (accommodate any condition at interface)

- Flux continuity enforces: $J_{s,int}^- = J_{s,int}^+ = J_{s,int}$
- Derive a general expression for J_{s,int}
- Complicated derivation especially given thermophoretic term
 - Write expression for $J_{s,int}^-$ and $J_{s,int}^+$
 - Use space-centered differencing on gradient terms
 - Apply a generic partition coefficient condition: $\gamma_s C_s^+ = C_s^-$
 - Do a lot of algebra and arrive at: $J_{s,int} = -G_i(C_{s,i} \chi_i C_{s,i+1})$

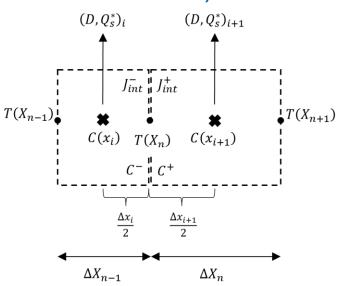
$$\begin{aligned} G_{i} &= \frac{dx_{i}dx_{i+1}F_{s,i}^{+}F_{s,i+1}^{+}}{\gamma_{s,i}dx_{i}F_{s,i}^{-} + dx_{i+1}F_{s,i+1}^{+}} & \Delta T_{i} &= T_{i} - T_{n} & F_{s,i|i+1}^{+|-} &= D_{s,i|i+1}(+|-)A_{s,i|i+1}\Delta T_{i|i+1} &= T_{i} - T_{i+1} \\ \chi_{i} &= \frac{\gamma_{s,i}F_{s,i}^{-}F_{s,i+1}^{-}}{F_{s,i}^{+}F_{s,i+1}^{+}} & dx_{i} &= \frac{1}{\Delta x_{i}/2} = \frac{2}{\Delta x_{i}} &= \begin{cases} F_{s,i}^{+} = D_{s,i} + A_{s,i}\Delta T_{i} \\ F_{s,i}^{-} = D_{s,i} + A_{s,i}\Delta T_{i} \\ F_{s,i}^{-} = D_{s,i+1} + A_{s,i+1}\Delta T_{i+1} \\ F_{s,i+1}^{+} = D_{s,i+1} - A_{s,i+1}\Delta T_{i+1} \\ F_{s,i+1}^{+} = D_{s,i+1}\Delta T_{i+1} \\ F_{s,i+1}^{+} = D_{s,i+1}\Delta$$

• applying, time-differencing, and manipulating the trapping term:

$$\begin{pmatrix} \frac{C_{s,i}^{m} - C_{s,i}^{m-1}}{\Delta t} \end{pmatrix} \Delta V_{i}$$

$$= A_{R} \left(\chi_{i} G_{i} C_{s,i+1} - G_{i} C_{s,i} \right) - A_{L} \left(\chi_{i-1} G_{i-1} C_{s,i} - G_{i-1} C_{s,i-1} \right) + (S_{s}) \Delta V$$

$$- \left(\sum_{j=1}^{N_{T}} \left(\frac{\left(\frac{C_{s,i,j}^{t,m-1} + \frac{\alpha_{t,s,i}}{N} \left(C_{i,j,t}^{e} \right)^{m}}{1 + \alpha_{r,i,j} \Delta t} \right) C_{s,i}^{m} \Delta t - C_{s,i,j}^{t,m-1}}{\Delta t} \right) \right) \Delta V_{i}$$

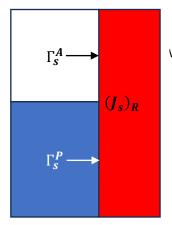


HS Geometry		Units
Rectangular	$A_L = 1$	-
	$A_R = 1$	-
	$\Delta V_i = \Delta X_i / 2$	т
Cylindrical	$A_L = 2\pi X_i$	т
	$A_R = 2\pi X_{i+1}$	т
	$\Delta V_i = \pi \left(X_{i+1}^2 - X_i^2 \right)$	m^2
Spherical	$A_L = 4\pi (X_i)^2$	m^2
	$A_R = 4\pi (X_{i+1})^2$	m^2
	$\Delta V_i = \frac{4\pi}{3} \left(X_{i+1}^3 - X_i^3 \right)$	<i>m</i> ³
Hemispherical	$A_L = 2\pi (X_i)^2$	m^2
	$A_R = 2\pi (X_{i+1})^2$	m^2
	$\Delta V_i = \frac{2\pi}{3} \left(X_{i+1}^3 - X_i^3 \right)$	m^3

TMAP in Modern MELCOR

Nodalization and control volume of integration on boundary

- Zero-thickness diffusion CV at surface
- Essentially imposes a flux (interface) condition on 1st diffusion CV in material
- Conservation equation is a simple flux balance: $A_R(J_s)_R = A_L(J_s)_L$
 - Areas are equal on either side of the zero-thickness boundary CV
 - Right-hand flux can be written as: $(J_s)_R = C_{s,1}dr_1F_{s,1} C_{s,f}dr_1F_{s,1}^+$
 - Left-hand flux can be written according to condition of choice
 - Zero-flux
 - Specified surface concentration (constant or some functional dependence)
 - Mass transport coefficient condition: $(J_s)_L = (1 \omega)\Gamma_s^A + (\omega)\Gamma_s^P$
 - Surface/pool component MTC with Henry's/Sievert's law
 - Surface/atmosphere component recombination/dissociation
 - Heavy solution law dependence

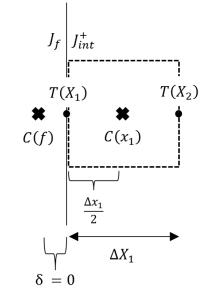


$$J_{i} = \sum_{m=1}^{N_{s}} \left(n_{i}^{m} K_{d_{m}} P_{m} \right) - 2 \sum_{j=1}^{N_{s}} \left(K_{r,ij} C_{i} C_{j} \right)$$

Where:

- J_i = Atomic gas species *i* flux [atom /m²/s] into surface
- n_i^m = number of atoms of species i in molecule of species m
- K_{d_m} = Dissociation coefficient [1/Pa/m²/s] for molecular species *m* consisting of species *i* and *j*
- $K_{r,ij}$ = Recombination coefficient [m⁴/s] for molecular species *m* consisting of species *i* and *j*
- $C_{i|j}$ = Surface concentration [atom/m³] of atomic species *i* or *j*

$$\Gamma_{s}^{A} = \sum_{m=1}^{N_{m}} (n_{i}^{m} K_{d,m} P_{m}) - 2 \sum_{j=1}^{N_{s}} (K_{r,i,j} C_{f,i} C_{f,j})$$



TMAP in Modern MELCOR

Pool surface heat/mass transfer

- 6 hydrogen molecules in pool/atm (H₂, D₂, T₂, HD, HT, DT) and 3 isotopes in solid phase (H, D, T)
- MELCOR-TMAP treated hydrogen species with NCG (components of atmosphere)
- MELCOR-TMAP had specialized conservation equations for (dissolved) hydrogen species in pool
- Treats hydrogen species as "trace" contaminants
- Take account of:
 - Generation in pool (user-defined)
 - Pool surface transfer
 - Mass transport coefficient

$$\Gamma_i = -K_{T,i} \big(C_{B,i} - C_{S,i} \big)$$

Where:

$$C_{B,i}$$
 = Bulk concentration [atom/m³] of species *i*

$$C_{S,i}$$
 = Surface concentration [atom/m³] of species *i*

$$K_{T,i}$$
 = Mass transfer coefficient [m/s] for species *i*

• Outgassing:
$$\frac{\partial C_{B,i}}{\partial t} = \frac{A_p \Gamma_i}{V_p}$$

Where:

- A_p = Pool surface area [m²]
- V_p = Pool volume [m³]
- HS surface transfer (discussed previously)

$$\frac{K_{T,i}}{\rho_l D_{i,l}} = \frac{h_l}{k_l} \left(\frac{Sc}{Pr}\right)^{1/3}$$

Where:

- Pr = Liquid *l* Prandtl number = $(\mu_l c_{p,l})/k_l$
- Sc = Liquid *l* Schmidt number = $\mu_l / (\rho_l D_{i,l})$
- h_l = Liquid heat transfer coefficient = $0.02\rho_l c_{p,l} v_l$

Summary

Reviewed the energy/temperature derivation for HS as a lead-in to diffusion

Reviewed theory useful to hydrogen transport modeling

Reviewed aspects of the finite difference equations for hydrogen transport in HS

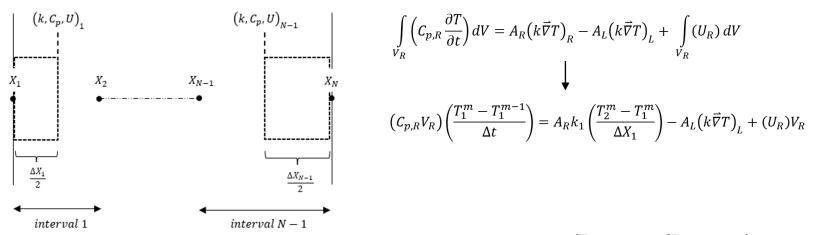
- Expect this formulation would be generalized for arbitrary species transport
- Math much simpler without:
 - Thermophoretic component of flux
 - Trapping/release

Reviewed MELCOR-TMAP treatment of hydrogen species transport in CV pol/atm

- Pool bulk to pool/atmosphere surface
- Pool/atmosphere to/from HS surfaces
- Atmosphere from pool/atmosphere surface

Backup Slides

Mesh intervals, nodes, CV of integration, and finite difference equations on HS boundary Treatment depends upon whether a liquid film exists...if no liquid film:



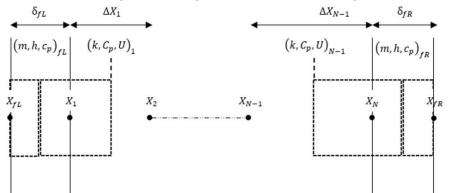
Generic boundary condition inform surface flux term: $A_L(k\vec{\nabla}T)_L = A_Lk_1\frac{dT}{dr} = A_Lk_1\left(-\frac{dT}{dN}\right) = A_L\left(\frac{-k_1}{\beta_L}\right)(\gamma_L - \alpha_LT_1)$ Finite difference equations:

$$(G_1)\left(\frac{T_1^m - T_1^{m-1}}{\Delta t_m}\right) = HSR_1k_1(T_2^m - T_1^m) + HSL_1\left(\frac{k_1}{\beta_L}\right)(\gamma_L - \alpha_L T_1) + (U_1)HVR_1 \qquad G_1 = C_{p,1}HVR_1$$

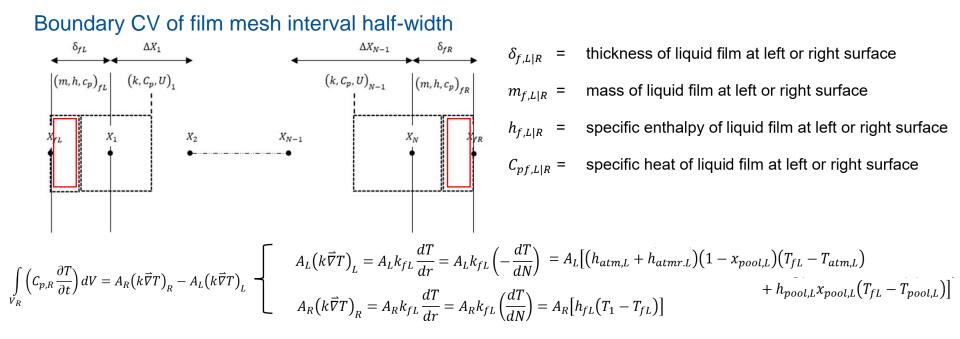
$$(G_{N-1})\left(\frac{T_{N-1}^m - T_{N-1}^{m-1}}{\Delta t_m}\right) = HSL_{N-1}k_{N-1}(T_N^m - T_{N-1}^m) + HSR_{N-1}\left(\frac{\kappa_{N-1}}{\beta_R}\right)(\gamma_R - \alpha_R T_N) + (U_{N-1})HVL_{N-1} \qquad G_{N-1} = C_{p,N-1}HVL_{N-1}$$

Special term for evaporating film (not draining film):

Mesh intervals, nodes, CV of integration, and finite difference equations on HS boundary Treatment depends upon whether a liquid film exists...if liquid film:



- $\delta_{f,L|R}$ = thickness of liquid film at left or right surface
- $m_{f,L|R}$ = mass of liquid film at left or right surface
- $h_{f,L|R}$ = specific enthalpy of liquid film at left or right surface
- $C_{pf,L|R}$ = specific heat of liquid film at left or right surface
- Keep structure surface temperature node at original location
- Extra film temperature node (film/atmosphere interface), extra film mesh interval, 2 CVs of integration:
 - · Liquid film mesh interval half-width
 - Surface CV with other liquid film mesh interval half-width plus 1st structural mesh interval half-width
 - Execute integration over each, and both entail some special treatment
- Assume no energy generation in the film mesh interval, but generally allow energy generation in structure
- Apply specially-crafted convection conditions on either interface of the film mesh interval half-width CV
- Apply specially-crafted convection condition on the outer interface of the film/structure CV
- Where the film/atmosphere interface is above pool, allow for condensation/evaporation



COR

Finite difference equation accounting for condensation/evaporation mass flux:

$$(G_{fL})\left(\frac{T_{fL}^m - T_{fL}^{m-1}}{\Delta t_m}\right)$$

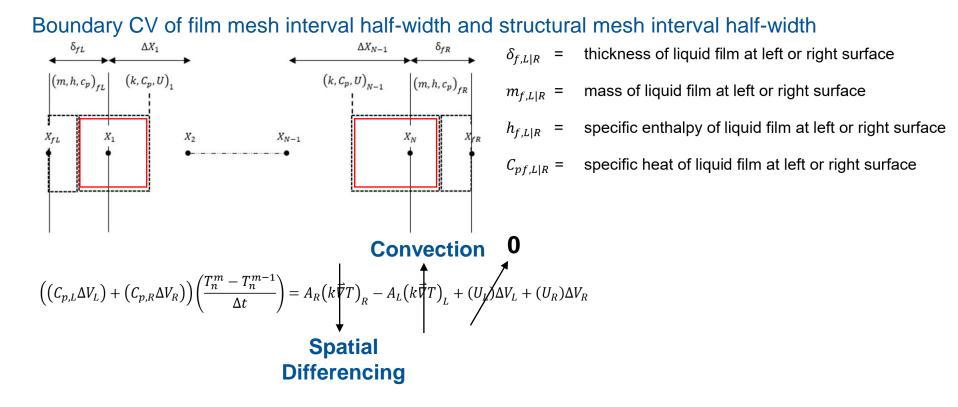
$$= HSR_{fL}[h_{fL}(T_1 - T_{fL})]$$

$$+ HSL_{fL}[(h_{atm,L} + h_{atmr,L})(1 - x_{pool,L})(T_{atm,L} - T_{fL})$$

$$+ h_{pool,L}x_{pool,L}(T_{pool,L} - T_{fL})]$$

$$+ \left[(1 - x_{pool,L})\left(\frac{A_L}{f}\right)\right][(h_{v,L} - e_{f,L}) * MAX(0, \dot{m}_{c,L})] \longrightarrow \text{Condensation}$$

$$+ \left[(1 - x_{pool,L})\left(\frac{A_L}{f}\right)\right][(h_{v,L} - \bar{e}_{f,L}) * MIN(0, \dot{m}_{c,L})] \longrightarrow \text{Evaporation}$$



Finite difference equation allowing condensation but disallowing evaporation (inside of film)

$$(G_{fL} + G_1) \left(\frac{T_1^m - T_1^{m-1}}{\Delta t_m} \right)$$

= $HSR_1k_1(T_2 - T_1) - HSR_{fL}h_{fL}(T_1 - T_{fL})$
+ $\left[(1 - x_{pool,L}) \left(\frac{A_L}{f} \right) \right] [(e_{f,L} - \bar{e}_{f,L}) * MAX(0, \dot{m}_{C,L})] \longrightarrow$ Condensation above pool level
+ $U_1 HVR_1$ No evaporation allowed