

Securing the future of Nuclear Energy

Sodium Fire Validation – ABCOVE AB5/AB6/AB7

2025 European MELCOR Users' Group Meeting April 7th-11th, 2025

MELCOR

SAND2025-04005PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

MELCOR NAC (sodium chemistry) package

ABCOVE

- Program description
- Series tests AB1, AB5, AB6, and AB7

Most recent MELCOR analyses and experimental validations (AB5, AB6, and AB7)

AB1 pool fire MELCOR analysis and validation

Summary

NAC Package – Sodium Chemistry

"Sodium Chemistry" – NAC – package in MELCOR

A number of reactions:

- Na(l) + H₂O (l) \rightarrow NaOH(a) + $\frac{1}{2}$ H₂
- $2Na(g,l) + H_2O(g,l) \rightarrow Na_2O(a) + H_2$
- $2\operatorname{Na}(g, l, a) + \frac{1}{2}O_2 \text{ or } O_2 \rightarrow \operatorname{Na}_2O(a) \text{ or } \operatorname{Na}_2O_2(a)$
- $\operatorname{Na}_2O_2(a) + 2\operatorname{Na}(g,l) \rightarrow 2\operatorname{Na}_2O(a)$
- $\operatorname{Na}_2 O(a) + \operatorname{H}_2 O(g, l) \rightarrow 2\operatorname{NaOH}(a)$
- $Na_2O_2(a) + H_2O(g,l) \rightarrow 2NaOH(a) + 0.5O_2$

Kinetics of atmosphere gases not explicitly modeled

Reactions assumed to occur in hierarchal order:

- As listed above
- By reaction site (atmosphere in CV,aerosol form, surfaces such as for heat structures)

Outputs – Rxn number and energy, byproducts (Na classes, H₂), gas/liquid consumed (Na, H₂O, O₂)

NAC Package – Pool Fires

Pool fire modeling based on SOFIRE-II

- Reactions:
 - $2 \operatorname{Na} + \operatorname{O}_2 \rightarrow \operatorname{Na}_2\operatorname{O}_2$, 10.97 MJ/kg
 - $4 \text{ Na} + \text{ O}_2 \rightarrow 2 \text{ Na}_2 \text{ O}$, 9.05 MJ/kg
 - Half of heat produced is assigned to pool, other half is assigned to atmosphere above pool
- Reactions depend on oxygen diffusion: $D = (6.4315 * 10^{-5}/P)(T^{1.823})$
- Input requirements:
 - F1 fraction O_2 consumed for Na_2O , F2 fraction reaction heat to pool
 - + F3 fraction Na_2O_2 to pool, F4 fraction of Na_2O to pool

Quantities calculated:

- Masses consumed: Na(pool), O₂
- Masses produced: Na₂O₂+Na₂O
- Energy of reactions

Model Extensions

- Radiation between HS and pool surfaces
- Heat transfer between pool and atmosphere
 - CONTAIN/LMR uses film temperature for many thermodynamic properties.
- User-controllable pool surface area (control function)

NAC Package – Spray Fires

Spray fire modeling based on NACOM (BNL)

- Inputs: fall height, mean diameter, and spray source
 - Predict whether droplet is entirely consumed over fall height
 - If consumed, add combustion and sensible energy plus energy of evaporation to atmosphere
 - If not consumed, perform time integration over droplet fall (compute diameter, velocity, temperature)
- Droplet size distribution calculated from Nukiyama-Tanasawa correlation (11 size bins)
- Droplet combustion models include pre-ignition and ignition
- Extensions to model include droplet acceleration and adjustments to heat of combustion
- Physics omitted include maximum droplet size, radiation from droplets, and swarm effects

Predicted quantities include:

- Mass consumed: Na(pool), O₂
- Mass produced: Na₂O₂+Na₂O
- Energy of reactions

NAC Package – Spray Fires

Pre-ignition phase

- Na reacts with O₂ when droplet temperature cannot sustain vapor-phase burning
- Controlled by O_2 diffusion to droplet surface
- Heat-mass transfer analogy

Vapor-phase burning as droplet temperature approaches sodium boiling temperature

- Reaction heat transferred to droplet
- Balanced by heat exchange to surrounding gas by natural convection
- Leads to ignition delay for colder injection

Ignition phase

- Burning rate is based on the D2- law: $D^2 = D_I^2 Kt$
- Burning rate of a stationary droplet: $BR_0 = \frac{\pi}{4}\rho_{Na}KD$
- Where the vapor-phase burning coefficient K is taken from Spalding: $K = \frac{8k_g}{CC_{n,a}\rho_{Na}}ln(1+B)$
- With the transfer coefficient B: $B = \frac{1}{h_{fg}} \left(C_{p,g} \left(T_g T_{Na} \right) + h_{com} \frac{Y_{O2}}{i} \right)$
- Adjustment made for forced convection: $BR = BR_0(1 + C_f Re^{1/2} Pr^{1/3})$

NAC Package – Spray Fires

Droplet velocity models

- Terminal velocity downward sprays only
 - Droplet fall time approximated from user specified fall height and terminal velocity
 - Assume droplet Immediately accelerates to terminal velocity
- Acceleration upward or downward sprays
 - User can specify upward spray with a negative initial velocity (positive assumed downward)
 - Velocity

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \mathrm{g} - \mathrm{d}\mathrm{rag}(\mathrm{v})$$

• Drag

$$drag(v) = \frac{3}{4} * \frac{\rho_g}{\rho_l * d} * v * abs(v) * C_d(Re)$$

• Height

$$h(t) = h(t - \Delta t) - v(t - \Delta t) * \Delta t$$

ABCOVE Program

Purpose:

- Judge adequacy of aerosol transport codes in describing aerosol behavior in containment
- Utilize Containment Systems Test Facility (CSTF) at Hanford Engineering Development Laboratory
- Establish technical basis for analyzing accidents involving sodium spray and pool fires

Large-scale experiments in containment vessel of CSTF, including:

- AB1 1979 "Dry" aerosols (NaOH, Na₂CO₃, Na₂O₂) generated from pool fire, aged in containment
- AB5 1982 Single-species aerosol generated by high-rate sodium spray into air atmosphere
- AB6 1983 Nal aerosol released in presence of a sodium spray fire
- AB7 1984 Nal aerosol released upon conclusion of a small sodium pool fire

Moderate duration, strong aerosol source

Spray fire in air atmosphere - 13 s to 885 s

- Aerosols created: NaOH, Na₂O, Na₂O₂
- H₂O in air atmosphere drives NaOH generation
- 223 kg integral Na mass

	_		_						_	
STRUCTURE		MELCOR				TEST AB5				
Plated Mass]	NaOx (kg)		NaOH (kg)	+	Na2O2 (kg)	=	NaOx (kg)		NaOx (kg
Top Head]	1.60		0.50	+	1.63	=	2.13		0.96
Cylindrical Walls		18.10		1.41	+	5.51	=	6.92		17.75
Internal Components (Vertical)		3.82		2.15	+	4.97	=	7.12		N/A
Total Plated*		23.52		4.06	+	12.11	=	16.17		18.70
Settled Mass		NaOx (kg)		NaOH (kg)	+	Na2O2 (kg)	=	NaOx (kg)		NaOx (kg
Bottom Head]	190.00		22.82	+	141.14	=	163.96		200.10
Internal Components (Horizontal)		176.50		21.42	+	132.51	=	153.93		184.00
Total Settled^		366.50		44.24	+	273.65	=	317.89		384.10
Total Deposited]	390.02		48.30	+	285.76	=	334.05		402.80

MELCOR predictions

- Over-predicting containment atmosphere P/T
 - Combustion flame radiation to HS surfaces?
 - Vigorous aerosol generation might lessen the effect
 - Could result in more energy to atmosphere vs. HS
- Good prediction of aerosol mass generation

Coagglomeration of two aerosol species Spray fire in air atmosphere - 620 s to 5400 s

Nal aerosol injected 0 s to 3000 s

- Aerosols created: NaOH, NaI, Na₂O, Na₂O₂
- H₂O in air atmosphere drives NaOH generation
- 204.7 kg integral Na mass, 420 g integral Nal mass

MELCOR predictions

	_			-							-		
STRUCTURE		MELCOR			MELCOR-NAC							TEST AB6	
Plated Mass		NaOx (kg)	Nal (g)		NaOH (kg)	+	Na2O2 (kg)	=	NaOx (kg)	Nal (g)]	NaOx (kg)	Nal (g
Top Head		0.40	0.38		0.05	+	0.40	=	0.46	0.38	1	1.58	1.68
Cylindrical Walls		11.00	13.00		1.51	+	11.23	=	12.75	14.62		35.80	46.5
Internal Components (Vertical)		1.28	2.85		0.50	+	1.25	=	1.75	3.82		N/A	N/A
Total Plated*		12.68	16.23		2.07	+	12.89	=	14.96	18.82		37.38	48.19
Settled Mass		NaOx (kg)	Nal (g)		NaOH (kg)	+	Na2O2 (kg)	=	NaOx (kg)	Nal (g)]	NaOx (kg)	Nal (g
Bottom Head		186.00	209.00		14.49	+	145.07	=	159.56	203.91]	156.07	195.6
Internal Components (Horizontal)		172.00	195.00		13.70	+	148.50	=	162.21	192.96		179.00	172.6
Total Settled [^]		358.00	404.00		28.20	+	293.57	=	321.77	396.87		335.07	368.2
Total Deposited		370.68	420.23		30.27	+	306.46	=	336.73	415.69]	372.45	416.3

* --> 30% error, ^ --> 10% error

- More mild fire (less flame-to-HS effect?)
- Greater sensitivity to gas injection alongside Nal
- Good prediction of aerosol mass generation

MELCOR (NAC) - Suspended Nal Aerosol

MELCOR - No NAC - Suspended NaOx Aerosol

AB6 Exp - Suspended Nal Aerosol

MELCOR (NAC) - Suspended NaOx Aeroso

MELCOR - No NAC - Suspended Nal Aeroso

AB6 Exp - Suspended NaOx Aeroso

Coagglomeration of two aerosol species under mild thermal conditions (min resuspension, decomposition)

- Na leak out of tube 0 s to 20 s
- Na accumulation on platform, pool fire 20 s to 600 s
- Nal aerosol injected 600 s to 2400 s
 - NaOH produced immediately after leak
 - H₂O in air atmosphere drives NaOH generation
 - 6.434 kg integral Na mass, 354.6 g integral Nal mass

MELCOR predictions

- Able to capture relatively "small" event
- Much uncertainty about experimental conditions
 - Leak resembled a flow more than a spray
 - Flow dripped to I-beam then dripped to platform
- MELCOR 2.X analysis improved over MELCOR 1.8.6
- Good prediction of airborne mass

·. Fx03

1. FX05

1. Exos

0.00

3.6.01

^{1.}£*00

1.Ex07

Characterize aerosols from pool fires (dry atmos)

Evaluate P/T response of containment atmosphere

Spill 410 kg Na at 600 C in a 4.4 m² pan, burn 3600 s

MELCOR Predictions

- Fair agreement on P/T atmosphere response
- Good prediction of airborne aerosol mass through the aerosol release period and thereafter

Summary

Reviewed NAC package models/capabilities

- Sodium chemistry
- Pool fire models
- Spray fire and droplet models

Reviewed most recent validation/benchmark calculations – ABCOVE AB5/6/7

Reviewed ABCOVE AB1 pool fire analysis