Electrochemical Energy Storage
New affiliation of Prof. Novák (as from March 2021)
====================================
Technical University of Braunschweig
Institute of Energy and Process Systems Engineering
Langer Kamp 19B
D-38106 Braunschweig
Germany
E-mail: p.novak@tu-braunschweig.de
Web: https://www.tu-braunschweig.de/ines
====================================
Focus of the Work
Our vision is the development of the best electrochemical energy storage system.
We work on rechargeable batteries and their components, for lithium-based systems and beyond. The scientific goal is a profound understanding of electrochemical processes in complex, mainly nonaqueous systems. In particular, of utmost scientific interest are the numerous interactions of all components of electrochemical energy storage systems determining their safety and life.
The work equally considers the synthesis of novel materials for electrochemical energy storage and the modification of surface and bulk of known materials (e.g., carbon), and material characterization, keeping in mind the entire span from basic science to industrial applications. To answer the scientific questions, we develop various sophisticated in situ/operando methods for use in the field of nonaqueous solid-state electrochemistry and investigate the physical and electrochemical properties of host materials and electrochemical interfaces in situ/operando. Also, we do electrochemical engineering work on three-dimensional electrodes and characterize industrial batteries and battery systems.
Research Team
- Prof. Dr.-Ing. Petr Novák
- Dr. Mario El Kazzi (Group Head Battery Materials and Diagnostics)
- Dr. Sigita Trabesinger (Group Head Battery Electrodes and Cells)
- Juliana Bruneli Falqueto
- Laura Höltschi
- Dr. Łukasz Kondracki
- Dr. Steven Lacey
- Dr. Hieu Quang Pham
- Simon Schneider
- Dr. Ales Stefancic
- Eric Winter
- Dr. Leiting Zhang
For job opportunities, please look at our open positions.
Former Team Members
Prof. Dr. Susanne Still | 1994 - 1995 | University of Hawaii at Manoa, USA |
Prof. Dr. Martin Winter | 1995 - 1996 | University of Münster, Germany |
Dr. Michael E. Spahr | 1993 - 1997 | Imerys Graphite & Carbon, Switzerland |
Dr. Roman Imhof | 1996 - 1999 | DSM Switzerland |
Dr. Daniel Häringer | 1996 - 1999 | Karlsruhe Institute of Technology, Germany |
Dr. Jan-Christoph Panitz | 1999 - 2000 | European Patent Office, The Netherlands |
Dr. Marcello Coluccia | 1997 - 2000 | Imerys Graphite & Carbon, Switzerland |
Mr. Beat Rykart | 1996 - 2000 | |
Dr. Martin Lanz | 1999 - 2001 | Meyer Burger (Switzerland) AG, Switzerland |
Mr. Andreas Blome | 2000 - 2001 | |
Dr. Felix Joho | 1993 - 2001 | Folex, Switzerland |
Dr. Dietrich Goers | 2000 - 2003 | Li-Tec Battery GmbH, Germany |
Dr. Martin Bärtsch | 2001 - 2003 | Swissmedic, Switzerland |
Ms. Sandra Peter | 2002 - 2004 | |
Dr. Andrea Piotto Piotto | 2000 - 2004 | |
Dr. Andreas Würsig | 2002 - 2005 | Fraunhofer Institute for Silicon Technology, Germany |
Dr. Hilmi Buqa | 2002 - 2006 | Leclanché SA, Switzerland |
Dr. Michael Holzapfel | 2003 - 2006 | Fraunhofer Institute for Chemical Technology, Germany |
Prof. Dr. Laurence Hardwick | 2003 - 2006 | University of Liverpool, UK |
Dr. Jens Vetter | 2000 - 2006 | BMW AG, Germany |
Dr. Joachim Ufheil | 2003 - 2007 | Meyer Burger (Switzerland) AG, Switzerland |
Dr. Nicolas Tran | 2006 - 2007 | Bio-Logic Science Instruments, France |
Dr. Fabio Rosciano | 2005 - 2008 | European Patent Office, Germany |
Prof. Dr. Fabio La Mantia | 2005 - 2008 | University of Bremen, Germany |
Dr. See How (Desmond) Ng | 2006 - 2008 | Sefar AG, Singapore |
Dr. Sau Yen (Sophie) Chew | 2007 - 2008 | |
Dr. Anna Evans | 2007 - 2008 | Biotronik AG, Switzerland |
Mr. Werner Scheifele | 1990 - 2009 | Belenos Clean Power, Switzerland |
Dr. Timothy Patey | 2006 - 2009 | ABB Corporate Research, Switzerland |
Ms. Chia-Ying Lu | 2009 - 2009 | |
Dr. Jean-François Colin | 2008 - 2010 | CEA Liten, France |
Dr. Pascal Maire | 2006 - 2010 | Renata AG, Switzerland |
Dr. Franziska Simmen | 2006 - 2010 | Ems-Dottikon AG, Switzerland |
Dr. Andreas Hintennach | 2007 - 2010 | Daimler AG, Germany |
Dr. Heino-Harald Sommer | 2009 - 2010 | BASF SE, Germany |
Dr. Tiphaine Poux | 2010 - 2010 | University of Strasbourg, France |
Dr. Philippe Bernardo | 2007 - 2011 | |
Dr. Wolfgang Märkle | 2007 - 2011 | Daimler AG, Germany |
Dr. Holger Schneider | 2009 - 2011 | BASF SE, Germany |
Dr. Pallavi Verma | 2008 - 2011 | Robert Bosch GmbH, Germany |
Dr. Vikram A. Godbole | 2008 - 2011 | Robert Bosch GmbH, Germany |
Dr. Sofía Pérez-Villar | 2010 - 2011 | University of Kent, UK |
Dr. Tsuyoshi Sasaki | 2009 - 2012 | Toyota Motor Corporation, Japan |
Prof. Dr. Nuria Garcia-Araez | 2011 - 2012 | University of Southampton, UK |
Dr. Michael Hess | 2009 - 2013 | Battronics Engineering AG, Switzerland |
Dr. Christa Bünzli | 2012 - 2014 | Swiss Science Center Technorama, Switzerland |
Dr. Elias Castel | 2012 - 2014 | |
Dr. Patrick Lanz | 2010 - 2014 | Apple Inc., USA |
Dr. Peter Bleith | 2011 - 2014 | Liacon Batteries, Germany |
Prof. Dr. Juan Luis Gómez Cámer | 2011 - 2014 | University of Córdoba, Spain |
Ms. Iris Kovacsovics | 2014 - 2015 | |
Dr. Ahmet Tezel | 2014 - 2015 | Graphene Batteries AS, Norway |
Dr. Leonie Vogt | 2013 - 2016 | McKinsey & Company, UK |
Dr. Hai-Jung Peng | 2013 - 2016 | BASF SE, China |
Dr. Daniel Streich | 2013 - 2016 | Kernkraftwerk Leibstadt AG, Switzerland |
Dr. Minglong He | 2013 - 2016 | Belenos Clean Power, Switzerland |
Dr. Lucien Boulet | 2013 - 2016 | Capgemini, France |
Dr. Joana Conder | 2013 - 2016 | University of Fribourg, Switzerland |
Dr. Martin Reichardt | 2013 - 2016 | Deutsche Accumotive, Germany |
Dr. Sebastian Schmidt | 2013 - 2016 | Mettler-Toledo International, Switzerland |
Mr. Joel Cabanero | 2016 - 2016 | Departement of Science and Technology, Taguig City, Philippines |
Mr. Ryo Asakura | 2016 - 2017 | Empa, Switzerland |
Mr. Christoph Junker | 2010 - 2017 | Axon Lab AG, Switzerland |
Dr. Tiphaine Schott | 2014 - 2017 | Cetim-Cermat, France |
Dr. Sebastien Sallard | 2011 - 2017 | VITO NV, Belgium |
Mr. Hermann Kaiser | 2001 - 2017 | Retired |
Mr. Darryl Nater | 2017 - 2018 | ETH Zürich, Switzerland |
Dr. Aurélie Guéguen | 2013 - 2018 | Toyota Motor Europe NV/SA, Belgium |
Dr. Giulio Ferraresi | 2014 - 2018 | Imerys Graphite & Carbon, Switzerland |
Dr. Laura Vitoux | 2017 - 2018 | Hatier, France |
Dr. Elena Marelli | 2016 - 2018 | Paul Scherrer Institute, Switzerland |
Prof. Dr. Erik J. Berg | 2011 - 2018 | University of Uppsala, Sweden |
Dr. Bing Sun | 2016 - 2018 | Volvo Car Corporation, Sweden |
Dr. Rosa Robert | 2012 - 2018 | Sensile Medical, Switzerland |
Dr. Daniela Leanza | 2015 - 2018 | Pilatus Flugzeugwerke AG, Switzerland |
Dr. Andrzej Kulka | 2018 - 2018 | Kraków University of Science and Technology, Poland |
Dr. Juliette Billaud-Bouville | 2015 - 2018 | Dyson, UK |
Dr. Yuri Surace | 2017 - 2018 | AIT Austrian Institute of Technology GmbH, Austria |
Mr. Gong Chen | 2018 - 2019 | |
Dr. Claire Villevieille | 2010 - 2019 | University Grenoble-Alpes, France |
Dr. Cyril Marino | 2015 - 2019 | SERMA Technologies, France |
Dr. Xiaohan Wu | 2016 - 2019 | BASF SE, Germany |
Mr. Victor Landgraf | 2018 - 2019 | Imperial College London, UK |
Dr. Paul Kitz | 2016 - 2019 | University of Uppsala, Sweden |
Dr. Fabian Jeschull | 2017 - 2019 | Karlsruhe Institute of Technology, Germany |
Dr. Eibar Flores Cedeño | 2015 - 2019 | Technical University of Denmark, Denmark |
Mr. André Müller | 2019 - 2019 | Karlsruhe Institute of Technology, Germany |
Dr. Christoph Bolli | 2015 - 2019 | Volkswagen AG, Germany |
Dr. Kai-Hsuan Hung | 2019 - 2019 | China Steel Corp., Taiwan |
Keisuke Morita | 2019 - 2019 | Toyota Motor Corporation, Japan |
Dr. Marta Mirolo | 2016 - 2020 | European Synchrotron Radiation Facility, Grenoble, France |
Maximilian Schuster | 2017 - 2020 | Passed away on July 31, 2020 |
Dr. David McNulty | 2018 - 2020 | University of Limerick, Ireland |
Partners
- BASF SE
- SAFT SA
- Imerys Graphite & Carbon
- Toyota Motor Europe
- and several others
If you have a problem for which our expertise could be of use, we would like to become your partner - please do not hesitate to contact us!
Publications
Click here for complete list of publications 1985-2019
- Towards more Durable Electrochemical Capacitors by Elucidating the Ageing Mechanisms under Different Testing Procedures
ChemElectroChem 6, 566 (2019)DOI: 10.1002/celc.201801146
- Lanthanum manganite-based air electrode catalysts and their application to lithium-air batteries: Effects of carbon support oxidation
Electrochemistry 6 (5), 265-271 (2018)DOI: 10.5796/electrochemistry.18-00034
- _In situ_ and operando Raman spectroscopy of layered transition metal oxides for Li-ion battery cathodes
Front. Energ. Res. 6 (82), (2018)DOI: 10.3389/fenrg.2018.00082
- A cylindrical cell for operando neutron diffraction of Li-Ion battery electrode materials
Front. Energ. Res. 6 (76), (2018)DOI: 10.3389/fenrg.2018.00076
- Phosphorus anionic redox activity revealed by operando P K-edge X-ray absorption spectroscopy on diphosphonate-based conversion materials in Li-ion batteries
Chem. Commun. 54, 4939-4942 (2018)DOI: 10.1039/C8CC01350K
- Elucidation of LixNi0.8Co0.15Al0.05O2 Redox Chemistry by Operando Raman Spectroscopy
Chem. Mater. 30, 4694−4703 (2018)DOI: 10.1021/acs.chemmater.8b01384
- Switch of the charge storage mechanism of LixNi0.80Co0.15Al0.05O2 at overdischarge conditions
Chem. Mater. 30, 1907−1911 (2018)DOI: 10.1021/acs.chemmater.7b04784
- Monitoring the chemical and electronic properties of electrolyte-electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy
Phys. Chem. Chem. Phys. 20, 11123-11129 (2018)DOI: 10.1039/C8CP01213J
- Electrochemical performance of all-solid-state Li-ion batteries based on garnet electrolyte using silicon as a model electrode
ACS Energy Lett. 3, 1006-1012 (2018)DOI: 10.1021/acsenergylett.8b00264
- SnO2 model electrode cycled in Li-ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions
ACS Appl. Mater. & Interfaces 10 (10), 8712-8720 (2018)DOI: 10.1021/acsami.7b19481
- Graphite as cointercalation electrode for sodium‐ion batteries: Electrode dynamics and the missing solid electrolyte interphase (SEI)
Adv. Energy Mater. 1702724 (2018)DOI: 10.1002/aenm.201702724
- Do imaging techniques add real value to the development of better post-Li-ion batteries?
J. Mater. Chem. A 6, 3304-3327 (2018)DOI: 10.1039/C7TA10622J
- Solving the puzzle of Li4Ti5O12 surface reactivity in aprotic electrolytes in Li-ion batteries by nanoscale XPEEM spectromicroscopy
J. Mater. Chem. A 6, 3534-3542 (2018)DOI: 10.1039/C7TA09673A
- Multiple redox couples cathode material for Li-ion battery: Lithium chromium phosphate
J. Energy Storage 15, 266-273 (2018)DOI: 10.1016/j.est.2017.12.001
- Operando monitoring of early Ni-mediated surface reconstruction in layered lithiated Ni–Co–Mn oxides
J. Phys. Chem. C 121 (25), 13481-13486 (2017)DOI: 10.1021/acs.jpcc.7b02303
- Crystal structure evolution via operando neutron diffraction during long-term cycling of a customized 5 V full Li-ion cylindrical cell LiNi0.5Mn1.5O4vs. graphite
J. Mater. Chem. A 5, 25574-25582 (2017)DOI: 10.1039/C7TA07917F
- Cycling behavior of silicon-containing graphite electrodes, Part B: Effect of the silicon source
J. Phys. Chem. C 121, 25718-25728 (2017)DOI: 10.1021/acs.jpcc.7b08457
- Elucidation of reaction mechanisms of Ni2SnP in Li-ion and Na-ion systems
J. Power Sources 365, 339-347 (2017)DOI: 10.1016/j.jpowsour.2017.08.096
- Interface and safety properties of phosphorus-based negative electrodes in Li-ion batteries
Chem. Mater. 29 (17), 7151-7158 (2017)DOI: 10.1021/acs.chemmater.7b01128
- Electrochemical impedance spectroscopy of a Li–S battery: Part 2. Influence of separator chemistry on the lithium electrode/electrolyte interface
Electrochim. Acta 255, 379-390 (2017)DOI: 10.1016/j.electacta.2017.09.148
- Cycling behavior of silicon-containing graphite electrodes, Part A: Effect of the lithiation protocol
J. Phys. Chem. C 121 (34), 18423-18429 (2017)DOI: 10.1021/acs.jpcc.7b05919
- A new concept of an air-electrode catalyst for Li2O2 decomposition using MnO2 nanosheets on rechargeable Li-O2 batteries
Electrochim. Acta 252, 192-199 (2017)DOI: 10.1016/j.electacta.2017.08.183
- Colloidal synthesis and electrochemistry of surface coated nano-LiNi0.80Co0.15Al0.05O2
J. Electrochem. Soc. 164 (12), A2617-A2624 (2017)DOI: 10.1149/2.1431712jes
- Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4 and LiNO3 electrolytes
Carbon 120, 281-293 (2017)DOI: 10.1016/j.carbon.2017.05.061
- Improved electrochemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li+ by Mg2+
J. Power Sources 359, 27–36 (2017)DOI: 10.1016/j.jpowsour.2017.05.028
- Surface and morphological investigation of the electrode/electrolyte properties in an all-solid-state battery using a Li2S-P2S5 solid electrolyte
J. Electroceram. 38, 1-8 (2017)DOI: 10.1007/s10832-017-0084-z
- Elucidation of the reaction mechanisms of isostructural FeSn2 and CoSn2 negative electrodes for Na-ion batteries
J. Mater. Chem. A 5, 3865-3874 (2017)DOI: 10.1039/C6TA10535A
- Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction
Nature Energy 2, 17069 (2017)DOI: 10.1038/nenergy.2017.69
- Electrochemical impedance spectroscopy of a Li–S battery: Part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells
Electrochim. Acta 244, 61-68 (2017)DOI: 10.1016/j.electacta.2017.05.041
- Ligand influence in Li-ion battery hybrid active materials: Ni methylenediphosphonate vs. Ni dimethylamino methylenediphosphonate
Chem. Commun. 53, 5420-5423 (2017)DOI: 10.1039/C7CC01982C
- Impact of cobalt content in Na0.67MnxFeyCozO2 (x + y + z = 1), a cathode material for sodium ion batteries
RSC Adv. 7 (23), 13851-13857 (2017)DOI: 10.1039/C7RA00566K
- Fe and Co methylene diphosphonates as conversion materials for Li-ion batteries
J. Power Sources 342, 879-885 (2017)DOI: 10.1016/j.jpowsour.2016.12.090
- CuSbS2 as a negative electrode material for sodium ion batteries
J. Power Sources 342, 616-622 (2017)DOI: 10.1016/j.jpowsour.2016.12.100
- The counterintuitive impact of separator–electrolyte combinations on the cycle life of graphite–silicon composite electrodes
J. Power Sources 343, 142-147 (2017)DOI: 10.1016/j.jpowsour.2017.01.055
- Relationship between the properties and cycle Life of Si/C composites as performance-enhancing additives to graphite electrodes for Li-Ion batteries
J. Electrochem. Soc. 164 (2), A190-A203 (2017)DOI: 10.1149/2.0701702jes
- MnSn2 negative electrodes for Na-ion batteries: a conversion-based reaction dissected
J. Mater. Chem. A, 4, 19116–19122 (2016)DOI: 10.1039/C6TA07788A
- Elucidating the surface reactions of an amorphous Si thin film as a model electrode for Li-Ion batteries
ACS Appl. Mater. Interfaces 8 (43), 29791-29798 (2016)DOI: 10.1021/acsami.6b10929
- Mechanism of the carbonate-based-electrolyte degradation and its effects on the electrochemical performance of Li1+x(NiaCobMn1-a-b)1-xO2 cells
J. Power Sources 335, 91-97 (2016)DOI: 10.1016/j.jpowsour.2016.10.031
- FeSn2 and CoSn2 electrode materials for Na-Ion batteries
J. Electrochem. Soc. 163 (7), A1306-A1310 (2016)DOI: 10.1149/2.0791607jes
- XPS study of the interface evolution of carbonaceous electrodes for Li-O2 batteries during the 1st cycle
J. Electrochem. Soc. 163 (13), A2545-A2550 (2016)DOI: 10.1149/2.0351613jes
- Operando neutron powder diffraction using cylindrical cell design: The case of LiNi0.5Mn1.5O4 vs Graphite
J. Phys. Chem. C 120 (31), 17268-17273 (2016)DOI: 10.1021/acs.jpcc.6b05777
- Versatile approach combining theoretical and experimental aspects of Raman spectroscopy to investigate battery materials: The case of the LiNi0.5Mn1.5O4 spinel
J. Phys. Chem. C 120 (30), 16377–16382 (2016)DOI: 10.1021/acs.jpcc.6b04155
- Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries
Nature Energy 1, 16097 (2016)DOI: 10.1038/nenergy.2016.97
- Performance-enhancing asymmetric separator for lithium–sulfur batteries
ACS Appl. Mater. Interfaces 8 (29), 18822-18831 (2016)DOI: 10.1021/acsami.6b04662
- Influence of aqueous electrolyte concentration on parasitic reactions in high-voltage electrochemical capacitors
Energy Storage Mat. 5, 111-115 (2016)DOI: doi:10.1016/j.ensm.2016.06.001
- On the correlation between electrode expansion and cycling stability of graphite/Si electrodes for Li-ion batteries
Carbon 105, 42-51 (2016)DOI: 10.1016/j.carbon.2016.04.022
- Pitfalls in Li-S rate-capability evaluation
J. Electrochem. Soc. 163 (7), A1139-A1145 (2016)DOI: 10.1149/2.0181607jes
- Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry
J. Electrochem. Soc. 163 (6), A1095-A1100 (2016)DOI: 10.1149/2.0981606jes
- Online electrochemical mass spectrometry of high energy lithium nickel cobalt manganese oxide/graphite half- and full-cells with ethylene carbonate and fluoroethylene carbonate based electrolytes
J. Electrochem. Soc. 163 (6), A964-A970 (2016)DOI: 10.1149/2.0801606jes
- Effects of solvent, lithium salt, and temperature on stability of carbonate-based electrolytes for 5.0 V LiNi0.5Mn1.5O4 electrodes
J. Electrochem. Soc. 163 (2), A83-A89 (2016)DOI: 10.1149/2.0201602jes
- Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis
Energy Environ. Sci. 9, 623 (2016)DOI: 10.1039/c5ee02875b
- Investigation of Li-Ion solvation in carbonate based electrolytes using near ambient pressure photoemission
Top Catal 59, 628–634 (2016)DOI: 10.1007/s11244-015-0518-2
- Electrode-electrolyte interface characterization of carbon electrodes in Li-O2 batteries: capabilities and limitations of infrared spectroscopy
Electrochim. Acta 190, 753–757 (2016)DOI: 10.1016/j.electacta.2015.12.061
- Size-resolved identification, characterization, and quantification of primary biological organic aerosol at a European rural site
Environmental Science & Technology 50 (7), 3425-3434 (2016)DOI: 10.1021/acs.est.5b05960
- Visualization of 0-0 peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
Science 350 (6267), 1516-1521 (2015)DOI: 10.1126/science.aac8260
- Rechargeable batteries: Grasping for the limits of chemistry
J. Electrochem. Soc. 162 (14), A2468-A2475 (2015)DOI: 10.1149/2.0081514jes
- Lithium chromium pyrophosphate as an insertion material for Li-ion batteries
Acta Cryst. B71, 661-667 (2015)DOI: 10.1107/S2052520615017539
- Lithium iron methylenediphosphonate: A model material for new organic–inorganic hybrid positive electrode materials for Li ion batteries
Chem. Mater. 27 (23), 7889–7895 (2015)DOI: 10.1021/acs.chemmater.5b02595
- Concentration effects on the entropy of electrochemical lithium deposition: implications for Li+ solvation
J. Phys. Chem. B 119, 13385-13390 (2015)DOI: 10.1021/acs.jpcb.5b07670
- Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries
Nature Commun. 6, 8169 (2015)DOI: 10.1038/NCOMMS9169
- Taming the polysulphide shuttle in Li–S batteries by plasma-induced asymmetric functionalisation of the separator
RSC Adv. 5, 79654 (2015)DOI: 10.1039/C5ra13197a
- Freeze-dryed LixMoO3 nanobelts used as cathode materials for lithium-ion batteries: A bulk and interface study
J. Power Sources 297, 276-282 (2015)DOI: 10.1016/j.jpowsour.2015.07.082
- Consequences of electrolyte degradation for the electrochemical performance of Li1+x(NiaCobMn1-a-b)1-xO2
J. Electrochem. Soc., 162 (13), A7072-A7077 (2015)DOI: 10.1149/2.0061513jes
- A low-temperature benzyl alcohol/Benzyl mercaptan synthesis of iron oxysulfide/iron oxide composite materials for electrodes in Li-ion batteries
J. Mater. Chem. A 3, 16112 (2015)DOI: 10.1039/c5ta03155a
- _In situ_ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries
Electrochim. Acta 176, 18–21 (2015)DOI: 10.1016/j.electacta.2015.06.105
- Structural changes and microstrain generated on LiNi0.80Co0.15Al0.05O2 during cycling: Effects on the electrochemical performance
J. Electrochem. Soc. 162 (9), A1823-A1828 (2015)DOI: 10.1149/2.0721509jes
- Electrochemical study of Si/C composites with particulate and fibrous morphology as negative electrodes for lithium-ion batteries
J. Power Sources 294, 128–135 (2015)DOI: 10.1016/j.jpowsour.2015.06.067
- Reversible Li-intercalation through oxygen reactivity in Li-rich Li-Fe-Te oxide materials
J. Electrochem. Soc. 162 (7), A1341-A1351 (2015)DOI: 10.1149/2.0991507jes
- Influence of graphite edge crystallographic orientation on the first lithium intercalation in Li-ion battery
Carbon 91, 458–467 (2015)DOI: 10.1016/j.carbon.2015.05.001
- Understanding inhomogeneous reactions in li-ion batteries: Operando synchrotron X-Ray diffraction on two-layer electrodes
Adv. Sci. 1500083 (2015)DOI: 10.1002/advs.201500083
- Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6
J. Am. Chem. Soc. 137 (14), 4804–4814 (2015)DOI: 10.1021/jacs.5b01424
- Progress towards commercially viable Li-S battery cells
Adv. Energy Mater. 1500118 (2015)DOI: 10.1002/aenm.201500118
- Surface/Interface study on full xLi2MnO3{middle dot}(1 - x)LiMO2 (M = Ni, Mn, Co)/graphite cells
J. Electrochem. Soc. 162, 7, A1297-A1300 (2015)DOI: 10.1149/2.0491507jes
- Understanding the interaction of the carbonates and binder in Na-Ion batteries: A combined bulk and surface study
Chem. Mater. 27, 1210-1216 (2015)DOI: 10.1021/cm5039649
- Simultaneous in situ x‑ray absorption spectroscopy and x‑ray diffraction studies on battery materials: The case of Fe0.5TiOPO4
J. Phys. Chem. C 119, 3466-3471 (2015)DOI: 10.1021/jp511042x
- Influence of conversion material morphology on electrochemistry studied with operando x-ray tomography and diffraction
Adv. Mater. 27, 1676-1681 (2015)DOI: 10.1002/adma.201403792
- _In situ_ gas analysis of Li4Ti5O12 based electrodes at elevated temperatures
J. Electrochem. Soc. 162, 6, A870-A876 (2015)DOI: 10.1149/2.0311506jes]
- Activation mechanism of LiNi0.80Co0.15Al0.05O2: Surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X‑ray diffraction analyses
Chem. Mater. 27, 526−536 (2015)DOI: 10.1021/cm503833b
- Towards a stable organic electrolyte for the Lithium oxygen battery
Adv. Energy Mater. 5, 1400867 (2015)DOI: 10.1002/aenm.201400867
- MoS2 coating on MoO3 nanobelts: A novel approach for a high specific charge electrode for rechargeable Li-ion batteries
J. Power Sources 279, 636-644 (2015)DOI: 10.1016/j.jpowsour.2014.12.129
- MSnS2 (M = Cu, Fe) electrode family as dual-performance electrodes for Li–S and Li–Ion batteries
J. Electrochem. Soc. 162, 3, A284-A287 (2015)DOI: 10.1149/2.0121503jes
- Important aspects for reliable electrochemical impedance spectroscopy measurements of Li-Ion battery electrodes
J. Electrochem. Soc. 162, 1, A218-A222 (2015)DOI: 10.1149/2.1061501jes
- Polyacrylate bound TiSb2 electrodes for Li-ion batteries
J. Power Sources 273, 174–179 (2015).DOI: 10.1016/j.jpowsour.2014.09.087
- One-pot polyol synthesis of Pt/CeO2 and Au/CeO2 nanopowders as catalysts for CO oxidation
J. Nanoscience and Nanotechnology 15, 5 (10), 3530-3539 (2015)DOI: 10.1166/jnn.2015.9861
- Differential electrochemical mass spectrometry study of the interface of xLi2MnO3·(1−x)LiMO2 (M = Ni, Co, and Mn) Material as a positive electrode in Li-Ion batteries
Chem. Mater. 26, 5051-5057 (2014)DOI: 10.1021/cm502201z
- Continuous synthesis of nickel nanopowders: Characterization, process optimization, and catalytic properties
Applied Catalysis B: Environmental 156–157, 404–415 (2014)DOI: 10.1016/j.apcatb.2014.03.045
- Elucidation of the reaction mechanism upon lithiation and delithiation of Cu0.5TiOPO4
J. Mater. Chem. A 2, 12513-12518 (2014).DOI: 10.1039/C4TA01627K
- Combined in situ Raman and IR microscopy at the interface of a single graphite particle with ethylene carbonate/dimethyl carbonate
J. Electrochem. Soc. 161, 10, A1555-A1563 (2014).DOI: 10.1149/2.0021410jes
- Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries
J. Mater. Chem. A 2, 8589-8598 (2014).DOI: 10.1039/C3TA12643A
- Reducing mass transfer effects on the kinetics of 5V HE-NCM electrode materials for Li-Ion batteries
J. Electrochem. Soc 161 (6), A871-A874 (2014).DOI: 10.1149/2.067405jes
- Bulk and surface analyses of ageing of a 5V-NCM positive electrode material for lithium-ion batteries
J. Mater. Chem. A 2, 6488-6493 (2014).DOI: 10.1039/C3TA13112B
- _Ex situ_ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, Mn)
Electrochim. Acta 130, 206–212 (2014).DOI: 10.1016/j.electacta.2014.03.004
- Novel electrochemical cell designed for operando techniques and impedance studies
RSC Adv. 4, 6782-6789 (2014)DOI: 10.1039/C3RA46184J
- Importance of ‘unimportant’ experimental parameters in Li–S battery development
J. Power Sources 249, 497-502 (2014)DOI: 10.1016/j.jpowsour.2013.10.095
Click here for complete list of publications 1985-2019