Example of Modeling Methodologies Applied in SOARCA

Presented by Jesse Phillips
SAND2017-3373 C
Hydrogen Deflagration

- Overview of the MELCOR Deflagration Modeling
 - Shapiro implementation of default limits
- Overview of the SOARCA Deflagration Modeling
 - Ignition source requirement
 - Application of a Kumar inspired methodology
 - Applies a directional component to ignition criteria
 - Temperature correction to combustion H$_2$ limit
Burns in MELCOR involve the following determinations:

- **Ignition Criteria** – Mole fraction criteria permitting a burn to occur
 - Two limits may be defined (burns may also be disallowed in user specifies volumes)
 - Spontaneous deflagrations / Igniter initiated deflagrations
 - Control function (CF) may be used to actuate an igniter
 - Recent SOARCA modeling use the igniter CFs to incorporate all of the ignition criteria

- **Burn Rate** – Moles of gases reacted during a time step (HECTR 1.5)
 - Burn Completeness – Mole fraction of combustible left at end of burn (solved at start of burn)
 - Burn Duration – Duration of a given burn (solved at the start of burn)
 - = Characteristic volume length / Flame Speed (HECTR Correlation)
 - Rate = (X(t) – BurnComplete)/(BurnDuration – TimeSpentBurning)

- **Propagation Criteria** – Mole fraction criteria permitting a burn to transfer to another control volume
 - Propagation directional ignition criteria (4%/6%/9%)
 - Ignition criteria check after Const(def=0.0)*BurnDuration
MELCOR BurnPackage Ignition Criteria

- Shapiro Model – Spontaneous Combustion
 - Constant limits
 - Lower Flammability Limit (LFL)
 - 10% H₂ (+CO adjusted)
 - Upper Flammability Limit (UFL)
 - 5% O₂
 - Inerting Limit
 - 55% CO₂ + H₂O
 - Control volume mole fractions are evaluated against these limits

- Note the use of “Air” implies set N₂/O₂ concentrations
Shapiro Model

- Shapiro Model – Depicted on an XY plot
 - LFL – 10% Hydrogen
 - UFL – 5% Oxygen (for 80/20 N2/O2 – 5% Oxygen corresponds to 25% “Air”)
 - Inerting Limit 55%
Kumar-Inspired Model

- Integrating directionality (up/down/horizontal) with ignition criteria
 - Performed for Uncertainty Analysis sampling in recent SOARCA studies
 - Uniform distribution for the three possible directions
 - Lower flammability limits vary with regard to relevant flame direction
 - Data from Kumar* was employed
 - Tabular functions using the diluent mole fractions to determine lower flammability limits
 - Upward directional flame front requires less hydrogen then downward traveling flame fronts
 - Horizontal is taken as the average between upward and downward propagation
 - Lower flammability limits vary with atmospheric temperature

- Known ignition sources employed
 - Disable spontaneous ignition criteria
 - Adjust igniter ignition criteria to reduced ignition criteria (maintain CO/H$_2$O ratio)
 - Create control function logic which combines ignition criteria and ignition source
 - $H_2 + CO$ limit; O_2 limit
 - Hot jet temperature at break site
 - Debris in cavity
Kumar investigated various systems to determine up/downward limits:
- \(\text{H}_2 - \text{N}_2 - \text{O}_2 \)
- \(\text{H}_2 - \text{CO}_2 - \text{O}_2 \)
- \(\text{H}_2 - \text{H}_2\text{O} - \text{O}_2 \)
- \(\text{H}_2 - \text{H}_2\text{O} - \text{Air} \)

Kumar purports \(\text{N}_2 \) may be treated as a diluent in context of paper.
SOARCA Compared to Default MELCOR Model

- Applies the Air data set for upward/downward and computes horizontal limit as the average from the up and downward ignition criteria limits
- Increases overall envelope supporting deflagrations
- Fidelity near inerting limit
Temperature Enhancement

- From Kumar
 - Up/downward augmentation to ignition criteria

\[\text{LFL}_{\text{dir, aug}} = \text{LFL}_{\text{dir, Kumar}} + C_{\text{dir}} \times \Delta T_{\text{atm, Kumar}} \]

\[C_{\text{dir}} = -1\%/100\text{C for downward and } -0.5\%/100\text{C for upward} \]

\[\Delta T_{\text{atm, Kumar}} = \text{Delta between the present atmosphere temperature and the temperature at which the limit was determined} \]

\[\Delta T_{\text{atm, Kumar}} = (T_{\text{atm}} - 295.15) \]
Fission Product Distribution with UA

- Discuss sources for modeling in SOARCA and SOARCA UA
- Show probability density function for gaseous iodine
- Discuss input generation and deck management used to perform UA
SOARCA Fission Product Classes
Definition

- Modeling methodology draws from the following resources
 - Phebus experiments
 - Cs_2MoO_4 used across all of SOARCA
 - Gaseous iodine (I_2, methyl iodine neglected) only applied in SOARCA UA
 - Prior best-estimate SOARCA studies assume chemical form CsI only for iodine
 NUREG/CR-7155, "SOARCA Project – Uncertainty Analysis of the Unmitigated LTSBO of the Peach Bottom Atomic Power Station, Draft Report"
 - VERCORS, ORNL VI&HI, Phebus, and the CORSOR/ORNL-Booth release models
 - Modification of the Booth-ORNL model parameters
 NUREG/CR-7008, "MELCOR Best Practices as Applied in the SOARCA Project"
 Modification of CORSOR/Booth Parameters in MELCOR
 - NUREG-1465
 - Assumed gap fractions
Modeling Fission Products

- Pre-defined mass for all classes
 - No application of the class combination model
 - Prescriptive containment concentrations are being directly specified within the fuel
 - User must combines decay heat tables appropriately
 - Specify radioactive mass for Cs (CsOH), CsI, Mo, Cs$_2$MoO$_4$

- SOARCA practice
 - Class 2 – 5% of available Cs (all placed into the fuel gap)
 - Class 4 – 0%
 - Class 16 – All Iodine combined (5% placed into the fuel gap)
 - Class 17 – Remaining Cs combined to form Cs$_2$MoO$_4$
 - Specifying radioactive mass in the fuel
 - Class 7 – Mo decremented by formation of Cs$_2$MoO$_4$
SOARCA UA Fission Product Class Definition

- Pre-defined approximate compositions definition
 - Phebus test results provided evidence of the chemical form Cs₂MoO₄ and persistence of gaseous iodine which are used in the SOARCA UA
 - Combination n for iodine speciation
 - Average peak percentage of iodine observed as gaseous FTP0-3
 - 5th average over experiment

Figure 4.1-20 - PDF
SOARCA UA Total Decay Heat

- **Sampled – Time at Cycle**
 - Baseline decay heat power curves for scenario initiating at different times
 - Time of shutdown correspond to 7, 200, and 505 days for BOC, MOC, and EOC, respectively
Deck Organization Generation

Input Files

- MAIN.INP
- EXEC_INPUT
- CVH_INPUT
- COR_INPUT
- DCH_INPUT
- RN1_INPUT
- FL_INPUT

Base Model Definition

- UA Set (folder)
- RlzN.INP
 - Program MELCOR
 - Include /deck/Main.inp
 - CVH_INPUT
 - CVH_SC 3
 - 1
 - COR_INPUT
 - COR_SC 1
 - 1 1020 <rep-Cor-X1> 1
 - 2 1020 <rep-Cor-X2> 2
 - DCH_INPUT
 - Include /deck/DCH-RN/<REP-FileName> DCH_BLOCK
 - RN1_INPUT
 - Include /deck/DCH-RN/<Rep-FileName> RN1_Block

- DCH-RN (folder)
- (unique files generated)
 - DCH-RN-RlzN.INP

- CVH_INPUT
 - Include /deck/Containment.inp CVH_BLOCK
 - Include /deck/RCS-Loop-Z.inp CVH_Block
 - Include /deck/SG-Z.inp CVH_BLOCK
 - FL_INPUT
DCH-RN File Set

- Specifies total decay heat
- Class specific decay heat
- Class radioactive mass

```plaintext
DCH_EL 'I2' 100.0 10  ! Sampled value for mass
1 0.0e0 10.E5  ! Time of Cycle
2 2.0e0 9.5E5
3 ..
```
Conclusions

- Discussed the following:
 - Implementation of a Kumar-inspired deflagration model
 - Overview of the default Burn Package treatment
 - Modification of the LFL using Kumar’s data
 - Iodine class speciation
 - General SOARCA distribution of classes
 - SOARCA UA inclusion of Phebus results
 - Decay heat for different time of cycle
 - BOC, EOC, MOC
 - Possible deck configuration for UAs